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Abstract

Magnetic resonance (MR) images of the brain are of immense clinical and research utility. At the 

atomic and subatomic levels, the sources of MR signals are well understood. However, we lack a 

comprehensive understanding of the macromolecular correlates of MR signal contrast. To address 

this gap, we used genome-wide measurements to correlate gene expression with MR signal 

intensity across the cerebral cortex in the Allen Human Brain Atlas (AHBA). We focused on the 

ratio of T1-weighted and T2-weighted intensities (T1-w/T2-w ratio image), which is considered to 

be a useful proxy for myelin content. As expected, we found enrichment of positive correlations 

between myelin-associated genes and the ratio image, supporting its use as a myelin marker. 

Genome-wide, there was an association with protein mass, with genes coding for heavier proteins 

expressed in regions with high T1-w/T2-w values. Oligodendrocyte gene markers were strongly 

correlated with the T1-w/T2-w ratio, but this was not driven by myelin-associated genes. 

Mitochondrial genes exhibit the strongest relationship, showing higher expression in regions with 
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low T1-w/T2-w ratio. This may be due to the pH gradient in mitochondria as genes up-regulated 

by pH in the brain were also highly correlated with the ratio. While we corroborate associations 

with myelin and synaptic plasticity, differences in the T1-w/T2-w ratio across the cortex are more 

strongly linked to molecule size, oligodendrocyte markers, mitochondria, and pH. We evaluate 

correlations between AHBA transcriptomic measurements and a group averaged T1-w/T2-w ratio 

image, showing agreement with in-sample results. Expanding our analysis to the whole brain 

results in strong positive T1-w/T2-w correlations for immune system, inflammatory disease, and 

microglia marker genes. Genes with negative correlations were enriched for neuron markers and 

synaptic plasticity genes. Lastly, our findings are similar when performed on T1-w or inverted T2-

w intensities alone. These results provide a molecular characterization of MR contrast that will aid 

interpretation of future MR studies of the brain.
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Introduction

Magnetic resonance imaging (MRI) is of immense clinical utility and has revolutionized 

studies of human brain structure and function (Lerch et al., 2017). T1-weighted and T2-

weighted MR images are commonly used to study the structure of the brain. Contrast in a 

T1-weighted (T1-w) MR image is related to the time required for protons (hydrogen ions) to 

return to equilibrium magnetization after excitation by a radio-frequency pulse (T1 or 

longitudinal relaxation). A T2-weighted (T2-w) MR signal approximates the time required 

for the T2 or spin-spin vectors in the magnetic transverse plane to return to equilibrium (loss 

of phase coherence or alignment). Contrast in these images is associated with molecule size, 

iron content, diffusion/flow, pH, water content, water binding, and proton density (Koenig, 

1995; Kucharczyk et al., 1994; MacKay and Laule, 2016; Stüber et al., 2014; Vymazal et al., 

1995). The T1-w and T2-w MRI signals have been associated with histologically assayed 

myelin content in a study of diseased and normal white matter (Schmierer et al., 2008). 

These contrasts allow identification of pathologies and segmentation of tissues; for example, 

white matter lesions that mark demyelination and inflammation are bright in T2-w images 

and black in T1-w images (Sahraian et al., 2010). While coarse tissue differences are visible 

across the brain and attributable to general properties, a more detailed understanding of the 

molecular determinants of MR image contrast in homogeneous brain regions is lacking.

To enhance contrast in the cortex, Glasser and Van Essen proposed and evaluated the ratio of 

the T1-w and T2-w intensities as a cortical ‘myelin map’ (Glasser and Van Essen, 2011). 

The T1-w/T2-w ratio image attenuates the receiver-coil bias, which is present in both source 

images, and because the noise in the two volumes is largely uncorrelated, combining the two 

measurements increases the accuracy of the myelin-content signal (Glasser and Van Essen, 

2011). By taking the T1-w/T2-w ratio across the cortical surface as representative of local 

relative myelin content, it is possible to use this estimate of the cortical myeloarchitecture to 

generate finer cortical segmentations (Glasser et al., 2016). The T1-w/T2-w ratio was found 

to identify more robust markers of schizophrenia than was possible with the individual T1-w 
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or T2-w images (Ganzetti et al., 2015; Iwatani et al., 2015). It has also been used for 

segmentation of the human habenula and to assay hippocampal myelin in subjects with post-

traumatic stress disorder (Chao et al., 2015; Kim et al., 2016). In addition to myelin content, 

aerobic glycolysis and synaptic plasticity have been associated with the T1-w/T2-w ratio 

(Glasser et al., 2014).

This paper focuses on the Allen Human Brain Atlas (AHBA) which provides transcriptomic 

information and MR images for six postmortem brains (Hawrylycz et al., 2012). The AHBA 

is unprecedented in its size and scope, representing a comprehensive “all genes, all 

structures” view of the human brain from both an anatomical and transcriptomic perspective 

(Shen et al., 2012). This data has been related to neuroimaging-based data from positron 

emission tomography (PET) (Rizzo et al., 2016), fMRI derived networks (Vértes et al., 

2016), adolescent cohorts that measure brain maturation (Shin et al., 2017; Whitaker et al., 

2016), and connectivity (Hawrylycz et al., 2015; Richiardi et al., 2015; Romme et al., 2017). 

More recently, the anatomically parcellated T1-w/T2-w ratio information from the Human 

Connectome Project has been combined with the AHBA to study the anatomical hierarchy 

of the cortex (Burt et al., 2017). These integrative studies combined imaging data from other 

studies and subjects with the transcriptomic profiles of the six donor brains [reviewed in 

(Mahfouz et al., 2017)]. More directly, two studies have also associated expression with 

connectivity obtained from the diffusion tensor images of two of the Atlas brains (Forest et 

al., 2017; Li et al., 2016). However, to our knowledge, no studies have used the MR images 

of the six donor brains to examine relationships between gene expression and MR signal 

intensity.

The wide clinical and research use of structural neuroimaging motivates our work to 

characterize the molecular basis of contrast in these images. In the current paper, we 

investigate whether the expression of genes associated with specific diseases, cell-types, 

cellular components, processes, or functions have higher or lower spatial correlations with 

magnetic resonance intensity (Fig. 1). Like the majority of neuroimaging studies, we focus 

on the cerebral cortex, but also examine these associations throughout the whole-brain. We 

use T1-w/T2-w ratio as our primary contrast measure, but also compare results obtained 

from T1-w and T2-w intensities alone.

Materials and methods

Gene expression and MRI data

The Allen Human Brain Atlas (AHBA) is a multimodal dataset containing comprehensive 

transcriptomic, neuroimaging and histological information for brains obtained from 6 

healthy adult human donors (1 female and 5 male, aged 24–57 years) (Hawrylycz et al., 

2012). Custom 64K Agilent microarrays were used to assay genome-wide expression in 

3702 spatially-resolved samples. The Allen Institute normalized the data with a seven-step 

process that adjusted expression for array-specific biases, batch, and dissection method. Full 

details of the procedure used by Allen Institute researchers are available in the AHBA 

technical white paper (http://help.brain-map.org/display/humanbrain/Documentation).
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To improve quality of the expression data, we filtered out microarray probes that lacked 

correlation with RNA sequencing data in a subset of samples, using quality control data 

calculated by Miller et al. (2014). The authors developed a procedure to remove noisy 

probes with non-specific, off-target, or saturation effects. Specifically, probes that survive 

the procedure show a significant positive correlation between RNA sequencing and 

microarray expression values in 231 of the AHBA samples (q < 0.1). Of the 58,692 probes 

on the array, 37,796 remained after removing the probes that failed the Miller et al. test or 

that were not mapped to a known gene. Of these 37,796 probes, 6344 lacked a Miller et al. 

test result since they were mapped to genes not included in the RNA sequencing analysis. 

