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Tissue engineering combines principles of engineering and biology to generate living

tissue equivalents for drug testing, disease modeling, and regenerative medicine. As

techniques for reprogramming human somatic cells into induced pluripotent stem cells

(iPSCs) and subsequently differentiating them into cardiomyocytes and other cardiac

cells have become increasingly efficient, progress toward the development of engineered

human cardiac muscle patch (hCMP) and heart tissue analogs has accelerated. A few

pilot clinical studies in patients with post-infarction LV remodeling have been already

approved. Conventional methods for hCMP fabrication include suspending cells within

scaffolds, consisting of biocompatible materials, or growing two-dimensional sheets that

can be stacked to form multilayered constructs. More recently, advanced technologies,

such as micropatterning and three-dimensional bioprinting, have enabled fabrication of

hCMP architectures at unprecedented spatiotemporal resolution. However, the studies

working on various hCMP-based strategies for in vivo tissue repair face several major

obstacles, including the inadequate scalability for clinical applications, poor integration

and engraftment rate, and the lack of functional vasculature. Here, we review many

of the recent advancements and key concerns in cardiac tissue engineering, focusing

primarily on the production of hCMPs at clinical/industrial scales that are suitable for

administration to patients with myocardial disease. The wide variety of cardiac cell types

and sources that are applicable to hCMP biomanufacturing are elaborated. Finally, some

of the key challenges remaining in the field and potential future directions to address

these obstacles are discussed.

Keywords: tissue engineering, cardiac patch, myocardium, heart failure, myocardial infarction, regenerative

medicine, cardiac regeneration and remodeling

INTRODUCTION

Despite advancements in preventive medicine, cardiovascular disease (CVD) remains a leading
cause of morbidity and mortality worldwide (1, 2) with estimated 17.9 million people died of
cardiovascular disease in 2016, accounting for 31% of all deaths globally (3). The molecular and
cellular basis for progressive heart failure is the result of the inability of damaged and apoptotic
myocytes to be replaced. The regenerative capacity of mammalian hearts declines rapidly after
birth, and <1% of cardiomyocytes (CMs) in the hearts of adult humans are replaced each year (4);
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thus, myocardial injury leads to adverse cardiac remodeling
and fibrosis as the injured myocardium is replaced by fibrotic
scar tissue (5, 6). The only available procedure for end-stage
patients is whole-heart transplantation which is restricted by an
inadequate supply of donors. Therefore, alternative strategies for
limiting post-injury cardiac remodeling and remuscularizing the
damagedmyocardium are urgently needed (7, 8). Administration
of exogenous stem cells was initially considered a promising
approach (9). The cells were expected to differentiate into
CMs after transplantation (10, 11); however, the results from
subsequent preclinical and clinical studies indicated that the
benefits were only marginal and likely attributable to the cells’
paracrine activity, because the proportion of cells that were
retained and survived at the site of injury (i.e., the engraftment
rate) was drastically low (12, 13).

Tissue engineering combines the principles of engineering
and life sciences to better understand the structure-function
relationships in normal and pathological tissues and to generate
living tissue equivalents for drug testing (14, 15), disease
modeling (16–18), and regenerative medicine [(6, 19, 20);
Figure 1]. In the cardiovascular field, the first proof-of-concept
study was conducted in 1997, when embryonic chick CMs were
suspended in collagen solution, and the mixture subsequently
solidified and contracted coherently between two glass tubes
(21). With the emergence of techniques for reprogramming
human somatic cells into induced pluripotent stem cells (iPSCs)

FIGURE 1 | Cardiac tissue engineering and its applications. Patient specific iPSC can be derived by reprogramming of somatic cells from the patient, in healthy vs.

diseased states, and used to generate a variety of functional cardiovascular cells. Incorporation of cells within specifically tuned 3D biomaterial systems will enable

fabrication of the human cardiac muscle patch (hCMP) that could be used either in a variety of in vitro applications [drug screening and disease modeling (Right)], or

as cardiac patch for in vivo regenerative therapies (Left).

and differentiating them into CMs (22) and other cardiac cells,
the field has progressed to the development of engineered
human cardiac muscle patch (hCMP) constructs (6). These
engineered patch constructs are often associated with higher rates
of engraftment and appear to support the injured myocardium
more effectively than transplanted cells (2, 23). Nevertheless,
vascularization of the hCMP (either during manufacture or
via the infiltration of native vessels after transplantation)
is not extensive and efficient enough to support the high
metabolic demand of the heart (13, 24). Consequently, the
thickness/dimensions of most hCMPs are limited to just a
few hundreds of micrometers (13, 25). In this review, we
discuss many of the most recent advancements in cardiac tissue
engineering, with a primary focus on techniques for generating
thicker and more integrative hCMP systems.

Cell Types and Sources for hCMP
Fabrication
CMs are the fundamental contractile units of the myocardium
and occupy 70–85% of myocardial volume in adult mammals
(26); thus, many investigations of cell therapy have been
conducted with CMs alone, either as dissociated cells or
contiguous sheets (27, 28). However, hCMPs are designed
to comprehensively recapitulate the physical structure and
signaling pathways present in native heart tissue (13, 29) and,
therefore, are typically composed of multiple cardiac cell types,
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FIGURE 2 | Cell sources for cardiac tissue engineering. A variety of cell types can be used in tissue engineered cardiac constructs, including cardiomyocytes derived

from iPSCs or isolated from rodent hearts, cardiac vascular cells and fibroblasts, different progenitor and stem cells, and various spheroids. iPSC, induced pluripotent

cells; ECs, endothelial cells; SMCs, smooth muscle cells; FBs, fibroblasts; MSCs, mesenchymal stem cells; BM-cells, bone marrow-cells; PSCs, pluripotent stem

cells; CPCs, cardiac progenitor cells.

including CMs, endothelial cells (ECs), smooth muscle cells
(SMCs), and cardiac fibroblasts (6, 26, 30). Other cell types
or clusters of multiple cell types (e.g., progenitor cells and
spheroids) have also been incorporated into cardiac patches
and evaluated in preclinical models of myocardial injury
(Figure 2).

