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Abstract: An electron in a constant magnetic field has energy levels, known as the Landau levels. One
can obtain the corresponding radial wavefunction of free-electron Landau states in cylindrical polar
coordinates. However, this system has not been explored so far in terms of an information-theoretical
viewpoint. Here, we focus on Fisher information associated with these Landau states specified by
the two quantum numbers. Fisher information provides a useful measure of the electronic structure
in quantum systems, such as hydrogen-like atoms and under some potentials. By numerically
evaluating the generalized Laguerre polynomials in the radial densities, we report that Fisher
information increases linearly with the principal quantum number that specifies energy levels, but
decreases monotonically with the azimuthal quantum number m. We also present relative Fisher
information of the Landau states against the reference density with m = 0, which is proportional to
the principal quantum number. We compare it with the case when the lowest Landau level state is
set as the reference.

Keywords: Landau states; Fisher information; relative Fisher information; radial wavefunction;
generalized Laguerre polynomials

1. Introduction

The motion of electrons in a uniform magnetic field is a fundamental process in a
variety of science. Specifically, the Landau states and the associated levels [1–3] are the
most elementary quantum manifestations underlying diverse effects in condensed-matter
physics, such as the De Haas van Alphen effects [4], Shubnikov de Haas effects [5], and
fractional/integer quantum Hall effects [6]. Therefore, Landau states and their energy
levels have attracted enormous attention concerning oscillatory behaviors observed in
various electronic properties. These properties should be attributed to the forms of the
underlying wavefunctions. The shape of the wavefunctions or the electric density functions
has a piece of inherent information. However, research interests so far have been focused
on the occupation numbers of Landau energy levels in condensed-matter systems instead
of information content contained in the spatial distributions of electrons represented by
the wavefunctions. Consequently, we ask a natural question: How much information do
the Landau states contain, or how do we compare the information content between the
different states specified by the quantum numbers?

In a different discipline, by contrast, an information-theoretical approach to atomic
systems aimed at interpreting and characterizing the orbital structure has attracted much
attention [7]. Among several information measures, many authors have intensively stud-
ied Fisher information [8,9] that reflects gradient content (i.e., sharpness) of the density
distribution for both relativistic and non-relativistic hydrogenic atoms (e.g., [10–13]; these
are only a few that are of close relevance to the present author, since the literature is vast).
This preference of the information measure is because it is more sensitive in understanding
the degree of localization of an electron than using Shannon entropy. Additionally, for
heavier atoms, the amount of Fisher information has been explored (e.g., [14]; this is one
example among many, and see references cited therein). These developments motivate us to
study information measures of other quantum systems if the associated wavefunctions are
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available. Examples are systems under Morse, Pöschl–Teller potentials, and the quantum
harmonic oscillator systems [15]. In addition to the above practical merits in atomic and
molecular systems, Fisher information is at the root of various theoretical descriptions
through profound connections with the foundations of quantum mechanics [16]. This
connection also has wider implications for other branches in physics. For instance, the
Schrödinger equation is derived from the constrained Fisher-optimization scheme and led
to a new approach to non-equilibrium processes, such as the propagation of sound waves
in a dilute gas [17].

Although the information quantity itself has not been a major concern in the literature
of solid-state physics, some recent works relate the information concept and the quantum
number n that specifies the Landau levels under fixed electric and magnetic fields [18–20].
The aim of these studies is to propose an indicator of topological phase transitions in two-
dimensional topological insulators, and the behavior of Fisher information and the Rényi–
Fisher entropy product have been studied for eigenstates in 2D gapped Dirac materials for
several values of n. Contrary to the Landau states in this study, the eigenstate wavefunctions
have no dependence on the azimuthal quantum number. We focus on an information-
theoretical treatment for the free-electron Landau states; that is, we consider free electrons in
a uniform magnetic field that also exhibit the Landau levels [21], and the analytical form
of the wavefunctions are available in this setting [22]. We demonstrate the dependence
of the Fisher information of the free-electron Landau states on the principal quantum
number and the azimuthal quantum number. We also show that relative Fisher information
against the lowest Landau state is a quantifier of dissimilarity among the states. In the next
section, we provide the density function of the Landau states and show the behavior of
the Fisher information. In Section 3, we analytically derive the relative Fisher information
against a state with zero azimuthal quantum numbers. We summarize this study and add
a discussion in the last section. The Appendix A is given for a detailed calculation of the
relative Fisher information when the reference state is set as the lowest Landau state.