We included these probes in our analysis. At the gene level, the mean average was used to 

summarize expression across multiple probes that map to a single gene (17,387 genes total, 

average 2.2 probes per gene).

In addition to transcriptomic measurements, structural postmortem MR images were 

acquired for the same donors by the Allen Institute on 3T Siemens Magnetom Trio scanners 

(Erlangen, Germany). There was variation in imaging parameters and sites across the 

subjects, including changes to pulse sequences [page 12 of (Allen Institute for Brain 

Science, 2013)]. For four of the brains 3D T1-weighted magnetization-prepared rapid 

gradient echo (MPRAGE) structural MRI images were acquired with 0.98 × 0.98 × 1 mm 

voxels, three averages, TI = 900 ms, TR = 1900 ms, TE = 2.63 or 3.03 ms and 9° flip angle 

resulting in an image matrix of 256 × 256 × 176. T1-weighted images of the remaining two 

brains were acquired with the same parameters except for TE = 2.63 ms and 1 mm isotropic 

voxels, providing an image matrix of 256 × 192 × 256. For four of the brains, 3D T2-

weighted images were acquired with 0.98 × 0.98 × 1 mm voxels, TR = 3200 ms, TE = 449 

ms, 120° flip angle resulting in an image matrix of 256 × 256 × 192. T2-weighted images of 

the remaining two brains were acquired with the same parameters except for 0.9 mm 

isotropic voxels and TR = 3200–3210 ms, TE = 535–540 ms resulting in an image matrix of 

224 × 256 × 160. Two brains were imaged in cranio and four were imaged ex cranio. We 

obtained the T1-w and T2-w MR images directly from the AHBA. Bias field correction was 

performed using the SPM12 software package (http://www.fil.ion.ucl.ac.uk/spm/software/

spm12/). Default parameters for bias correction were used for all scans (60 mm cutoff and 

very light regularisation (0.0001)). Upon visual inspection, default parameters did not 

produce adequate results for one scan (H0351.1012 T2 image), thus they were rerun using a 

Bias FWHM of 140 mm cutoff and heavy regularisation (0.1).

For each transcriptomic sample, histological information allowed for a determination of the 

native MRI coordinates and brain region from which the sample was taken. These 

coordinates and regions were published by the AIBS along with a structural part-of-ontology 

or reference atlas. For our main analysis, we restricted our analysis to the measurements 

located in the cerebral cortex (region ID of 4008 in the AHBA reference atlas) so that results 

would be directly applicable to characterization of the T1-w/T2-w ratio within the cortex. To 

focus on the neocortex, allocortical regions (hippocampal formation and piriform cortex, 

region IDs 4249 and 10142) from the AHBA cerebral cortex region were excluded.
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In addition to the T1-w/T2-w image, the analysis was repeated for the T1-w and T2-w 

images, so that comparison of results could be performed between the three imaging 

measures.

Human Connectome group average T1-w/T2-w image

We obtained a group averaged T1-w/T2-w ratio image from the Human Connectome 

Project. We used the S1200_Aver-ageT1wDividedByT2w.nii.gz file from the S1200 group 

average release which was derived from 1113 healthy young adult participants. The HCP 3D 

T1-weighted MPRAGE images were acquired with the following parameters: TR = 2400 

ms, TE = 2.14 ms, TI = 1000 ms, 8° flip angle, 0.7 mm isotropic voxels, and a field of view 

of 224 × 224 mm. The HCP 3D T2-weighted turbo spin echo sequence (SPACE) images 

were acquired with the following parameters: TR = 3200 ms, TE = 565 ms, variable flip 

angle, 0.7 mm isotropic voxels and a field of view of 224 × 244 mm [page 20 of (Human 

Connectome Project, 2013)].

Correlation analysis

Within each donor, we computed Spearman rank correlations between mean expression for 

each gene and T1-w/T2-w intensity at the sample points, using the native MRI coordinates. 

Across the donors, Fisher’s method was used to generate a single combined meta p-value for 

each gene and direction (Fisher, 1925). This was done by combining six one-sided p-values 

for positive correlation and another six for negative correlation, resulting in two meta-p 

values per gene. The lowest was then chosen to provide a single p-value per gene. Finally, 

multiple test correction was performed using the Bonferroni-Holm family-wise error rate 

(FWER) method. This procedure extends the simple Bonferroni technique by adding a step-

down calculation (Holm, 1979).

To generate correlations between AHBA transcriptomic profiles and the Human 

Connectome Project (HCP) group average ratio image, the Allen Institute-provided MNI 

coordinates (resulting from affine and deformable registration methods (Allen Institute for 

Brain Science, 2013)) for each expression sample were used to link the HCP data. 

Correlation analysis was performed within each donor, and results were combined at the 

gene level as described above.

To obtain a genome-wide ranking of genes for enrichment analysis, we ordered genes by the 

meta p-value and direction (from the most positively correlated gene with the lowest p-value 

to the most negatively correlated gene with the lowest p-value).

The SCAM R package was used to plot curves representing the rank correlation in the 

scatter plots (Pya and Wood, 2015).

Linear modeling

The five most positively and negatively correlated genes from the above correlation analysis 

were used as predictors in an ordinary least squares linear model for each donor. This model 

was fit separately for each of the donors to determine the percentage of variance explained 

by the top results.
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Gene ontology enrichment analysis

We employed gene set enrichment analysis to summarize the genome-wide results that 

contain a large number of significantly correlated genes. Through literature curation, the 

Gene Ontology (GO) classifies genes into sets associated with specific biological processes, 

molecular functions and cellular locations (Ashburner et al., 2000). This allows us to test if 

the genes correlated with the T1-w/T2-w ratio are enriched for a common location, function 

or process using the area under the receiver operator curve (AUROC) statistic. The AUROC 

for a set of genes is equivalent to the probability that a gene associated with that set will be 

found first in the genome-wide ranking compared to an unassociated gene. The ranking we 

use arranges genes from strongest positive correlation to strongest negative correlation. In 

this context, AUROC > 0.5 for a gene set means that samples with high expression of this 

gene group will be more likely to have a higher T1-w/T2-w value (genes are enriched for 

positive correlation). For AUROC < 0.5 the reverse is true, with a bias towards higher 

expression in samples with a lower or darker T1-w/T2-w ratio (enriched for negative 

correlation).

A Gene Ontology (GO) enrichment analysis was performed on the genome-wide gene 

rankings generated from the signed p-values. Annotations for GO gene groups were taken 

from the GO. db and org. Hs.eg.db packages in R (Carlson, 2017a, 2017b). Annotations 

were dated March 29, 2017. We calculated the AUROC values for GO groups comprising 

more than 10 and less than 200 genes, after intersection with genes present in the Allen 

microarray data (6885 GO groups annotating 13,384 unique genes). AUROC values were 

generated using the tmod analysis package in R (Weiner and Domaszewska, 2016). The 

Mann-Whitney U test was used to determine statistical significance. Multiple test correction 

of the resultant p-values for the many GO groups tested was performed using the 

Bonferroni-Holm family-wise error rate (FWER) method.