Cardiomyocytes (CMs)
Healthy adult human CMs were largely unavailable for
early hCMP studies due to scarcity of healthy heart donors
and their non-proliferative phenotype. Thus, most of what
we have explored and learned about the structural and
functional properties of engineered cardiac tissues was initially
investigated in experiments using primary rodent CMs (31).
Pioneering work with fetal CMs from 15-day-old mouse
embryos demonstrated that the cells were engrafted and survived
after administration into the mouse hearts (32). Rhythmically
contracting hydrogels were generated by plating neonatal rat
heart cells on collagen, which enabled researchers to study
how factors, such as cell density and collagen concentration,
influenced contractile activity (33) and to demonstrate that
these cellular constructs generated electrocardiography (ECG)-
like potentials (34). Subsequent studies confirmed that patches
composed of fetal rat ventricular cells and gelatin could survive
and continue to contract when implanted subcutaneously in
the adult rat legs. The engineered graft formed junctions with
native heart cells when delivered to the scarred region of
cryoinjured hearts, but whether the treatment could improve
cardiac function remained uncertain (35). Patches consisting
of fetal rat cardiac cells suspended in an alginate scaffold
were among the first to preserve measures of cardiac function

and impede adverse cardiac remodeling when administered to
infarcted rat hearts (36).

Embryonic stem cells (ESCs) and iPSCs are the most readily
available sources of human-lineage CMs, because they can
proliferate indefinitely and be differentiated into cells of different
lineages (37). The first human vascularized, contracting hCMP
was generated by combining CMs and ECs derived from human
ESCs with mouse embryonic fibroblasts in porous sponges
composed of 50% poly-l-lactic acid (PLLA) and 50% polylactic-
glycolic acid (PLGA) (38). Experiments in both rodent (19,
39, 40) and swine (23) models of myocardial injury suggest
that iPSC-based hCMPs are associated with higher levels of
cell survival and engraftment than those associated with iPSC-
based cell injection, and that the cells’ paracrine activity can
be modestly beneficial. Both ESC- and iPSC-derived CMs are,
however, structurally and functionally more similar to fetal or
neonatal cells than to the adult mature CMs. This could hinder
downstream applications of hCMPs composed of immature
PSC-CMs. The electrical immaturity of PSC-CMs may induce
ventricular arrhythmias as demonstrated in non-human primate
models, raising a safety concern for clinical translation (41, 42).
Therefore, various methods for improving stem cell-derived CM
maturity before transplantation, including electrical stimulation,
and treatment with neurohormonal factors, have been frequent
topics of research (43–46). hCMP maturation can be influenced
by the purity of the initial CM population, as evidenced by
increases in conduction velocity and contractile force (44).
Further, mechanical conditioning of cardiac patches has been
shown effective in maturation and functional improvement of
encapsulated CMs. For instance, hCMPs consisting of a collagen
matrix and CMs differentiated from mouse ESCs, more closely
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resembled native myocardial tissue after undergoing 7 days of in
vitro cyclic stretching (47).

Cardiac Vascular Cells and Fibroblasts
Cardiac ECs and SMCs not only promote the vascularization
and survival of transplanted hCMPs but are also key mediators
of the signaling mechanisms that regulate CM activity (23,
48, 49). Cardiac fibroblasts can further improve CM survival
by remodeling the extracellular matrix (ECM) and releasing
cytoprotective paracrine factors (6, 9, 50–52). Except for
providing a reliable source of CMs, hiPSCs demonstrate great
potential in offering vascular cells and fibroblasts. Robust
protocols for differentiating hiPSCs to ECs (53), SMCs (50), and
cardiac fibroblasts (54, 55) have been established. The inclusion
of ECs and stromal cells, combined with uniaxial mechanical
stimulation during manufacturing, has been shown to improve
the hCMP maturity (56). However, early protocols for hiPSC-EC
differentiation are not efficient and the phenotype of generated
hiPSC-ECs remain rather unstable. Refined EC differentiation
protocols, utilizing spatiotemporal 3D environments, have
prolonged the maintenance of EC phenotype to up to 4
weeks (57). With deeper insights into the signaling pathways
affecting cardiac cell differentiation, novel protocols for EC
and SMC differentiation have yielded efficiencies exceeding 80%
within 6-day time periods (58). Great efforts have also been
devoted to deriving arterial EC from hiPSC, which demonstrated
arterial-specific functional characteristics unlike generic ECs,
thus offering reliable cell sources for hCMP (59). Cardiac
fibroblasts have been successfully differentiated from hPSCs,
which resembled native cardiac fibroblasts in morphology, gene
expression, and proliferation. Notably, hPSC-derived cardiac
fibroblasts could generate three-dimensional (3D) ECM scaffolds
and their co-culture with hPSC-CMs could increase action
potential propagation rate compared to co-culture with dermal
fibroblasts (60). Despite development of refined protocols for
generation of vascular cells and fibroblasts of arterial lineage,
the optimal combination and proportion of cell types for
recapitulating the complex 3D environment of native heart tissue
continues to be an active area of research (52, 61–64).

Pluripotent Stem Cells
Pluripotent Stem Cells (PSCs), including ESCs and iPSCs, have
revolutionized the field of cardiac tissue engineering by providing
a platform of unlimited numbers and types of cells due to
their ability to self-renew indefinitely and the plasticity to
differentiate into any type of cells (6, 45). ESCs were initially
derived from inner cell mass of developing blastocyst (65), thus
raising ethical issues due to destruction of fertilized human
embryos. ESCs could also be collected via parthenogenesis which
alleviates the ethical issues (66). In contrast, iPSCs were initially
reprogrammed from somatic cells via overexpression of four
transcription factors, Oct4 (octamer-binding transcription factor
4), Sox2 (sex determining region Y-box 2), Klf4 (KLF family of
transcription factor 4), and Myc (67). Different combinations of
transcription factors, such as Oct4, Sox2, Nanog, and Lin28 (68)
or only Oct4 and Sox2 (69) can be also used to generate iPSCs.
Despite the controversy on immunogenicity of autologous iPSCs

(70–73), devoid of ethical issues qualifies them as one of the most
promising cell sources for cardiac tissue engineering.