2. Fisher Information of Landau States

In this section, we first summarize the system under consideration. Landau studied
the motion of a charged particle in a constant uniform magnetic field [2]. One can derive
energy discretization (Landau levels) perpendicular to the magnetic field in a Cartesian
coordinate system. However, the cylindrical polar coordinates are more convenient in
solving Schrödinger equations to find the wave functions for systems in a magnetic field.
Indeed, Landau & Lifshitz [22] uses this coordinate system. Let ρ, φ, and z specify the
position of an electron with mass M and charge e = −|e| in cylindrical polar coordinates
under the uniform magnetic field H added in z-direction. When we choose the Landau
gauge for the vector potential A as (0, Hρ/2, 0), the Hamiltonian operator corresponding
to the Schrödinger equation (2M)−1(p̂− (e/c)A)2ψ = Eψ with p̂ being the momentum
operator is

− h̄2

2M

[
1
ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+

1
ρ2

∂2

∂φ2 +
∂2

∂z2 −
1
2

ih̄ω
∂

∂φ
+

1
8

Mω2ρ2
]

(1)

where ω denotes the cyclotron frequency. The Hamiltonian does not contain the coordi-
nate z (also x) explicitly, and the z-component of the momentum pz commutes with the
Hamiltonian. Thus, pz is conserved, and the system has definite angular momentum in the
direction of the magnetic field. By seeking the solution of the form

ψ =
1√
2π

R(ρ)eimφei pzz
h̄ (2)

the radial wave functions R(ρ) are expressed as (§112 in Ref. [22]):

Rnρ ,m(ρ) = Nnρ ,m exp(− ρ2

4a2
H
)ρ|m|F(−nρ, |m|+ 1,

ρ2

2a2
H
), (3)
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where aH =
√

h̄c
|e|H is the magnetic length parameter, and nρ is the radial quantum number

being a non-negative integer. The quantum number m = 0,±1,±2, . . . is associated with
the azimuthal wave function eimφ/

√
2π. The confluent hypergeometric function F is

defined with the generalized Laguerre polynomial L(α)
n (x) as

F(−n, α + 1, x) =
n!Γ(α + 1)

Γ(n + α + 1)
L(α)

n (x). (4)

The normalization condition ∫ ∞

0
R2

nρ ,m(ρ)ρdρ = 1 (5)

determines the factor Nnρ ,m as

Nnρ ,m =
1

a|m|+1
H |m|!

(
(|m|+ nρ)!

2|m|nρ!

) 1
2

. (6)

Changing the variable as ξ = ρ2/2a2
H allows one to express the radial probability

density ηnρ ,m(ξ) of finding the particle in the states with the quantum numbers nρ and m:

ηnρ ,m(ξ) = Mnρ ,mξ |m|e−ξ [F(−nρ, |m|+ 1, ξ)]2, Mnρ ,m =
(|m|+ nρ)!
(|m|!)2nρ!

, (7)

so that one assures the normalization of the density
∫ ∞

0 ηnρ ,m(ξ)dξ = 1. The dependency
of the radial density on the magnetic field H enters through the new variable ξ, which is
proportional to the magnetic field. The probability density of the lowest Landau state
corresponds to the quantum numbers nρ = m = 0. To grasp the dependencies on the
quantum numbers, we show the behavior for some of the radial probability densities in
Figure 1.

The radial density function broadens and has a more nodal structure for the higher
quantum numbers (blue curves). To reflect this gradient feature of densities into an
information measure, Fisher information can be appropriate one. Fisher information was
originally regarded as a quality metric of the estimation procedure, and it is a function
of the parameter θ in the probability density function [8]. In the particular case of one
variable x, it is defined by

∫
[pθ(x, θ)]2/p(x, θ)dx in a valid range of x. However, when the

probability obeys a property of shift (translation) invariance, that is, p(x|θ) = p(x − θ),
it no longer depends upon θ and is equivalent to the integral of [p′(x)]2/p(x) [16]. This
shift invariance means that the variable x is independent of the value of the parameter
θ. In this study, and in many papers as well in the literature, we refer this quantity as
Fisher information [16]. Thus, the Fisher information (FI) of the radial probability density
ηnρ ,m(ξ) is defined as

FI(ηnρ ,m) =
∫ ∞

0

1
ηnρ ,m(ξ)

(
dηnρ ,m(ξ)

dξ

)2

dξ = 4
∫ ∞

0

d
√

ηnρ ,m(ξ)

dξ

2

dξ. (8)
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Figure 1. Radial probability densities of the Landau state with nρ = 2 (black) and nρ = 4 (blue) for
the fixed quantum number |m| = 2 (upper panel). The same with |m| = 2 (black) and |m| = 4 (blue)
for the fixed quantum number nρ = 2 (lower panel).