We investigated ten myelin-related GO groups, which were selected by filtering for GO 

terms containing the strings “myelin” or “ensheathment” and excluding the strings 

“peripheral” and “sphingomyelin”. Because of the a priori hypothesis of a correlation 

between myelin-associated genes and the T1-w/T2-w ratio, we performed a separate 

analysis for these GO groups of interest and did not consider non-myelin-related GO groups 

while performing multiple test correction. We also used the Benjamini-Hochberg false 

discovery rate (FDR) procedure for multiple test correction instead of the family-wise error 

rate method (Benjamini and Hochberg, 1995). The FDR procedure better handles multiple 

correlated tests, which are expected in this case due to the high overlap of genes between 

these myelin sets (Benjamini and Yekutieli, 2001).

Myelin fraction marker genes

A transcriptomic study of myelin extracted from whole brain provided a list of genes that 

were more abundant in myelin from six-month-old mice compared to cortex (Thakurela et 

al., 2016). This transcriptomic list was obtained from Supplement Table S2 of Thakurela et 

al. which contains genes with a normalized read count of greater than 100 which are at least 

twice as abundant in myelin than cerebral cortex. The proteomic list of distinct proteins 

identified in myelin was obtained from Supplemental Table S7.
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Cell type enriched genes

Lists of genes that mark specific transcriptomic cell types in the mouse and human brain 

were used as a source of cell type markers. Enrichment of these gene lists was determined 

using the previously described AUROC statistic. All cell type-enriched gene lists taken from 

mouse studies were first mapped to human homologs using the Homologene database 

(NCBI Resource Coordinators, 2016) and Ogan Mancarci’s “homologene” R package 

(https://github.com/oganm/homologene). While these lists have significant overlap for 

matching cell-types, we note that these sources of markers differ in size of gene lists, 

number of cells assayed, cortical regions assayed, and experimental design.

Zeisel marker genes

Cell type-specific genes from the mouse brain were obtained from a single cell analysis of 

3005 cells from the adult mouse somatosensory cortex (S1) and hippocampus (Zeisel et al., 

2015). We used genes from the nine modules provided in Supplemental Table 1 of Zeisel et 

al. (2015). These modules were identified by clustering of both cells and genes and 

correspond to 9 major classes (interneurons, SS pyramidal neurons, CA1 pyramidal neurons, 

oligodendrocytes, microglia, endothelial cells, mural cells, astrocytes and ependymal cells).

NeuroExpresso marker genes

We used cell type marker lists obtained from a cross-laboratory analysis of cell type specific 

transcriptomes (Mancarci et al., 2017). Mancarci et al. aggregated publicly-available gene 

expression values from microarray and single-cell RNA-seq studies to identify marker genes 

for 36 major cell types. We only used the markers obtained from cortex datasets, which 

included marker lists for astrocytes, endothelial cells, oligodendrocytes, OPCs, pyramidal 

neurons, GABAergic neurons (further labelled as PV, RelnCalb, and VIPReln), and 

microglia (further classified as activation state independent, activated, and deactivated). The 

gene lists were obtained from https://github.com/oganm/neuroExpressoAnalysis.

Darmanis marker genes

From the first single cell transcriptome analysis of healthy human cortex, we obtained 

marker gene lists corresponding to six main cell types (Darmanis et al., 2015). This study 

profiled expression in 466 cells from the human cortical tissue of eight adult subjects and 

four embryos. Clustering was employed to group the cells into six main groups (astrocytes, 

oligodendrocytes, oligodendrocyte precursor cells (OPCs), neurons, microglia, and 

endothelial cells) based on their transcriptomic profile, which was obtained using RNA 

sequencing (Darmanis et al., 2015). We used the top 21 enriched genes in each of the groups 

from Table S3 of Darmanis et al. and excluded the gene groups associated with fetal cell 

types. These groups were obtained from unbiased genome-wide results and not the focused 

clustering that was also applied by the authors.

Perineuronal oligodendrocyte marker genes

Genes expressed at higher levels in perineuronal oligodendrocytes as marked by cell-specific 

tags were obtained from DataS1 (oligodendrocyte precursor comparison, A2B5+ marker) 

and DataS2 (committed oligodendrocyte comparison, O4+ marker) in Szuchet et al. (2011). 
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These two lists of rat genes with more than a twofold difference between cell types were 

filtered for higher expression in perineuronal oligodendrocytes (as marked by A2B5+/OTMP

+) and mapped to human homologs. We used the intersection of the two lists to provide a 

single list of 493 genes that were enriched in A2B5+/OTMP+ cells in comparison to both 

A2B5+ and O4+ cells.

Laminar marker genes

Cortical layer enriched genes were obtained from a transcriptomic analysis performed by He 

et al. (2017). In this study, unsupervised sectioning and RNA sequencing were used to assay 

genome-wide expression profiles of the human prefrontal cortex. Specifically, we used 

annotations in the ‘Layer marker in human’ column of Supplementary Table S2 (He et al., 

2017). This use of laminar marker genes for characterizing the T1-w/T2-w ratio was inspired 

by an early version of Burt et al. (2017).

pH associated genes

A cross-laboratory analysis of human gene expression profiles provided a source of pH 

associated genes (Mistry and Pavlidis, 2010). This meta-analysis tested the effects of brain 

pH on gene expression in eleven datasets that primarily assayed the frontal cortex of the 

normal human brain. Genes up- and down-regulated with pH were obtained from 

Supplementary Table 6 at http://hdl.handle.net/11272/10572 (Mistry and Pavlidis, 2010). A 

subset of core pH up-regulated genes with robust associations was also used.

Disease gene lists

Disease-associated gene sets were downloaded from the Phenocarta database on October 

28th, 2016. Phenocarta consolidates data on gene-to-phenotype mappings taken from 17 

distinct resources (Portales-Ca-samar et al., 2013). The three sources that provide the 

majority of the annotations in the database are the Disease and Gene Annotations, The Rat 

Genome Database and the Comparative Toxicogenomics Database (Davis et al., 2017; Peng 

et al., 2013; Shimoyama et al., 2015). We investigated all disease-associated gene lists in the 

size range of 5–200 genes, a total of 1177 diseases.

Availability

Scripts, supplementary tables, and data files for reproducing the analyses are available 

online at http://www.github.com/jritch/mri_transcriptomics and https://figshare.com/articles/

Transcriptomic_characterization_of_MRI_contrast_focused_on_the_T1-w_T2-

w_ratio_in_the_cerebral_cortex/5270926.

Results

Allen Human Brain Atlas samples per donor ranged from 182 to 481 cortical regions. We 

found that intensities of T1-w, T2-w and the ratio image within the single brains were highly 

correlated across the samples (absolute Spearman’s rho > 0.72). In single brains, correlations 

between gene expression and T1-w/T2-w ratio have Spearman rank correlation values 

ranging from −0.47 to 0.41. Combined, median correlation across the six donors ranged 

from −0.31 to 0.26. After multiple test correction, 1025 positively correlated genes and 2581 
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negatively correlated were identified at pFWER < 0.05 (complete list in Supplement Table 1). 

Inconsistency across brains is observed with only 47.6% of the 3606 significant genes 

showing the same correlation direction across all six brains and 85.6% with consistent 

direction in at least five.

We built linear models to assay the amount of variance in the T1-w/T2-w ratio explained by 

the top genes in each brain. The top five negatively and five positively correlated genes 

together explain 14.6% of the variance in T1-w/T2-w ratio (average adjusted R2 across the 

six brains). This metric varies from 6.6% (donor 12876/H0351.1009) to 21.6% (donor 

15496/H0351.1015). This explanatory power and the thousands of significant genes 

motivates our characterization of both the top genes and broader genome-wide signals.