PSCs have revolutionized biomedicine by providing robust
platforms for regenerative medicine, drug screening, and disease
modeling, all requiring reproducible and efficient protocols for
differentiating PSCs to CMs. Initially, contractile CMs were
spontaneously differentiated from hESCs in 3D embryoid bodies
(EBs) with low efficiencies (74–76). These early protocols suffered
from line-to-line variability, inclusion of undefined components,
and heterogeneous EB sizes (77, 78). To advance the yield
and purity of CM differentiation protocols, in-depth knowledge
of the pathways involved in embryonic heart developments
was utilized to optimize the process. CM differentiation stages
typically involve early mesendoderm priming, cardiac progenitor
specification, and differentiation into CM subtypes such as
ventricular and atrial like phenotypes (79–81). Modulation of
TGFβ signaling superfamily via serial application of activin
A and bone morphogenetic protein 4 (BMP4) yielded >30%
CMs (82); manipulation of Activin/Nodal and BMP4 signaling
pathways could efficiently induce cardiac mesoderm, resulting
>60% CMs in mouse PSCs and >50% in human PSCs (83).
Robust CM differentiation protocols have been developed by
mimicking biphasic pattern of WNT pathway with chemical
compounds. Temporal modulating Wnt pathway via GSK
inhibitor CHIR99021 and Wnt inhibitor IWP2 generated 80–
98% CMs (84). Suspension culture in stirred tank bioreactors was
utilized to upscale hPSC expansion and lineage differentiation
(85, 86). Efforts have been made to develop suspension culture
based hPSC-CM production with good manufacturing practice
standards (79, 87). Pioneering works of hCMP with PSC-CMs
have laid foundation for optimization of manufacturing methods
and demonstrated beneficial efficacy after transplantation into
animal models with higher engraftment and survival rate than
those associated with iPSC-based cell injection (38, 47, 56).
Notably, hCMP fabrication typically incorporates PSC-derived
cardiac cells with refined protocols to differentiate PSC into
ECs, SMCs, and fibroblasts which benefit hCMPs via pre-
vascularization and secretion of ECM proteins (50, 52).

Progenitor Cells
The results from early clinical trials suggested that the modest
benefits associated with transplanted bone marrow-derived cells
and cardiac progenitor cells (CPCs) occurred via the cells’
paracrine activity, rather than by directly repairing the damaged
heart tissue (30). Nevertheless, bone marrow mesenchymal stem
cells (MSCs) have been suspended in 3D hydrogels and tested in
a rat model of myocardial infarction (MI) (88). The development
of a program for generating human ESC-derived CPCs under
Good Manufacturing Practice (GMP) conditions (89) led to
the first clinical trial of hESC-CPCs, in which the cells were
administered by suspending them in fibrin and suturing the patch
to the surface of the infarcted heart. Heart function improved
symptomatically and no safety concerns were observed 3 months
after transplantation (90). Further research was conducted to
investigate the efficacy of ESC-derived cardiovascular progenitors
administered in a fibrin patch in six patients with severe ischemic
left ventricular dysfunction. Results demonstrated uneventful
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FIGURE 3 | Main manufacturing methods for cardiovascular tissue engineering. Human cardiac muscle patch (hCMP) constructs can be fabricated using a variety of

bioengineering methods, including cell sheets, scaffolds, decellularized heart tissues, 3D (bio)printing, and cell-free patches.

recoveries with no complications such as tumor formation,
arrhythmias or alloimmunization (91). These trials demonstrated
feasibility and safety of clinical translation of hESC-derived
cardiovascular progenitors, paving the way for further efforts of
efficacy studies. Recently, CPCs have shown promise as a highly
reproductive cell source in additive cardiac tissue manufacturing,
as an alternative to the non-proliferative, mature CMs, to create
highly cellularized function hCMPs (92–94).

Spheroids
During the iPSC differentiation process, the cells tend to
aggregate into spheroids containing multiple cell types, which
can be used for high-throughput screening of heterocellular
interactions and drug testing (6, 9). Spheroids could also
enhance differentiation and promote maturation, with CMs
comprising 80–100% of the cells in microtissues, while refined
CM differentiation protocols in monolayer cultures could yield
80–98% CMs (84, 95). Furthermore, spheroids containing
proportions of iPSC-derived CMs, ECs, and fibroblasts somewhat
recapitulate the morphological and physiological properties of
human myocardium, as well as the response to treatment with
pharmacological agents, which suggests that spheroids could
provide a valuable platform for in vitro disease modeling (96, 97).
Measurements of engraftment and survival also appear to be
greater when cells are administered in the form of spheroids,
rather than disaggregated cellular suspensions (98, 99). In
another study, engrafted spheroids composed of CPCs expressing
the ISL1-LIM-homeodomain transcription factor differentiated
into CMs and ECs and contributed to the formation of new
blood vessels in infarcted mouse hearts (100). The maturation

of iPSC-CM spheroids can be increased via mechanical and
electrical stimulation (101, 102), but measurements of isometric
force and electrical conduction are hindered by the lack of
a functional architecture (9). The use of cardiac spheroids in
advanced biomanufacturing procedures, such as bioprinting,
has recently attracted increasing attention, as they can provide
improved printed cell viability, fusion, and function to fabricate
large-scale cardiovascular constructs (103, 104).

Advanced Cardiac Tissue Manufacturing
Strategies
Conventional methods for manufacturing hCMPs include
generating contiguous sheets of cardiac cells (mainly CMs) or
suspending cells of a variety of types in scaffolds of biocompatible
material (94, 105–108). More recently, the emergence of 3D
printing technologies, combined with cell-containing “bioinks”
and computer-aided design (CAD), has enabled researchers to
define the architecture of hCMPs with previously unattainable
precision (Figure 3).

Cell Sheet Approaches to Fabricate hCMPs
Cell sheets are typically produced by culturing cells on dishes
coated with a temperature-sensitive polymer, such as poly(N-
isopropyl acrylamide) (PIPAAm), which releases the attached
cells when the temperature is reduced from 37 to 32◦C, thereby
maintaining the ECM and intercellular connections produced
during the culture period (109). Since cell sheets lack the
exogenous/synthetic scaffold, concerns regarding the potential
immunogenicity of the scaffold material are abolished. The
sheets can be stacked to generate 3D hCMPs that contract
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spontaneously (110). Furthermore, the cells of adjacent layers
form connections that facilitate communication between layers,
including gap junctions, which are required for electrical
coupling (111). Although, constructs composed of more than
four cellular layers are typically resistant to vascularization,
the vascularity of fabricated cell sheets can be improved by
the inclusion of stromal cells or omentum during manufacture
(112, 113). Further, CM survival and contractile function were
significantly improved when iPSC-CM sheets were covered with
an omentum flap after transplantation into infarcted pig hearts
(114–116). However, transplanted cell sheets tend to remain
electromechanically isolated from the native myocardium, which
suggests that the observed benefits likely occur primarily through
the activation of paracrine mechanisms (117). Clinical trials
utilizing cell sheets of skeletal myoblast demonstrated safety and
feasibility with no complications, paving the way for further
therapeutic efficacy studies (118, 119). Notably, the Japanese
health ministry recently approved the use of iPSC-derived CM
sheets in a small study of patients with heart disease, which
represents only the second clinical application of iPSC-derived
cells (115, 120).