We use the second expression for the ease of computation. In Figure 2, we show the
numerically determined values of Equation (8) as a function of the quantum number nρ.
We observe that the information content grows linearly as nρ gets large, and the slope
becomes smaller as |m| becomes large. We note that the higher values of Fisher information
mean a stronger localization of the probability density. On the other hand, Figure 3 shows
the decreasing behaviors of Fisher information as a function of the azimuthal quantum
number |m|. It indicates that states with larger radial quantum numbers have larger
information for the same azimuthal quantum number.



Entropy 2021, 23, 268 5 of 11

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18

n

|m|=2

|m|=4

|m|=6

nρ

Figure 2. Fisher information of the radial probability density of the Landau states as a function of the
radial quantum number nρ for three values of |m|.
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Figure 3. Fisher information of the radial probability density of the Landau states as a function of the
azimuthal quantum number |m| for three values of nρ.

3. Relative Fisher Information of Landau States

Next, we study the relative Fisher information to see how the excited states differ from
a reference state. The relative Fisher information can be a suitable measure of similarity or
dissimilarity between two states when one uses Fisher information contained in systems.
It is recently applied to study atomic shell structures [23], atomic ionization processes and
isoelectronic series [24], sinusoidal and gamma-like densities [25], one-particle densities of
(non-)relativistic hydrogenic systems [12,26], the Morse potential and isotropic quantum
harmonic oscillators [27,28], diatomic molecules with the pseudoharmonic potential [27],
the deviation of the Pauli and Weizsäcker kinetic energy densities from the local density
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approximation [29], and the derivation of the Euler equation of the orbital-free excited-state
density functional theory as a variational problem [30].

To use relative information, one must first choose the reference state. Here, we measure
the relative information between the excited Landau level specified by nρ and the lowest
Landau level nρ = 0 having the common |m|. This choice is natural, since we have set
the ground state of a system as a reference state in the studies of the radial wavefunctions
of hydrogen-like atoms in position space [12], quantum harmonic oscillators [27,28], and
under some central potentials in both position and momentum spaces [27]. Note that the
lowest Landau level wavefunction is widely used in the literature of the quantum Hall
effect and various material sciences. Thus, it is expressed as

RFI(ηnρ ,m(ξ) : η0,m(ξ)) :=
∫ ∞

0
ηnρ ,m(ξ)

∣∣∣ d
dξ

log

(
ηnρ ,m(ξ)

η0,m(ξ)

)∣∣∣2dξ

=
∫ ∞

0
ηnρ ,m(ξ)

(
η′nρ ,m(ξ)

ηnρ ,m(ξ)
−

η′0,m(ξ)

η0,m(ξ)

)2

dξ. (9)

We note that L(α)
0 (ξ) = 1, thus F(0, α + 1, ξ) = 1. Therefore, from Equation (7), the

probability density for the lowest Landau state is η0,m(ξ) = ξ |m|e−ξ/|m|!. Substituting the
probability density Equation (7) into the above definition leads to the calculation of the integral

4Mnρ ,m

∫ ∞

0
ξ |m|e−ξ [F′(−nρ, |m|+ 1, ξ)]2dξ. (10)

Noting that the derivative of the generalized Laguerre polynomial with respect to ξ

satisfies the relation [L(α)
n (ξ)]′ = −L(α+1)

n−1 (ξ). Thus, from Equation (4), the derivative of the
confluent hypergeometric function is given as

F′(−nρ, |m|+ 1, ξ) = −
Γ(|m|+ 1)nρ!

Γ(nρ + |m|+ 1)
L(|m|+1)

nρ−1 (ξ). (11)

Invoking the orthogonality relation for the generalized Laguerre polynomial (p. 1012
in Ref. [31]) ∫ ∞

0
ξαe−ξ L(α)

n (ξ)L(α)
m (ξ)dξ =

Γ(α + n + 1)
n!