The most significant gene was negatively correlated with T1-w/T2-w ratio (SCARA5, 
scavenger receptor class A member 5, Fig. 2). Across the six brains, SCARA5 showed a 

median Spearman correlation of ‒0.27 (ranging from ‒0.093 to ‒0.43). The median across 

donors, when restricted to data for each of the cortical divisions colored in Fig. 2 ranges 

from ‒0.13 to ‒0.28, suggesting the relationship is maintained within anatomical divisions.

Gene ontology enrichment analysis

We first performed a targeted analysis of myelin-related gene ontology groups. Two of the 

ten myelin groups (ensheathment of neurons and myelination) were enriched for genes with 

positive correlations with the T1-w/T2-w ratio (pFDR < 0.05, Table 1 and Fig. 3). However, 

we note that these GO groups have high overlap. Broadly, all the myelin groups were 

enriched for positively correlated genes (AUC > 0.5 and four groups with an uncorrected p < 

0.05). Relative to all tested 6230 GO groups, the myelin-related groups are less enriched 

than 194 other GO groups. While the 12 genes annotated to the “myelin maintenance” group 

have a high AUROC value of 0.697, we find that 41 of the 893 tested GO groups of equal or 

smaller size have a more extreme AUROC. Also, as shown in Table 1, they are ranked 

slightly higher in the enrichment results in separate T1-w or T2-w analyses (AUROC values 

are similar). In contrast, an independent list of myelin enriched genes obtained from 

transcriptomic profiling of whole mouse brain myelin fraction is enriched for negatively 

correlated genes (1493 genes, AUROC = 0.454, p < 10–8) (Thakurela et al., 2016). The same 

result is found using genes corresponding to proteins extracted from the myelin fraction 

(2212 genes, AUROC = 0.454, p < 10−11). Within the top ten most positively correlated 

genes, VAMP1 and STY2 appear in the myelin associated transcriptomic list; and VAMP1 
and VAV3 are in the myelin proteome lists. One gene, BAIAP3 appears in the top ten most 

negatively correlated genes and the myelin associated transcriptomic list and none are in the 

list of myelin proteins.

The second process of interest is synaptic plasticity, which has been indirectly associated 

with the T1-w/T2-w ratio based on the inhibitory and stabilizing properties of myelin 

(Glasser et al., 2014). The regulation of synaptic plasticity GO group is enriched for negative 

correlations (AUROC = 0.41, uncorrected p < 0.0005, rank = 95th), as is the learning GO 

group (AUROC = 0.43, uncorrected p < 0.005, rank = 228th). In the context of aerobic 

glycolysis, we did not see enrichment for groups with titles containing “pyruvate”, 

“glycolysis”, or “lactate” (all p > 0.05).
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Extending to the 6230 GO groups considered in the enrichment analysis, 17 were 

significantly enriched (pFWER<0.05). Like the gene-wise results, a larger number of negative 

relations is observed, with 15 GO groups enriched for negative correlations (AUROC < 0.5, 

Table 2) and two enriched for positive correlations (AUROC > 0.5, Table 3). Full results are 

provided in Supplement Table 2.

The 15 GO groups with significant enrichment for negative correlations are primarily related 

to metabolic and catabolic processes (Table 2). ROC curves and raster plots are provided for 

select groups in Fig. 4. Several overlapping GO groups containing peptidases and 

proteasome subunits share many genes. “Mitochondrial protein complex” is the second-

ranked group (118 genes, AUROC = 0.35, pFWER < 0.0001) and several of the other 

significant groups contain similar genes. For example, the top-ranked ribosomal subunit 

genes are primarily specific to mitochondrial ribosomes. Mitochondria maintain a pH 

gradient by pumping hydrogen protons from the mitochondrial matrix (pH = 7.7) to the 

inner mitochondrial space (pH = 6.8, more acidic than the cytosol), supporting oxidative 

phosphorylation (Santo-Domingo and Demaurex, 2012). The “regulation of cellular amine 

metabolic process” group also suggests a pH association, due to the elevated pH typical of 

amines. To more directly test pH associated genes, we used genes up- and down-regulated 

with pH in postmortem human brain samples (Mistry and Pavlidis, 2010). In agreement with 

the mitochondrial enrichment, we found that pH up-regulated genes are biased for negative 

correlations with the T1-w/T2-w ratio (1027 genes, AUROC = 0.34, p < 10−62) with a core 

set of 11 genes showing stronger enrichment (AUROC = 0.18, p < 0.0005) and the pH 

down-regulated genes showing the opposite enrichment (AUROC = 0.54, 2137 genes, p < 

10−8). Other significant and distinct gene sets are cellular response to zinc ion (AUROC = 

0.18,17 genes, pFWER < 0.05) and negative regulation of cell cycle G2/M phase transition 

(AUROC = 0.35, 75 genes, pFWER < 0.05).

Two GO groups have significant enrichment for positive correlations with other weaker 

signals that are of interest (Table 3 and Fig. 4). Genes annotated to “Detection of chemical 

stimulus involved in sensory perception” have the most significant bias for positive 

correlations with T1-w/T2-w ratio (144 genes, AUROC = 0.621, pFWER < 0.005). This group 

consists primarily of taste and olfactory receptors. Visualization of the ROC and raster plots 

in Fig. 3 shows this result is driven by a lack of genes with negative correlations, with most 

genes having little or no correlation. Several largely overlapping groups are also top ranked, 

for example, bitter taste receptors (10 genes, AUROC = 0.87, uncorrected p < 0.0005). The 

intermediate filament group is of note because it marks neurofilament genes (111 genes, 

AUROC = 0.6, uncorrected p < 0.0005). Its most correlated genes are brain-associated: 

NEFH, NEFM, INA, and NEFL.

Cell type marker enrichment analysis

Following the same procedure used for GO gene sets, we tested for enrichment of cell-type 

specific marker genes. Because the results were mostly consistent across the different 

sources of marker genes, we grouped the results by cell-type while providing figures and 

tables for each source. Enrichment results for the Zeisel marker genes that were obtained 

from a single cell analysis of the adult mouse somatosensory cortex (S1) and hippocampus 
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are in Table 4 and Fig. 5. A second set of mouse markers from the NeuroExpresso cross-

laboratory database were used for Supplementary Table 3 (Mancarci et al., 2017). Results 

for marker gene lists obtained from the Darmanis et al. study of the human temporal cortex 

are in Supplementary Table 4 and Fig. 6.

Oligodendrocyte genes are the most strongly enriched, showing high positive correlations 

with T1-w/T2-w intensity. This is consistent across all three marker gene sources (AUROC 

> 0.62, pFWER < 10–9). We examined the 20 marker genes in the Darmanis oligodendrocyte 

gene set to investigate whether the enrichment of this group was driven the by the myelin-

associated genes in the list (MAG, MOG and OPALIN). None were significantly correlated 

with T1w/T2w ratio after genome-wide correction (pFWER > 0.09, ranked 7, 12, and 18th of 

20 genes; Supplementary Table 5). In contrast, two peptidase-coding genes, CNDP1 and 

KLK6 were top-ranked (ranked first and third). The TF gene, which codes for transferrin, an 

iron transport protein, was also top-ranked (4 of 20). For a related cell-type, oligodendrocyte 

precursors, markers from the Darmanis source were enriched for negative correlations (16 

genes, AUROC = 0.30, pFWER < 0.02), but the mouse-brain-derived list from NeuroExpresso 

was not (135 genes, AUROC = 0.53, pFWER = 1). Astrocyte markers were enriched for 

negative correlations in all three sources of markers (AUROC < 0.43, pFWER < 0.005). 