Extracellular Matrix
The biomaterials used in scaffold-based hCMPs (121) are
designed to mimic the native cardiac ECM which consists of
a highly specialized, 3D network of structural (e.g., collagen)
and non-structural (e.g., glycoproteins, proteoglycans, and
glycosaminoglycans) proteins that support cardiac function (122,
123). The patch biomaterial is aimed to provide the architecture
for cell attachment and cell-cell or cell-matrix interactions (122,
124) and facilitate the coordinated transmission of electrical
and mechanical signals (9). Therefore, several design criteria
for scaffold biomaterials have been established. Biocompatibility
of materials is critical to minimize immunogenicity and
cytotoxicity, while promoting cell attachment, differentiation and
proliferation (30, 125). Biodegradability is another important
aspect of scaffolding biomaterials, allowing the material to
degrade at an appropriate rate while new ECM proteins are
being synthesized (106, 126). Biomechanical and biophysical
properties of materials such as stiffness, elasticity, and porosity
enable effective electromechanical coupling of cardiac scaffolds
and facilitate mass transport within the constructs (9, 94, 127,
128). Toward that goal, strategies utilizing natural hydrogels
(e.g., collagen, fibrin, and Matrigel), synthetic polymers (e.g.,
polyglycolic acid, polycaprolactone, polylactic acid, and poly-D,
L-lactic-co-glycolic acid), or nanofibrous materials as scaffolds
have been attempted (9, 129–135). Natural materials have
the advantages of promoting cell attachment and viability
without cytotoxicity. Nevertheless, physical properties of natural
materials could vary from batch to batch and source to source.
Immunogenicity is also a concern for xeno-transplantation.
Synthetic materials could be designed to precisely control
mechanical properties and degradation rate, thus inducing
minimal immunogenicity. However, the novel composition of
synthetic materials often struggles to fully support cell adhesion
and survival. Various scaffold architectures and geometries that
have been tested include cylindrical constructs, which typically

contain only small numbers of cells, and therefore, are usually
scaled to much larger hCMPs at clinically relevant dimensions
(2 cm× 4 cm× 1.25mm) (23). Other structures used are various
rodent-sized ventricular organoids (9).

Decellularized Heart Tissues
The role of the ECM in cardiac differentiation, organization,
and vascularization is well-established by many studies with
decellularized heart tissues (136). The ECM from decellularized
human ventricles is shown to induce CM gene expression in
human CPCs and MSCs. Further, human umbilical vein ECs
formed endocardial and vascular linings in these constructs,
and fully differentiated human CMs aggregated into muscular
bundles with mature calcium dynamics and electrical coupling
(137). Whole rat hearts have been also decellularized, seeded
with cardiac and endothelial cells, and perfused in bioreactors,
demonstrating macroscopic contractions after only 4 days
of culture. By day 8 in culture, the recellularized hearts
displayed pumping function in response to electrical stimulation,
equivalent to about 2% of adult rat hearts (138). Even in the
absence of seeded cells, application of a decellularized porcine
myocardial tissue resulted in significant improvements in cardiac
functional parameters when evaluated in a rat model of MI, and
the patch was vascularized by cells that had migrated from the
native tissues (139).

3D Bioprinting—Additive Biomanufacturing
3D bioprinting technologies utilize CAD modeling to guide the
assembly of living cells and other biological materials into large-
scale tissue and organ analogs with precisely controlled, native-
like architectures (92, 140–143). In an early work, tissue printing
technology was utilized to generate a construct composed of
human cardiac-derived CPCs and alginate. The printed construct
remained committed to cardiac lineage with high viability after
culturing for 7 days (144). In subsequent studies, human CM
progenitor cells were bioprinted into a matrix of hyaluronic acid
and gelatin to form a patch with six perpendicularly printed
layers and a total surface area of 4 cm2. When evaluated in
a murine MI model, the patch improved measures of cardiac
function and prevented remodeling. The expression of cardiac
and vascular differentiation markers increased during the 4-
week follow-up period (145). Scaffold-free bioprinted hCMPs
have been also generated by loading spheroids, one-by-one, onto
an array of needles, allowing them to fuse, and then removing
the hCMP and culturing it until the needle holes were filled in
with surrounding tissue. The construct remained engrafted and
displayed evidence of vascularization 1 week after implantation
into the infarcted rat hearts (104). A more recent, customized
device has been developed that can load an entire layer of
spheroids onto the needle array simultaneously, which will
substantially reduce the time required to print larger engineered
constructs (146).

The resolution of traditional bioprinting techniques cannot
accommodate the structural details that facilitate interactions
with individual cells. To address this limitation, a more
advanced technique, multiphoton-excited (MPE) 3D bioprinting,
has emerged, allowing the control of the architecture of
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photoactive polymers to resolutions of<1µmand, consequently,
reproducing the structural features of the ECM with high
fidelity (147). MPE 3D-printed hCMPs composed of iPSC-
derived CMs, ECs, and SMCs in a photoactive gelatin scaffold
began generating calcium transients and beating synchronously
within 1 day post-manufacturing. The printed patches were
associated with significant improvements in cardiac function (left
ventricular ejection fraction and fractional shortening), infarct
size, apoptosis, vascularity, and cell proliferation when tested
in mice with surgically induced MI (62). Photoactivated 3D
bioprinting has also been conducted with a bioink containing
both ECM proteins and hiPSCs to generate two-chambered
structures with both inlet and outlet vessels. The hiPSCs
proliferated and differentiated into mature cardiac cells in situ
to form a living pump with contiguous walls of human cardiac
muscle that mimicked the chambers and large vessels of a native
heart (148).