δm,n, (12)

we find that the relative Fisher information is independent of the azimuthal quantum
number |m| and is proportional to the principal quantum number:

RFI(ηnρ ,m(ξ) : η0,m(ξ)) = 4nρ. (13)

The absence of |m| in the measure is plausible because one compares two densities
with the common m.

4. Summary and Discussion

We have revealed some striking features of Fisher information and the relative Fisher
information on the radial probability density of the free-electron Landau states. First,
the Fisher information increases linearly with the principal quantum number, whereas
it monotonically decreases with the azimuthal quantum number. Second, relative Fisher
information changes linearly in the principal quantum number when one adopts the
states with m = 0 as the reference probability density. In this study, we have regarded
ηnρ ,m(ξ) as the radial probability density with the rescaled variable proportional to the
radial coordinate, that is, ξ = ρ2/2a2

H . A natural alternative that finds the electron in the
range [ρ, ρ + dρ] is to use Rnρ ,m(ρ)2ρ. In this case, Fisher information is determined in units
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of a3
H . More specifically, it is 2

√
2Mnρ ,m I/a3

H , where I is the associated integral. We have
confirmed that the behavior of the Fisher information as a function of nρ is essentially the
same as Figure 2; that is, it linearly grows with nρ, except that the dependence of m is slight
compared to the separated straight lines in this figure. Therefore, to compare the difference
in spreading of the radial eigenfunctions, the use of the probability density ηnρ ,m(ξ) is fully
valid as a descriptive indicator.

These findings give new insights into the fundamental properties of the Landau states.
The choice of the reference probability density for the relative Fisher information is at our
disposal. Another possible one is the state with m = 0, that is, ηnρ ,0(ξ) = e−ξ [Lnρ(ξ)]

2, where

Lnρ(ξ) = L(0)
nρ (ξ) is the Laguerre polynomial. In this case, one must evaluate the integral

∫ ∞

0
ξ |m|e−ξ F2(−nρ, |m|+ 1, ξ)

(
|m|
ξ

+ 2
F′(−nρ, |m|+ 1, ξ)

F(−nρ, |m|+ 1, ξ)
− 2

L′nρ
(ξ)

Lnρ(ξ)

)2

dξ, (14)

which is a challenge both analytically and numerically. In a specific case of nρ = 0, i.e.,
η0,0(ξ) = e−ξ , we provide the results in Appendix A, where we find that the curves are
qualitatively similar to Figures 1 and 2.

While the amount of Fisher information of the Landau states is independent of the
imposed magnetic field in terms of an independent variable ξ = ρ2|e|H/2h̄, the electron
energy levels, that is, the Landau levels are inevitably dependent on it and they are
provided as [1,3,22]

E = h̄ω

(
nρ +

(|m|+ m + 1)
2

)
+

p2
z

2M
, (15)

where ω is the angular frequency of the circular motion in a plane perpendicular to
the uniform magnetic field (i.e., cyclotron frequency |e|H/Mc) and pz is the momentum
component along the field. This formula indicates that the sign of the azimuthal quantum
number matters for the energy of oscillation. However, the wavefunctions corresponding
to the Landau states have the index as absolute values. Thus, Fisher information associated
with the states degenerates. In other words, apart from the split of the Landau level due
to the electron spin, the states with m > 0 have higher perpendicular energy by mh̄ω
than the corresponding m < 0 states, while the amount of Fisher information is the same.
This asymmetry inherent in the Landau states was also emphasized in the experiment of
electron rotations in a magnetic field, where the electrons are found to rotate with three
different angular velocities depending on the sign of m or m = 0 [21].

Funding: The author did not receive any specific grant from funding agencies in the public, commer-
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Appendix A. Relative Fisher Information of Landau States with (nρ, |m|) with Respect
to the Lowest State (0, 0)

We calculate the relative Fisher information against the lowest Landau state (0, 0), i.e.,
RFI(ηnρ ,m(ξ) : η0,0(ξ)). This quantity provides how much the probability density of the Lan-
dau states deviates from the exponentially decreasing probability density η0,0(ξ) = e−ξ . In
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Equation (14), we note L0(ξ) = 1. Then, expanding the integrand and using Equation (11)
combined with the relation [L(α)

n (ξ)]′ = −L(α+1)
n−1 (ξ), we can express it as

RFI(ηnρ ,m(ξ) : η0,0(ξ)) =
nρ!