Microglia are enriched for negative correlations in the human list (21 genes, AUROC = 0.23, 

pFWER < 0.0001) and the Zeisel mouse source (AUROC = 0.42, pFWER < 0.00001) but not the 

NeuroExpresso markers. Endothelial markers were biased towards positive correlations in 

all three sources but were significantly enriched in only the NeuroExpresso source (AUROC 

= 0.59, pFWER < 0.005).

In general, markers of glial cells have stronger signals than neuronal markers. Only a single 

neuron marker list is available for the human source and is not significantly enriched (21 

genes, AUROC = 0.39, pFWER < 0.08). The Zeisel source provides markers for interneurons, 

and pyramidal neurons from the S1 and CA1 regions. Interneuron markers were enriched for 

negative correlations (293 genes, AUROC = 0.44, pFWER < 0.002). Pyramidal neuron 

markers from the hippocampus CA1 are enriched for negative correlations (314 genes, 

AUROC = 0.39, pFWER < 10−9), while those from S1 are not significantly enriched. The 

pyramidal neuron markers from NeuroExpresso were also enriched for negative correlations 

(29 genes, AUROC = 0.32, pFWER < 0.01). None of the three NeuroExpresso GABAergic 

neuron marker lists were significantly enriched.

Laminar marker enrichment analysis

We next tested marker genes derived from sectioning of the human prefrontal cortex (He et 

al., 2017). Genes specifically expressed in layers 1 and 2 were enriched for negative 

correlations with T1-w/T2-w ratio (AUROC < 0.45, pFWER < 1 0–4, Fig. 7 and Table S6). 

Genes marking layers 3, 4, and 6 were enriched for positive correlations (AUROC > 0.56, 

pFWER < 10–3). The strongest enrichment was in layer 6 (1816 genes, AUROC = 0.7, pFWER 

< 10–170), which is estimated to contain a higher proportion of oligodendrocytes (He et al., 

2017).
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Disease-associated gene set analysis

Testing of 1071 disease-associated gene sets revealed significant enrichment of human 

immunodeficiency virus (HIV) associated genes (163 genes, AUROC = 0.40, pFWER < 0.02). 

While no clear theme is evident, we note that several proteasome subunit genes are top-

ranked in the HIV list. While no other disease-associated gene lists were significant after 

multiple test correction, we note that cocaine dependence is ranked 6th (41 genes, AUROC = 

0.37, uncorrected p < 0.005), temporal lobe epilepsy is ranked eighth (80 genes, AUROC = 

0.41, uncorrected p < 0.005) and demyelinating disease is fifteenth (15 genes, AUROC = 

0.70, uncorrected p < 0.01).

Human Connectome group average analysis

We repeated the analysis using the HCP group average T1-w/T2-w ratio image in place of 

the six individual AHBA ratio images. We observe less significantly correlated genes (247 

positively correlated and 903 negatively correlated at pFWER < 0.05, Supplement Table 7). 

Within those genes, agreement across the donors is lower, with 34.6% having consistent 

correlation direction in all six brains. Within the top ten most positively correlated genes, 

WNT3 and ADAM10 are in the myelin transcriptomic and proteomic gene lists, respectively 

(no overlap was observed with the most negative ten).

Using gene set enrichment analysis, we find that 69 GO groups are significantly enriched, 

compared to 17 when using individual scans (full results in Supplement Table 8). Thirteen of 

these groups are also significant in the subject-specific analyses above. Four groups are 

significantly enriched for positive correlations with T1-w/T2-w ratio. The strongest is 

histone demethylase activity which mostly contains lysine demethylases (26 genes, AUROC 

= 0.76, pFWER < 0.02). A similar group is ranked 3rd (histone demethylation). 

Transcriptional repressor activity, RNA polymerase II core promoter proximal region 

sequence-specific binding is ranked second (92 genes, AUROC = 0.64, pFWER < 0.03). 

Ranked fourth is ensheathment of neurons (108 genes, AUROC = 0.627, pFWER < 0.04). Six 

of the ten myelin GO groups have significant enrichment for positive correlations using the 

less conservative correction method (n = 10, FDR). As before, enrichment of the myelin 

transcriptome and proteome obtained from the whole mouse brain is biased for negative 

correlations (both AUROC < 0.458, p-value < 10–10). The 65 GO groups that are enriched 

for negative correlations with T1-w/T2-w ratio include 13 of the 15 groups enriched when 

using the individual scans. The majority of remaining GO groups are related to 

mitochondria, amine metabolic processes, the proteasome and the ribosome. Other distinct 

GO groups of note are “antigen processing and presentation of exogenous antigen”, proton 

transport, and hydrogen transport (all AUROC < 0.39 and pFWER < 0.01).

Cell-type marker enrichment analysis of the average image again highlighted 

oligodendrocyte marker genes as having higher expression in regions with high T1-w/T2-w 

ratio. In all three sources of cell-type markers, this AUROC value was higher in the HCP 

averaged results than with the individual scans. Again, classical myelin associated genes are 

not key to the oligodendrocyte marker enrichment. Unlike the previous analyses, astrocyte 

marker genes lack enrichment in any source of markers. Microglia markers from Darmanis 

and Zeisel sources are enriched for negative correlations (both AUROC < 0.44, pFWER < 
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0.0005). Neuron markers are also enriched for negative correlations in the same sources 

(both AUROC < 0.45, pFWER < 0.05). Endothelial markers were again biased towards 

positive correlations but are now significant in two of the three sources (AUROC > 0.57, 

pFWER < 0.01). Across cortical layers, a different pattern emerged with all layers enriched for 

negative correlations except for layer 6 (pFWER any set of laminar markers < 0.002). No 

disease associated gene lists were significantly enriched.

Overall, the Human Connectome result that used a population-average image had good 

agreement with the in-sample results. This demonstrates that population averages can be 

joined with the Allen Human Brain Atlas to further our understanding of molecular 

neuroanatomy.

Whole brain analysis

While we focus on the neocortex in this paper, the AHBA has comprehensively assayed the 

brain, allowing a wider analysis. We provide only a summary characterization of whole 

brain correlation results due to space constraints, and because the T1-w/T2-w ratio was 

originally proposed for the cerebral cortex (Glasser and Van Essen, 2011).

Across the whole brain, the majority of genes are significantly correlated with T1-w/T2-w 

ratio intensities after multiple test correction. In a reversal of the neocortical findings, there 

are less negatively correlated genes (6,593) than positively correlated genes (8,441). 

Expression patterns of the top genes primarily show contrast between subcortical and 

cortical regions (including cerebellar cortex). Enrichment of myelin related GO groups are 

similar to the original analyses with ensheathment of neurons having the strongest 

enrichment (108 genes, AUROC = 0.61, pFWER < 0.002). Again, we observe many other GO 

groups with stronger enrichment than this myelin group which was ranked 163rd amongst 

the other groups. Unlike previous results, genes with high expression in the mouse brain 

myelin fraction were enriched for positive correlations (1493 genes, AUROC = 0.6, p < 

10−33). Genes encoding proteins extracted from myelin were not enriched (AUROC = 

0.501). The top GO group that is enriched for positive correlations is type I interferon 

signaling pathway (65 genes, AUROC = 0.74), followed by many other immune system 

related groups (Supplementary Table 9). The group with the strongest enrichment of 

negative correlations is regulation of synaptic plasticity (141 genes, AUROC = 0.30), 

followed by similar GO groups such as postsynaptic density (194 genes, AUROC = 0.33). 