Cell-Free Cardiac Patches
Cell- and tissue-based treatments will likely require specialized
methods of storage and transportation to maintain cell viability
(149). Since most of the benefits associated with transplanted
cells and engineered tissues appear to evolve from the paracrine
factors produced by the cells, rather than the cells themselves
(150), strategies that exploit the regenerative activity of these
paracrine factors may be more easily translated to the clinics.
The three primary categories of secreted, biologically active
cellular products are growth factors (typically proteins that
function as signaling molecules), non-coding RNA (short, single-
stranded oligonucleotides that regulate gene expression), and
extracellular vesicles of endosomal origin (151). Artificial cardiac
patches have been manufactured by encapsulating the factors
secreted by cardiac stromal cells in PLGA and then embedding
the capsules in decellularized porcine myocardium. Applying
these factor-laden patches to the infarcted hearts of both
immunocompetent rats and pigs resulted in reduced scarring
and improved cardiac function, without inducing an immune
response (152). In other works, the controlled release of miRNAs
from injected hydrogels has shown improvement in cardiac
function in infarcted mouse hearts (153). Further, hydrogel
patches containing the extracellular vesicles produced by human
iPSC-CMs reduced infarct size and cardiac hypertrophy in a
rat MI model (154). Collectively, these results suggest that the
controlled release of paracrine factors from cell-free patches or
injected biomaterials may be a feasible alternative approach to
transplanted hCMPs for the treatment of myocardial disease.

Increasing hCMP Thickness/Dimensions
Despite substantial improvements in the components and
protocols used for hCMP manufacturing, few studies have
been conducted with constructs of clinically relevant size. Even
patches with comparatively large surface areas (e.g., 8 cm2)
are relatively thin (1.25mm) (23), with inability of direct
perfusion limiting thickness of hCMP to 1–2mm (155, 156).
Thus, production methods continue to be optimized and
enhanced for the development of larger and thicker hCMP
constructs. The inability to engineer and maintain thick and

viable hCMP jeopardizes the clinical applications due to their
inability to mimic characteristics of native myocardium, such
as generating adult-like forces and action potentials (157, 158).
In practice, hCMP thickness is often limited by the diffusion of
oxygen and nutrients from the vasculature after transplantation,
which requires CMs to be within 100–200µm distance from
the capillaries (159). Diffusion can be facilitated by including
molecular crystals (e.g., sucrose) in the matrix solution and
leaching them out after the matrix solidifies to increase the
porosity of the scaffold (160). However, hCMPs of clinically
relevant thicknesses require formation of a dense internal
vascular network that couples with the native circulation after
transplantation (9, 157). Vascularization can be increased by
including combinations of vascular and other cell types (ECs,
SMCs, and/or fibroblasts) (23, 62, 161) during manufacturing
and/or via the nanoparticle-mediated (151) extended release of
pro-angiogenic factors [e.g., vascular endothelial growth factor
(VEGF), fibroblast growth factor (FGF), and the Wnt activator
CHIR99021; (162, 163)], which can promote infiltration of the
native circulatory system. Further, the spatial orientation of the
vascular network can be controlled with more technologically
advanced fabrication methods (e.g., micropatterning and 3D
bioprinting) to enhance the mass transport and perfusion [(164);
Figure 4].

Layer-By-Layer Assembly
In theory, the layer-by-layer assembly technique enables hCMPs
of any desired thickness to be generated simply by stacking the
required number of individual CM sheets. However, since the
individual layers of multilayered hCMPs are grown in isolation
before assembly, intercellular connectivity is likely to be greater
between cells within the same layer than between the cells
of adjacent layers. Techniques for enhancing the formation
of physical and electromechanical connections between layers
include the use of graphene oxide (GO)-based thin films,
which improved not only adhesion but also electrical coupling,
maturation and cell organization (165), as well as the Tissue-
Velcro platform, in which cardiac cells are cultured on 2D
cell meshes that incorporate a microfabricated hook-and-loop
system. After layering, the hooks and loops of adjacent layers
interlocked and the hCMP contracted in response to electrical
stimulation (166). The vascularization of multilayered hCMPs
can be promoted by sandwiching vascular cells between the
CM layers (167, 168). Coherent vascular networks have been
generated in stacked hCMPs by using resected tissue as a
vascular bed. When the resected vasculature was overlaid
with sheets of cardiac cells (including ECs), connected to a
bioreactor, and perfused with culture medium, ECs in the
cardiac-cell layers connected to capillaries in the vascular bed
and formed tubular structures. The vascularized hCMPs could
survive after transplantation into the necks of rats via blood vessel
anastomosis (169).

In vitro Perfusion
Techniques for maintaining adequate oxygen and nutrient
availability during the manufacturing process include the
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FIGURE 4 | Primary bioengineering techniques to manufacture and maintain relatively thick human cardiac muscle patch (hCMP) constructs. A variety of methods are

used, including layer-by-layer assembly, in vitro perfusion using various bioreactor systems, and engineered vascular networks.

development of cartridges that reproduce the convective-
diffusive properties of oxygen transportation present in native
myocardial tissue (170). Another approach is culturing cells on a
simulated capillary network with medium containing an oxygen
carrier (perfluorocarbon) that mimics hemoglobin (171, 172).
The hemoglobin mimic significantly increased the expression of
cardiac markers and improved the contractile performance of
constructs composed of primary neonatal CMs and fibroblasts.
Small intestinal submucosa could be utilized to enhance
perfusion with rat primary endothelial cells forming a network
in pre-existing vessel structures (173). AngioChip technology
(174) incorporates a perfusable, 3D microchannel network
that recapitulates the native vascular interface and, because
it is compatible with current practices in both laboratories
and industry, can be adapted to produce a variety of tissue
types. Perfusion can also be improved by culturing cardiac
tissue constructs under dynamic conditions [e.g., on a rocking
platform; (158)]. This approach was used during themanufacture
of large (2 cm × 4 cm) patches for subsequent testing in a swine
MI model and was associated with improvements in not only cell
viability, but also inmeasures of hCMPmaturation (23). Notably,
some evidence suggests that the contractile properties of hCMPs
can be enhanced by perfusing them in rhythmic pulses, rather
than a continuous static flow (175).

Engineered Vascular Networks
Rather than relying solely on infiltration from the native
circulatory system, thicker hCMPs will likely require at least
some amount of engineered vascularity before transplantation.

Vascularization can be induced during the manufacturing
process by encapsulating a sacrificial gelatin mesh in scaffold
material and then melting the gelatin mesh away, leaving
behind a network of interconnected microfluidic channels.
When seeded with human microvascular ECs, the sacrificial
scaffolds produced a rudimentary endothelial network (176). An
alternative strategy mimics the endogenous angiogenic process
by using a sustained-release preparation of the angiogenic factor
thymosin β to promote and guide the outgrowth of vessels
from explanted arteries and veins to form a capillary bed
within a hydrogel scaffold (177). Vessel growth can also be
directed with micropatterned polyglycerol sebacate scaffolds.
After transplantation, host blood cells infiltrated into the
microvessels as the scaffold degraded (178). Micropatterning has
also been used to organize ECs into “cords,” which guide the
formation of capillaries that integrate with the host tissue after
transplantation (179).