(nρ + |m|)!
(I1 + I2 + I3), (A1)

where we have put the integrals, respectively, as

I1 = |m|2
∫ ∞

0
ξ |m|−2e−ξ [L(|m|)

nρ (ξ)]2dξ

I2 = −4|m|
∫ ∞

0
ξ |m|−1e−ξ L(|m|)

nρ (ξ)L(|m|+1)
nρ−1 (ξ)dξ

I3 = 4
∫ ∞

0
ξ |m|e−ξ [L(|m|+1)

nρ−1 (ξ)]2dξ. (A2)

We evaluate these integrals below. Note that similar integrals also appear in calculating
relative Fisher information for the D-dimensional isotropic quantum oscillator [28]. There
would be several ways to obtain these integrals. Here, we use an integral formula involving
the product of two Laguerre polynomials with different integer degrees (p and q) and orders
(α and β), which was evaluated by Mavromatis [32]:

∫ ∞

0
xµe−x L(α)

p (x)L(β)
q (x)dx =

(
p + α

p

)(
q + β− µ− 1

q

)
Γ(µ + 1)

× 3F2(−p, µ + 1, µ− β + 1; α + 1, µ− β− q + 1; 1), (A3)

where the power exponent satisfies Re(µ) > −1 and (a
b) denotes the binomial coefficient.

As usual, 3F2 is a generalized hypergeometric series with three numerator and two denom-
inator parameters.

Integral I1:
Putting µ = |m| − 2, α = β = |m|, and p = q = nρ in Equation (A3), we have

I1 =
(nρ + |m|)!
|m|!nρ!

(nρ + 1)Γ(|m| − 1)3F2(−nρ, |m| − 1,−1; |m|+ 1,−nρ − 1; 1). (A4)

where |m| 6= 1.

Integral I2:
Putting µ = |m| − 1, α = |m|, β = |m| + 1, p = nρ, and q = nρ − 1 in Equation (A3),
we have

I2 =
(nρ + |m|)!
|m|!nρ!

nρΓ(|m|)2F1(|m|,−1; |m|+ 1; 1), (A5)

where 2F1 is the Gauss’ hypergeometric function. By using the formula for the particular
value of unity (p. 1017 in Ref. [31]),

2F1(α, β, γ; 1) =
Γ(γ)Γ(γ− α− β)

Γ(γ− α)Γ(γ− β)
, (A6)

we find that this factor reduces to (|m|+ 1)−1.
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Integral I3:
Putting µ = |m|, α = β = |m|+ 1, and p = q = nρ − 1 in Equation (A3), we have

I3 =
(nρ + |m|)!

(|m|+ 1)!(nρ − 1)!
Γ(|m|+ 1)3F2(−nρ + 1, |m|+ 1, 0; |m|+ 2,−nρ + 1; 1)

=
(nρ + |m|)!
|m|!nρ!

|m|!nρ

|m|+ 1
. (A7)

where we have used that the value of 3F2 becomes 1 because the one of the numerators
vanishes. Combining these results Equations (A4), (A5), and (A7), we obtain the value of
RFI(ηnρ ,m(ξ) : η0,0(ξ)). Figures A1 and A2 show relative Fisher information Equation (A1)
as a function of nρ and |m|, respectively. In contrast to the constant slope of 4 derived
in Equation (13) when one sets the reference density as η0,m, the linearity depends on
both quantum numbers. This dependency is remarkably analogous to the case of the
D-dimensional isotropic quantum oscillator, in which the relative Fisher information of
the radial wavefunction depends on both the principal quantum number n and the orbital
quantum number l [28]. We observe in Figure A1 that for a fixed nρ, the Landau states with
a higher azimuthal quantum number get closer to the exponentially decreasing density. In
contrast, the information monotonically decreases as |m| increases as shown in Figure A2
and we also find that for a fixed |m|, the states with a lower nρ approach the density of the
lowest Landau state.

0
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2 4 6 8 10 12 14 16 18

|m|=2

|m|=4

|m|=6

Relative Fisher Info.

nρ
Figure A1. Relative Fisher information of the Landau states as a function of the radial quantum
number nρ for three different values of |m|.
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Figure A2. Relative Fisher information of the Landau states as a function of the azimuthal quantum
number |m| for three different values of nρ.
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