We again observe that pH up-regulated genes have negative correlations with T1-w/T2-w 

ratio. While our cell-type gene markers are from studies of the cortex, we note that 

endothelial and microglial markers switch from weak negative to strong positive enrichment, 

in comparison to the neocortical results. This is observed across all three of the marker 

sources. The strongest cell-type marker enrichments are for oligodendrocytes and neurons 

that correspond to positive and negative correlations respectively. In contrast to the 

neocortical results, 35 of the 1178 disease-associated gene lists were significant 

(Supplementary Table 10). In general, these whole brain results are also found when using 

the Human Connectome Project average image (data not shown).
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Discussion

MR images of the brain provide contrast at the submillimetre scale, allowing segmentation 

of many structures and identification of abnormalities. At the atomic and subatomic levels, 

the sources of MR signals are well understood. However, at the macromolecular scale, we 

lack a comprehensive understanding of what determines MR signal intensity. To address this 

gap, we have used genome-wide measurements to correlate gene expression with MR signal 

intensity. By leveraging gene annotations, we found biological processes, cellular 

components, molecular functions, diseases, and cell-types that are related to MR contrast. 

This work elucidates the macromolecular correlates of MR signal intensity and will aid 

interpretation of future MR studies of the brain.

Top-ranked genes

At the level of individual genes, our most significant finding of a negative relationship 

between T1-w/T2-w ratio and SCARA5 expression is perplexing. This gene is a receptor for 

the protein ferritin, which provides a transferrin-independent method for cellular delivery of 

iron (Li et al., 2009). This receptor has been targeted with ferritin loaded with MRI contrast 

agents to diagnose and target cancer (Geninatti Crich et al., 2015). The negative correlation 

suggests the ferritin receptor SCARA5 is not a proxy measure of iron content. This is 

because iron appears dark in T2-w scans and is enriched in white matter, while, in contrast, 

SCARA5 is positively correlated with T2-w intensity (Schenck, 2003). This counterintuitive 

direction may be due to binding preference of SCARA5 for the light subunit of ferritin over 

the heavy chain. The ratio of heavy to light chains is known to vary across cell-types and 

brain structures (Connor and Menzies, 1996). Transferrin, an oligodendrocyte marker used 

in iron transport, is the 576th most positively correlated gene. Iron-associated genes as a 

group, are not significantly enriched for T1-w/T2-w associations.

Retinol Binding Protein 4 (RBP4), which is the second most negatively correlated gene, has 

been indirectly associated with multiple sclerosis. Specifically, retinol levels in blood were 

correlated with new lesions in multiple sclerosis patients, as detected with MR imaging 

(Løken-Amsrud et al., 2013). Within the top ten negative associations, we note two calcium 

associated genes (PCDH20 and C2CD4C). The top two positively correlated genes encode 

synaptic vesicle membrane proteins (SYT2 and VAMP1). We also note Estrogen Related 

Receptor Gamma (ESRRG), which is the 3rd most significant positive correlation. A large 

genetic study found ESRRG to have a highly suggestive association with brain infarcts 

(defined by abnormal MRI signal intensity) (Debette et al., 2010). FKBP5 is ranked 9th and 

has been associated with white matter integrity (Fani et al., 2014). Additionally, GPAT3 
which is involved in the production of lysophosphatidic acid ranks 4th. Lysophosphatidic 

acid is associated with multiple sclerosis (Schmitz et al., 2017) and its receptor regulates 

myelination in the mouse cerebral cortex (García-Díaz et al., 2015). Given the large number 

of significant genes, we employed gene set enrichment analysis to examine genes beyond 

the top ten.
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Myelination and related genes

In this paper, we focused on the T1-w/T2-w ratio in the cerebral cortex which has been 

previously associated with myelin content, aerobic glycolysis and synaptic plasticity 

(Glasser et al., 2014; Glasser and Van Essen, 2011). Here we use gene expression to provide 

a new perspective on these past associations revealed by PET imaging and histology. 

Myelin-associated GO groups are enriched for positive correlations in the T1-w/T2-w gene 

ranking as expected. In the context of other gene groups, this finding is not strong, as there 

are over 190 GO groups with stronger enrichment (Table 2). When using the Human 

Connectome Project average image, myelin GO groups are ranked higher, with 66 groups 

having stronger enrichment. For this average image, axon ensheathment genes are the fourth 

most enriched group for positive correlations. This improved ranking may be due to the 

blurring of cortical boundaries in the average image or the tuning of the scanner used in the 

project. Specifically, T2w TE was lengthened for improved intracortical myelin contrast 

(Glasser et al., 2013; Glasser and Van Essen, 2011). We emphasize that all of the samples 

and cell-type marker lists used were derived from cortical gray matter samples which are 

known to have low myelin content (MacKay and Laule, 2016). In contrast to the myelin-

associated GO groups, markers obtained from the myelin fraction of the mouse brain were 

enriched for negative correlations. This contradictory enrichment may be due to differences 

between human cortical myelin and myelin obtained from the whole mouse brain. Previous 

association of T1-w/T2-w ratio with myelin content may be due to myelin transcripts that 

were transcribed in white matter and transported to distal sheaths after translation into 

protein. In this context, genes annotated to the ‘paranode region of axon’, which is where the 

myelin sheath ends, has the 4th highest AUROC value of all tested GO groups (0.765, 11 

genes, uncorrected p < 0.003). However, we note that myelin basic protein is translated 

locally at the axon contact site (Müller et al., 2013).

Our findings suggest a positive correlation between T1-w/T2-w intensity and axon caliber. 

The three neurofilament genes are positively correlated with the ratio in order of decreasing 

weight, with the heavy chain (NEFH) ranked 16th genome-wide. Expression of NEFH plays 

a major role in the development of high-caliber axons (Elder et al., 1998). A positive 

correlation has been observed between axon caliber and myelin thickness in neurons, both in 

developing nerves (Friede, 1972) and in the adult brain (Fraher and Dockery, 1998). NEFH 
has been linked to an oligodendrocyte associated expression pattern that is expressed at 

higher levels in ‘relay-like’ regions with few connections (French et al., 2011). This link to 

connectivity is also demonstrated by PVALB and CALB1 which are ranked the 106th most 

positive and 64th most negatively correlated genes, respectively. These genes have been 

previously associated with connectivity in the macaque thalamus (Jones, 1998). This 

corroborates a similar study of the T1-w/T2-w ratio and transcriptomic patterns that found 

strong hierarchical relationships in the human cortex (Burt et al., 2017). In addition, we note 

that PVALB, CALB1, and NEFH are among the 136 genes with robust correlations between 

expression and functional connectivity networks (Richiardi et al., 2015). PVALB marks fast-

spiking GABAergic interneurons that are frequently myelinated and may explain a large 

proportion of myelin in the cortex (Stedehouder et al., 2017). Therefore, our finding of T1-

w/T2-w ratio correlation for neurofilaments, parvalbumin and calbindin provides indirect 

support for associations with increased myelin content and connectivity.
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Synaptic plasticity GO groups were enriched for negative correlations at levels similar to the 

neuron markers (AUROC < 0.43), supporting previously hypothesized links with plasticity 

and myelination (Glasser et al., 2014). While not strong in the cortical results, synaptic 

plasticity genes were the most strongly enriched GO group in the whole brain analyses.