One of the novel reports of 3D printed vessels used a
thermal inkjet printer to print mixtures of human microvascular
ECs and fibrin, forming micro-sized fibrin channels lined
with confluent cells (180). Vascular networks have also been
bioprinted with an advanced extrusion system that produced
a sheath of photoactive, cell-laden bioink around an alginate
core. After UV crosslinking, the alginate was dissolved with
a Ca2+-chelating agent, allowing the cells to proliferate,
spread, and form a perfusable biomimetic vascular network
(140). However, the penetration of UV radiation is limited.
Polymerization can be induced at greater depths via enzymatic
reactions, such as the thrombin-induced cleavage of fibrinogen
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into fibrin. This strategy has been combined with the co-
printing of vascular and cellular inks in cast ECM material
to generate markedly thick (>1 cm) engineered osteogenic
tissues (181).

Transplantation of hCMP Constructs
hCMP Delivery Methods
Delivery methods for cells and tissues could be categorized
into invasive and non-invasive approaches, both often featuring
low engraftment rates (12). Transplantation of hCMPs mainly
falls into invasive delivery, requiring open-chest surgery, and
suturing/attaching the patch onto the epicardium (23, 62).
This method typically offers an enhanced engraftment and
survival rate compared with cell injection into the injured
myocardium. The widespread application of intra-myocardial
cell injections has demonstrated a poor cell retention rate
with induced damages to both exogenous and host cells
due to a dramatic increase in flow velocity and shear
stress (182). Studies have shown that repeated cell injections
increase the therapeutic effects (183). However, invasive delivery
methods are not optimal for repeated applications due to
requirements of dedicated facilities and highly trained staff to
perform open-chest surgery. As a result, invasive delivery of
cells and hCMPs has challenged clinical translation of these
therapies (184).

Alternatively, non-invasive delivery methods, such as
intravascular (or intravenous) delivery and injectable hydrogel
approaches, have been tested. Intravascular delivery has
shown recirculation and redistribution of injected cells to
other organs besides the target site (6). These methods have
demonstrated improved cardiac function potentially due to
the paracrine signaling mechanism as previously discussed
(185). This method has the advantages of being non-invasive
and possibility of repeated administrations, qualifying them a
good choice from a clinical viewpoint (184). Recently, a novel
minimally invasive method demonstrated epicardial delivery
of hydrogels through the pericardial space (186). A pericardial
device (catheter) delivers the hydrogel components through
separate (coaxial) lumens and combines them after exiting
the device, forming a stable hydrogel construct between the
pericardium and epicardium layers. This method could help
minimize the risks of extensive myocardial injury, thrombotic
occlusion, and arrhythmia. Injectable hydrogels have been also
increasingly tested as a minimally (or non) invasive delivery
approach for cardiac patch systems (187, 188). In a clinical
study, acellular alginate-based hydrogels were injected in MI
patients, demonstrating the preservation of the LV indices
and ejection fraction (189). However, a more recent large
clinical trial, investigating the effect of injectable alginate
hydrogels in patients with advanced HF, reported about 9%
death within 30 days post-injection, while the control group
had no fatalities (190). Therefore, while significant progress
has been made in developing injectable cardiac patch systems,
more efforts are required for their further improvement for
efficient clinical use. These include further enhancement in
biomechanical and biochemical properties of the hydrogel
constructs to mimic the native tissue, improving cell viability

and biomolecules activity, controlled degradation and immune
response, and enhancement in the in vivo tracking of the patch
(187, 191, 192).

Animal Models to Test hCMPs
Preclinical studies have utilized different animal models,
including mice, rats, guinea pigs, swine, and non-human
primates (Table 1). Choice of a suitable animal model with high
predictive validity for safety profile and therapeutic outcomes is
crucial for the clinical translational purposes. Initial studies of
therapeutic efficacy of transplanted human cells or cardiac tissues
were performed in immunocompromised rodents, including
athymic rats and severe combined immunodeficiency mice,
due to genetic manipulations and easy handling. However,
the disparity of anatomy and physiology between rodents
and human dampens the reliability of therapeutic outcomes
(197). Subsequent preclinical studies utilize large animal models,
including non-human primates and swine, demonstrating
remuscularization and therapeutic efficacy with safety concerns
of ventricular arrhythmias (42, 196, 198). Large animal models
are more reliable and relevant for preclinical studies compared
with rodent models. However, the high cost associated with large
animal studies would limit their applications (41).

Mechanisms of Action of hCMPs
The ultimate goal of cardiac patch transplantation is to replace
the injured myocardium with exogenously functional cardiac
muscle. Preclinical studies from mice (199, 200), rats (201),
guinea pigs (52, 193), porcine (50), and non-human primates (41)
have demonstrated some degree of myocardial remuscularization
of the fibrotic scar tissue with transplanted cardiac tissues. The
clinical translation of this approach has met some challenges,
first of which is the requirement of large quantities of exogenous
CMs (and/or other cardiac cells) used to replenish lost tissue.
Robust protocols for CM differentiation and scalability of
CM production, together with cryopreservation and retrieval
procedures following current good manufacturing practice
(cGMP), have enabled generation of well-characterized PSC-
CMs as an off-the-shelf therapy (202). Furthermore, it remains
a critical issue to ensure long-term graft retention for maximal
therapeutic efficacy based on the hypothesis that contractile
force is correlated to the electromechanically integrated CMs
(202). Gene manipulation has been adopted to increase cell
retention. Overexpression of CCND2 (cyclin D2), a cell cycle
activator, increased cell cycle activity and proliferation rate in
hiPSC-CMs, thus improving engraftment rate from average
10 to 25% with a significant remuscularization of injured
myocardium inmice (203). CM retention could also be enhanced
via co-administration of pro-survival factors, such as Matrigel,
cyclosporine A, pinacidil, ZVAD-fmk, insulin-like growth factor-
1 (IGF-1), CHIR99021, and fibroblast growth factor 1(FGF1)
(50, 82, 163).

The lack of electromechanical coupling between hCMPs
and host tissue is another challenge on the way of clinical
translation of patch-based therapies. Super-aligned carbon
nanotubes were utilized during the fabrication of cardiac
tissues to enhance electrophysiological homogeneity due to the
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TABLE 1 | Summary of various hCMP studies conducted in animal models of heart injuries.