Metabolic activity and pH

We find support for metabolic associations, but not aerobic glycolysis specifically. We 

observe higher expression of genes localized to mitochondria in regions with low T1-w/T2-

w ratio. In contrast, aerobic glycolysis measures glucose that is not used by oxidative 

phosphorylation in mitochondria and is not strongly linked to oxygen consumption 

(Vaishnavi et al., 2010). More directly, GO groups related to aerobic glycolysis are not 

enriched but several genes are top ranked. For example, SLC16A6, MPC1, and SLC16A7 
which transport monocarboxylates such as lactate and pyruvate, are the 10th, 149th and 

215th most positively correlated genes. High aerobic glycolysis has been linked to the 

energy use of membrane-bound processes that are commonly used by astrocytes (Vaishnavi 

et al., 2010). This is supported by our findings of astrocyte marker gene enrichment. Aerobic 

glycolysis is also associated with biosynthesis or anabolic processes (Glasser et al., 2014; 

Vaishnavi et al., 2010). In support, we observe enrichment of metabolic processes and 

ribosomal genes. In the opposite direction, repressors of transcriptional activity are enriched 

for positive correlations (using the averaged HCP T1-w/T2-w image). While we do not 

observe a direct association of aerobic glycolysis, we find support for increased biosynthesis 

and astrocyte proportion in regions with low T1-w/T2-w ratio.

Over 75% of genes in the inner mitochondrial membrane are anti-correlated with T1-w/T2-

w ratio, where a pH gradient is maintained. Crossing this membrane changes pH from 6.8 to 

7.7 (Santo-Domingo and Demaurex, 2012), which is used to spin the ATP synthase complex 

through the transfer of hydrogen ions (H+). We note that MR scanners primarily measure 

signals from hydrogen protons and MR signals white matter lipids were found to be pH 

dependent (Kucharczyk et al., 1994). To further examine this signal, we tested genes 

associated with pH in postmortem brain studies (Mistry and Pavlidis, 2010). This provided a 

more direct comparison of H+ relations. In agreement, we found that genes correlated with 

pH were also correlated with T1-w/T2-w ratio intensity. This suggests that regions with low 

T1-w/T2-w ratio intensities have elevated concentrations of H+ while regions with high T1-

w/T2-w ratio are acidic. This pH signal may be useful for neuroimaging studies psychiatric 

disorders, as decreased brain pH has been observed in animal models and postmortem 

studies of patients with schizophrenia and bipolar disorder (Hagihara et al., 2017).

While a clear mitochondrial-associated signal is present and negatively correlated with T1-

w/T2-w ratio, we observe much weaker signals in the positive direction. Fewer genes and 

GO groups have significant positive correlations with T1-w/T2-w ratio. Also, the genes that 

are significantly positively correlated have lower average expression (6.34 ± 2.3 [standard 

deviation]) than the negative direction (7.07 ± 2.1, Mann-Whitney U test p < 10‒9). This 

may be due to active repression as “transcriptional repressor activity, RNA polymerase II 

transcription regulatory region sequence-specific binding” is the 15th most enriched GO 

group for positive correlations (ranked second in the Human Connectome results). Low 
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expression is also linked to pH, as nonquiescent cells have a higher pH than quiescent 

(Bright et al., 1987). Only two GO groups are significantly enriched for positive 

correlations. These groups are largely overlapping and primarily contain taste and olfactory 

receptors to detect stimuli involved in sensory perception. These genes have little or no 

expression in the brain, and have been found to be inconsistently expressed across the six 

AHBA brains in a broad cortical parcellation (French and Paus, 2015). High sequence 

homology across these receptors and nonspecific binding to the microarray may explain the 

enrichment of the group. However, bitter taste receptor transcripts are expressed in several 

regions of the rat brain, and cells containing these transcripts are somewhat functional, being 

capable of responding to tastants (Singh et al., 2011; Tomás et al., 2016). Also, an olfactory 

receptor has been shown to function as a hypoxia sensor in glomus cells (Chang et al., 

2015). Interestingly, RTP1, which encodes one of the few proteins that facilitate transfer of 

olfactory receptors to the surface of the cell is the 9th most strongly correlated gene in the 

negative direction (Saito et al., 2004). Further analysis is needed to determine the function 

and role of these receptors in the brain.

Molecule size

Genes linked to molecule size show clear enrichment in our analysis. The peptidase complex 

GO group, which consists primarily of proteasome subunit genes, is enriched for negative 

correlations (ranked 6th). These genes code for proteins that degrade proteins into smaller 

peptides or component amino acids by hydrolysis. In the other direction, we find enrichment 

for the histone demethylase activity GO group in the analysis of the T1-w/T2-w ratio image. 

This group consists primarily of lysine demethylation genes. A product of the lysine 

demethylation reaction is endogenous formaldehyde (Shi et al., 2004). Formaldehyde is a 

fixative that crosslinks proteins, creating larger molecules. Fixation of brain tissue with 

formalin is known to produce a bright band of T1-w intensities as fixation proceeds 

(Schmierer et al., 2008; Yong-Hing et al., 2005). Of the 6876 genes in our analysis and the 

UniProt database (The UniProt Consortium, 2017), protein mass is correlated with T1-w/T2-

w association ranking (Spearman’s rho = 0.13, p < 10‒15). For the significantly T1-w/T2-w 

correlated genes in the positive direction the median weight is 60,692 Da, for the negatively 

correlated genes it is 45,141 Da (Mann-Whitney U test, p < 10‒11). In agreement, molecule 

weight and mobility have been previously linked to MRI contrast (Koenig, 1995; Sprawls, 

2000). Overall, the association with protein weight and the opposing signals between genes 

that join and break proteins suggest a significant proportion of MR contrast can be explained 

by molecule size.

Cell types

Genes specifically expressed in oligodendrocytes are highly expressed in regions with high 

T1-w/T2-w ratio. This was the strongest and most consistent cell-type in our marker 

enrichment analysis. In previous research, oligodendrocytes demonstrated significantly 

lower counts of detected RNA molecules per cell when compared to neurons (Zeisel et al., 

2015), in agreement with the above findings associating T1-w/T2-w hyperintensity with 

transcriptional repression and lowly expressed genes. Though generation of the myelin 

sheath is a primary function of oligodendrocytes, we observe low enrichment of myelin-

associated genes compared to unassociated genes in the human oligodendrocyte marker gene 

Ritchie et al. Page 17

Neuroimage. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



list. This lack of a strong myelin signal suggests that the oligodendrocyte signal we observe 

may be driven by satellite perineuronal oligodendrocytes that are primarily non-myelinating 

(Battefeld et al., 2016; Takasaki et al., 2010). To test this hypothesis we used genes from a 

study of whole rat brain that compared expression between perineuronal oligodendrocytes 

and other oligodendrocytes (Szuchet et al., 2011). We found enrichment for negative 

correlations in this set (AUROC = 0.439, gene count = 493, p < 10‒5), but note that the 

strongest marker (ETV4) has a strong positive correlation in our results (ranked 214th most 

positively enriched gene, pFWER < 10‒7). Better characterization of glial cell types in the 

human cortex would facilitate understanding of this result of high oligodendrocyte and low 

myelin signal.

Beyond the consistent enrichment of oligodendrocyte markers, we observe enrichment of 

genes that are specifically expressed in astrocyte, neuron, endothelial and microglial cells. 

Astrocyte, neuron, and microglia marker gene sets were enriched for negative correlations 

with T1-w/T2-w ratio. Within the neuron markers, there is not a clear difference between 

interneuron and pyramidal markers. However, markers for CA1 pyramidal neurons are more 

strongly enriched than those from S1. While hippocampal samples were not used in our 

analysis of the cortex, the CA1 markers may gauge synaptic plasticity and agree with 

enrichment directions for plasticity GO groups (Shin et al., 2017).

Disease-associated genes

Our analysis of disease-associated genes found that HIV linked genes were enriched for 

negative correlations. The top-ranked HIV genes include proteasome subunits, which have 

been previously associated with HIV (Krishnan and Zeichner, 2004; Schubert et al., 2000; 

Seeger et al., 1997). In some patients, HIV RNA is detected in cerebrospinal fluid and has 

been associated with dementia and diffuse white matter signal abnormalities (Kugathasan et 

al., 2017). Beyond HIV, no other disease gene lists are significant after correction. However, 

we note that demyelinating disease is ranked 15th of the 1071 disease associated gene lists 

and is enriched for positive correlations. A few top-ranked genes are indirectly related to 

multiple sclerosis.

Whole brain analysis

In our analysis of the whole brain, we observe that immune-related genes and marker genes 

for oligodendrocytes and activated microglia are positively correlated with T1-w/T2-w ratio. 

In contrast, neuron markers and related GO groups such as ‘postsynaptic density’ were 

negatively correlated on average. This is also reflected in the disease-associated gene set 

analysis with significant enrichment of inflammatory and neural associated disease gene lists 

in opposing directions. Most of the top listed diseases are inflammatory, enriched for 

positive correlations, and not clearly linked to the brain (‘pustulosis of palm and sole’ for 

example). However, the Behcet’s disease gene list, which is ranked second, affects the brain 

(84 genes, AUROC = 0.69, pFWER <0.0001). Behcet’s disease is an autoimmune condition 

that manifests as vasculitis across many organs of the body, with neurological symptoms in 

5–50% of cases (van der Knaap and Valk, 2011). In particular, it can cause lesions of the 

basal ganglia, midbrain, and pons, as well as white matter abnormalities in the cerebral 

hemispheres which are similar to the patterns of demyelination that occur in multiple 
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sclerosis (Al-Araji and Kidd, 2009; van der Knaap and Valk, 2011). For negative 

correlations, genes associated with Angelman’s syndrome had the strongest enrichment (10 

genes, AUROC = 0.113, pFWER <0.05). Delayed or reduced myelin formation has been 

identified in children suffering from Angelman’s syndrome (Harting et al., 2009), as well as 

in mouse models of the disease (Grier et al., 2015). In comparison to the cortical analysis, 

the whole brain results show a broad neuron-versus-glia pattern with stronger correlations 

for endothelial, microglia, and immune-related genes. This suggests that across the whole 

brain, the variance in MR signal intensity may be partially explained by immune and 

circulatory activity.

Conclusion

Our results inform the use of the T1-w/T2-w ratio to estimate cortical myelin by 

characterizing genes that are associated with the ratio. Specifically, molecule size and 

transcription marking oligodendrocytes, axon calibre, and pH are more strongly associated 

with the ratio than myelin associated genes. While our transcriptomic perspective supports 

associations with aerobic glycolysis and synaptic plasticity, future work is needed to 

understand why the ratio is a good proxy for myelin content in the cortex.

We emphasize that our results vary little when our analysis is performed on T1-w or inverted 

T2-w intensities alone. While our enrichment values are improved when the ratio is used, it 

is possible the noise-attenuating properties of the ratio are of limited importance in our study 

because the MRI scans were acquired post mortem. As such, our findings illustrate the 

potential utility of detailed transcriptomic characterization of imaging measures other than 

the T1-w/T2-w ratio, and offer insight into the macromolecular correlates of T1-w and T2-w 

images.
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Fig. 1. 
Overview of the correlation analysis. MR intensities are extracted from the images on the 

left, depicted as a single grayscale vector which each bar corresponding to an Allen Atlas 

sample. The colored bar on top visualizes the expression matrix with samples as rows and 

genes as columns. Each gene/column forms an expression profile across the cortex (outlined 

in red) and is correlated with the grayscale intensity vector. Genes are then sorted from 

strong positive to strong negative correlation for gene set enrichment analysis to test if a 

particular set is enriched for positive or negative correlations. VAMP1 (high positive 

correlation), TREML1 (no correlation), and SCARA5 (strong negative correlation) provide 

examples across the correlation range using data from donor H0351.2001.
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Fig. 2. 
Sample-wise plots of T1-w/T2-w ratio and SCARA5 gene expression. Each donor 

represented as a single scatter plot of samples. To visualize the rank correlation, 

monotonically decreasing constrained splines are plotted in black (knots = 10). Samples are 

colored by their cortical lobe/division.
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Fig. 3. 
Associations with T1-w/T2-w ratio intensities for selected myelin-related GO groups. (A) 

ROC curves for GO groups selected from Table 1. The curves show the proportion of GO 

group genes that overlap (y-axis, true positive fraction) in varying lengths of the T1-w/T2-w 

gene ranking (approximated by the x-axis, false positive fraction). Colored lines mark genes 

in different GO groups. (B) Distributions of the three significant GO groups across the T1-

w/T2-w associated gene ranking with each annotated gene representing a single colored line.
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Fig. 4. 
Selected GO groups with high enrichment of T1-w/T2-w ratio associations in the cortex. (A) 

ROC curves for GO groups selected from Tables 2 and 3 The curves show the proportion of 

GO group genes that overlap (y-axis, true positive fraction) in varying lengths of the T1-

w/T2-w gene ranking (approximated by the x-axis, false positive fraction). Colored lines 

mark genes in different GO groups. (B) Distributions of the five significant GO groups 

across the T1-w/T2-w associated gene ranking with each annotated gene representing a 

single colored line.
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Fig. 5. 
Associations with T1-w/T2-w ratio intensities for Zeisel cell type marker genes. (A) ROC 

curves showing the proportion of marker genes that overlap (y-axis, true positive fraction) in 

varying lengths of the T1-w/T2-w gene ranking (approximated by the x-axis, false positive 

fraction). Colored curves mark genes in different cell type marker lists. (B) Distributions of 

the cell type markers across the T1-w/T2-w associated gene ranking. Each marker gene is 

represented by a single colored line.
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Fig. 6. 
Distributions of the Darmanis cell type markers across the T1-w/T2-w associated gene 

ranking. Each marker gene is represented by a single colored line. The endothelial and 

neuron marker list are not significantly enriched after test correction.
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Fig. 7. 
Barplot of enrichment in the T1-w/T2-w associated gene ranking across the He et al. laminar 

markers. ** indicates pFWER < 0.0005.
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Table 4

Enrichment statistics for Zeisel marker gene sets using the T1-w/T2-w ratio ranking.

Cell-type or class Gene Count AUROC p pFWER

Oligodendrocyte 366 0.628 6.03E-17 5.43E-16

Neuron CA1 pyramidal 314 0.39 2.29E-11 1.83E-10

Microglia 336 0.422 8.56E-07 5.99E-06

Interneuron 293 0.439 0.000311 0.00186

Astrocyte 199 0.43 0.000714 0.00357

Ependymal 355 0.463 0.016 0.0641

Endothelial 290 0.538 0.0264 0.0793

Neuron S1 pyramidal 218 0.463 0.0625 0.125

Mural 117 0.538 0.154 0.154
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