Animal model Cell type and number Delivery method/Material Vascularization Observations Follow up

NOD/SCID gamma mice with

MI (101)

Five Spheroids composed of

hiPSC-CMs (2 ×

105/spheroid)

Engineered fibrin cardiac

patch

N/A Improved LVEF and FS; enhanced engraftment 4 weeks

NOD/SCID gamma mice with

MI (163)

1 × 106 hiPSC-CM Engineered fibrin cardiac

patch containing

nanoparticles releasing

CHIR99021 and FGF1

N/A Enhanced cardiac function; reduced infarct size; increased

engraftment with enhanced cell cycle activity of hiPSC-CMs

4 weeks

Guinea pigs with cryoinjury

(193)

1 × 108 hESC-CMs IM N/A Improved mechanical function; reduced incidence of arrhythmias 4 weeks

Guinea pigs with MI (52) 5 × 106 hiPSC-CM and 2 ×

106 hiPSC-ECs

Engineered fibrin cardiac

patch

Inclusion of iPSC-ECs Improve left ventricular function by 31%; remuscularization;

vascularization; electrical coupling with host myocardium

28 days

Rats with MI (35) 4 × 107 Fetal rat ventricular

muscle

Engineered gelatin cardiac

patch

N/A No significant change in cardiac function; surviving grafts

enhanced angiogenesis

5 weeks

Rats with MI (36) 3 × 105 Fatal rat CMs Engineered alginate cardiac

patch

N/A No significant change; Engraftment with intensive

neovascularization; integration; attenuate LV dilatation

9 weeks

Normal athymic rats Sprague

Dawley (56)

ESC-CMs and iPSC-CMs;

HUVEC; MSCs; MEFs

Engineered collagen cardiac

patch

Inclusion of stromal

supporting cells

Form grafts containing microvessels; Enhanced formation of

vessel-like structures

1 week

Rats with MI (88) 1 × 106 Bone marrow

mesenchymal stem cells

Engineered silk

fibroin/hyaluronic acid cardiac

patch

N/A Therapeutic efficacy; improved LV wall thickness; high viability;

neovascularization

8 weeks

Nude athymic rats with MI

(39, 194)

2.5 × 106 hESC-CMs Engineered collagen cardiac

patch

N/A No significant changes of LVEF; Preserved heart function revealed

by tagged magnetic resonance imaging; high engraftment

4 weeks

Athymic rats with MI (40) 2.2 × 106 iPSC-CMs; 3.4 ×

105 human pericytes

Engineered fibrin cardiac

patch

Inclusion of human pericytes Improved cardiac function; reduced infarct size; engraft onto host

heart

4 weeks

Rats with acute MI (139) Acellular Decellularized porcine

myocardial slice

Utilization of decellularized

porcine myocardium

mimicking native ECM

Improved cardiac function; attach to host myocardium; prevent LV

wall thinning; vascularization

4 weeks

Rats and porcine with MI (152) Acellular; synthetic cardiac

stromal cells

Cardiac patch composed of a

decellularized porcine

myocardium

Enhanced cardiac recovery with reduced scar and promoted

angiogenesis in rat model; therapeutic efficacy in porcine model

3 weeks

Porcine with MI (113) 1.5 × 107 Skeletal myoblasts

from mini-pigs

Cell sheets covered with

omentum flap

Utilization of omentum flap for

revasularization

Improved cardiac function; Reduced infarct size; increased

angiogenesis

8 weeks

Porcine minipigs with MI (114) iPSC-CMs Cell sheets N/A Improved cardiac performance and attenuated left ventricular

remodeling; poor engraftment

8 weeks

Normal porcine mini-pigs

(115)

iPSC-CMs Cell sheets with an omentum

flap

Inclusion of an omentum flap Enhanced survival and engraftment; rich vasculature 8 weeks

Immunosuppressed Yorkshire

pigs with MI (51)

4 × 106 hiPSC-VC (ECs and

SMCs)

Engineered fibrin cardiac

patch

Inclusion of iPSC-VCs (ECs

and SMCs)

Increased BZ contractile function and ATP turnover rate with

attenuated regional wall stress, neovascularization and improved

BZ perfusion

4 weeks

(Continued)
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TABLE 1 | Continued

Animal model Cell type and number Delivery method/Material Vascularization Observations Follow up

Porcine with acute MI (50) 6 × 106 total

iPSC-cardiovascular cells

(CMs, ECs, and SMCs; each

2 × 106)

IM + fibrin patch containing

IGF

Inclusion of iPSC-ECs, SMCs Improved left ventricular function; reduced infarct size; Integration

with host myocardium; vascularization;

4 weeks

Porcine with ICM (116) 5 × 106 iPSC-CMs Cell sheets with omental flap Utilization of omentum flap Enhanced therapeutic effects and survival; 3 months

Porcine with MI (23) iPSC-Cardiac cells (4 × 106

CMs, 2 × 106 ECs, and 2 ×

106 SMCs)

Engineered fibrin cardiac

patch

Inclusion of iPSC-ECs, -SMCs Improved left ventricular function; reduced infarct size; reduced LV

wall stress; no significant changes in arrhythmogenicity

4 weeks

Porcine with MI (195) Acellular; exosomes derived

from iPSC-Cardiac cells

(iPSC-CMs, -ECs, -SMCs)

IM N/A Improve myocardial recovery without increasing the frequency of

arrhythmogenic

4 weeks

Non-human primate Macaca

nemestrina with MI (41)

1 × 109 (1 billion) hESC-CMs IM N/A Remuscularization; vascularization; electromechanical coupling;

arrhythmias

3 months

Non-human primate Macaca

fascicularis with MI (196)

1 × 109 iPSC-CMs IM N/A Improved cardiac function; Survive for 12 weeks; electrical

coupling; ventricular tachycardia (transient)

12 weeks

Non-human primate macaque

monkeys with MI (42)

∼750 million hESC-CMs IM N/A Improved cardiac function; formation of electromechanical

junctions; ventricular arrhythmias

3 months

One patient with severe heart

failure (90)

4 × 106 hESC-derived Isl-1+

SSEA-1+ cells

Engineered fibrin cardiac

patch

N/A Symptomatically improved LVEF; new-onset contractility; no

complications

3 months

Seven patients with ischemic

cardiomyopathy

(UMIN000008013) (118)

3 × 108 autologous skeletal

muscle

Cell sheet N/A Improved LVEF; improved patient status 26 weeks

Six patients with severe

ischemic left ventricular

dysfunction (NCT02057900)

(91)

8.2 × 106 hESC-derived

cardiovascular progenitors

Engineered fibrin cardiac

patch

N/A Uneventful recoveries; no safety concerns, such as tumor,

arrhythmias, alloimmunization

1 year

Four patients with dilated

cardiomyopathy

(UMIN000000660) (119)

4.5–7.5 × 108 autologous

skeletal muscle

Cell sheet N/A Improved LVEF in two patients; reduced cardiac hypertrophy 3 months

FGF1, fibroblast growth factor 1; LVEF, left ventricular ejection fraction; FS, fractional shortening; IM, intra-myocardial delivery; HUVECs, human umbilical vein endothelial cells; MSCs, human marrow stromal cells; MEFs, mouse embryonic

fibroblasts; IGF, insulin growth factor; ICM, ischemic cardiomyopathy.
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anisotropic conductivity of their aligned structure (204). In
another study, electrospun nanofibrous scaffolds with enhanced
conductivity were demonstrated to promote electrical coupling
of the patch, showing potential for fabrication of clinically
relevant hCMP products (205). One major aspect that must
be carefully studied, when working on electromechanical
integration of exogenous CMs with host myocardium is the likely
potential to trigger arrhythmias, as discussed in the previous
sections (41).

Low CM survival rates, as little as 10%, have been usually
associated with functional benefits from hCMP transplantations
(39, 51, 194). Patch constructs composed of non-CMs have
also shown improved cardiac function (51). These data
collectively suggest an alternative mechanism of action,
based on paracrine signaling, where cell secreted signals,
including extracellular vesicles, mediate cardiac repair via
increasing CM survival and neovascularization and decreasing
apoptosis and inflammation (206). Paracrine signaling was
further evidenced by a study where exosomes secreted from
combination of iPSC-derived CMs, ECs, and SMCs yielded
cardioprotective effects similar to that obtained from direct
cells injection in a porcine model of MI (195). Further,
acellular hCMPs composed of non-viable/irradiated cells
(39) or decellularized porcine myocardial tissues (139) have
shown therapeutic benefits after transplantation, through the
proposed mechanism of mechanical stabilization. Thus, the
therapeutic benefits associated with hCMP transplantation could
be a combination of any or all of mechanisms including
remuscularization, paracrine signaling, and mechanical
stabilization (202, 207).

Safety Concerns
Occurrence of arrhythmias is a critical safety concern for
clinical applicability of cardiac patch therapies. Sine large animal
models more closely approximate the human heart’s physiology,
function, and anatomy, they have been increasingly used to
assess arrhythmias in cardiac patch studies (41). Preclinical
studies of non-human primates demonstrated transient non-
fatal arrhythmias during 2 weeks after transplantation, followed
by a subsequent decrease in those irregularities (41, 196).
Ventricular arrhythmias occurred in porcine models have
been more frequent and lethal than those in non-human
primate models (2 out of every 7 pigs) (198). It is currently
viewed that disorder of impulse generation at the interface
between engrafted CMs and host myocardium could induce
ventricular arrhythmias (42, 198). Further investigation of
arrhythmic complications will be necessary before translation
into patients.

Autologous cell transplantation offers an advantageous option
based on the hypothesis that autologous cell transplantation
could induce no immunological response due to the acceptable
human leukocyte antigens (HLA)match. However, accumulating
evidence prove that the clinical translation of autologous cells
could become complicated by limitations, such as variability
from batch to batch, requiring a detailed characterization
and quality control of each batch. The initial hypothesis that

transplantation of autologous iPSC derivatives would induce
no immunogenicity has been challenged by some recent
studies (70, 71).

For a long time in clinical practice, inhibition of the
immunological responses has been mainly through the
use of immunosuppressive drugs, such as cyclosporine,
dexamethasone, and FK-506. With side effects induced by
such immunosuppressants, there is a trade-off between efficacy
and toxicity. High-dose immunosuppression would result
in toxicity and associated complications, while low-dose
immunosuppression would lead to allograft rejection. The choice
of transient or chronic exposure of immunosuppressants would
be based on the presumed mechanism of action, as discussed
previously (184, 208). In addition, immunological tolerance
could be induced via host conditioning by activation/adoptive
transfer of regulatory T cells (209). Short-term administration
of nanobiologics targeting macrophages could benefit long-term
allograft survival (210). Other strategies have been adopted
to reduce immunogenicity. Modern genome-editing tools
[e.g., zinc-finger nucleases (ZFNs), transcription activator-
like effector nucleases (TALENs), or the clustered regulatory
interspaced short palindromic repeat (CRISPR)/Cas-9 system;
(37, 211, 212)] have enabled the development of minimally
immunogenic iPSC lines by knocking out key components of
major histocompatibility complexes (MHCs) I and II [Beta2
microglobulin (B2M) and MHC II transactivator (CIITA)]
(213). This is done by combining MHC gene inactivation
with the overexpression of CD47, a ubiquitous membrane
protein that directly regulates T-cell immunity (214), and by
disrupting the genes for HLA (215). These genetically modified
hiPSCs could be used to generate a stockpile of “off-the-
shelf ” cardiac cells and hCMPs for administration to patients
in emergency situations without the need for concomitant
immunosuppressive therapies.

Summary—Current Challenges and Future Perspectives
The potential benefits of hCMPs for the treatment of myocardial
injury and disease are readily observable in preclinical studies,
and at least one small study in patients is currently underway
(120). Conventional methods for manufacturing hCMPs include
suspending cells in scaffolds of biocompatible material or
growing 2D sheets in culture and stacking them to form
multilayered constructs. More advanced technologies, such as
micropatterning and CAD-guided 3D printing with bioinks
have given researchers the tools to control the architecture
of hCMPs at resolutions that match the scale of interactions
between individual cells or between cells and the ECM.
Most studies, however, have been conducted with hCMPs at
relatively small scales that are not suitable for administration
to patients. The size and (especially) thickness of hCMPs are
often restricted by the diffusion limitations of oxygen, nutrients,
and other biologically active molecules, which requires CMs
to be within 100–200µm distance from the capillaries. Thus,
the clinical translation of hCMP technology will require the
development of protocols for manufacturing larger and thicker
constructs that are adequately vascularized and fully couple
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with the circulatory and electromechanical systems of the
native myocardium.
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