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Quantum Fisher information is a central quantity in quantum metrology. We discuss an alternative
representation of quantum Fisher information for unitary parametrization processes. In this
representation, all information of parametrization transformation, i.e., the entire dynamical information, is
totally involved in a Hermitian operator H. Utilizing this representation, quantum Fisher information is
only determined by H and the initial state. Furthermore, H can be expressed in an expanded form. The
highlights of this form is that it can bring great convenience during the calculation for the Hamiltonians
owning recursive commutations with their partial derivative. We apply this representation in a collective spin
system and show the specific expression of H. For a simple case, a spin-half system, the quantum Fisher
information is given and the optimal states to access maximum quantum Fisher information are found.
Moreover, for an exponential form initial state, an analytical expression of quantum Fisher information byH
operator is provided. The multiparameter quantum metrology is also considered and discussed utilizing this
representation.

H
ow to precisely measure the values of physical quantities, such as the phases of light in interferometers,
magnetic strength, gravity and so on, is always an important topic in physics. Obtaining high-precision
values of these quantities will not only bring an obvious advantage in applied sciences, including the

atomic clocks, physical geography, civil navigation and even military industry, but also accelerate the develop-
ment of fundamental theories. One vivid example is the search for gravitational waves. Quantum metrology is
such a field attempting to find optimal methods to offer highest precision of a parameter that under estimation. In
recently decades, many protocols and strategies have been proposed and realized to improve the precisions of
various parameters1–22. Some of them can even approach to the Heisenberg limit, a limit given by the quantum
mechanics, showing the power of quantum metrology.

Quantum Fisher information is important in quantum metrology because it depicts the theoretical lowest
bound of the parameter’s variance according to Cramér-Rao inequality23,24. The quantum Fisher information for
parameter a is defined as F 5 Tr(rL2), where r is a density matrix dependent on a and L is the symmetric
logarithmic derivative (SLD) operator and determined by the equation har 5 (rL 1 Lr)/2. For a multiparameter
system, the counterpart of quantum Fisher information is called quantum Fisher information matrixF , of which
the element is defined as F ab~Tr r La,Lb

� �� �
, where La, Lb are the SLD operators for parameters a and b,

respectively.
Recently, it has been found27 that quantum Fisher information can be expressed in an alternative representa-

tion, that all information of parametrization process in quantum Fisher information is involved in a Hermitian
operator H. This operator characterizes the dynamical property of the parametrization process, and totally
independent of the selection of initial states. Utilizing this representation, the quantum Fisher information is
only determined by H and the initial state.

In this report, we give a general expression of quantum Fisher information and quantum Fisher information
matrix utilizingH operator. For a unitary parametrization process,H can be expressed in an expanded form. This
form is particularly useful when the Hamiltonian owns a recursive commutation relation with its derivative on
parameter estimation. We calculate the specific expression of H in a collective spin system, and provide an
analytical expression of quantum Fisher information in a spin-half system for any initial state. Based on this
expression, all optimal states to access maximum quantum Fisher information are found in this system.
Furthermore, considering this spin-half system as a multiparameter system, the quantum Fisher information
matrix, can be easily obtained by the known form of H in single parameter estimations. On the other hand,
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inspired by a recent work28, for an exponential form initial state, we
provide an analytical expression of quantum Fisher information
using H operator. A demonstration with a spin thermal initial state
is given in this scenario. The maximum quantum Fisher information
and the optimal condition are also discussed.

Results
Quantum Fisher information with H operator. For a general
unitary parametrization transformation, the parametrized state
r(a) is expressed by r(a) 5 U(a)r0U{(a), where r0 is a state
independent of a. In this paper, since the parameter a is only
brought by U(a), not the initial state r0, we use U instead of U(a)
for short. Denote the spectral decomposition of r0 as r0~PM

i~1 pi yij i yih j, where pi and jyiæ are the ith eigenvalue and
eigenstate of r0 and M is the dimension of the support of r0. It is
easy to see that pi and Ujyiæ are the corresponding eigenvalue and
eigenstate of r(a), respectively. The quantum Fisher information for
r(a) can then be expressed by29,30

F~
XM

i~1

4pi D2H
� �

i{
X
i=j

8pipj

pizpj
jhyijHjyjij

2, ð1Þ

where25,26

H : ~i LaU{� �
U ð2Þ

is a Hermitian operator since the equality (haU{)U 5 2U{(haU).
Meanwhile,

D2H
� �

i~ yih jH2 yij i{ yih jH yij i2 ð3Þ

is the variance ofH on the ith eigenstate of r0. When haU commutes
with U, H can be explained as the generator of the parametrization
transformation27. The expression (1) of quantum Fisher information
is not just a formalized representation. The operator H is only
determined by the parametrization process, that is the dynamics of
the system or the device. For a known dynamical process of a
parameter, i.e., known system’s Hamiltonian, H is a settled
operator and can be obtained in principle. In this representation,
the calculation of quantum Fisher information is separated into
two parts: the diagonalization of initial state and calculation of H.
For a general 2-dimensional state, the quantum Fisher information
reduces to

Fqubit~4 2Trr2{1
� �

D2H
� �

1 2ð Þ: ð4Þ

The subscript of the variance can be chosen as 1 or 2 as any
Hermitian operator’s variances on two orthonormal states are
equivalent in 2-dimentional Hilbert space. For a pure state, the
quantum Fisher information can be easily obtain from Eq. (4) with
taking the purity Trr2 5 1 and the variance on that pure state, i.e., ref.
27

Fpure~4 D2H
� �

in: ð5Þ

Namely, the quantum Fisher information is proportional to the
variance of H on the initial state. In this scenario, denote the initial
state r0 5 jy0æÆy0j, the quantum Fisher information can be rewritten
into Fpure~ y0h jL2

ef f y0j i, with the effective SLD operator

Lef f ~i2 H, y0j i y0h j½ �: ð6Þ

For a well applied form of parametrization transformation U 5

exp(2itHa)27, where �h has been set as 1 in Planck unit, and being
aware of the equation

LaeA~

ð1

0
esA LaAð Þe 1{sð ÞAds, ð7Þ

H can then be expressed by

H~{

ðt

0
eisHa LaHað Þe{isHa ds: ð8Þ

Defining a superoperator A3 as A3(?) :5 [A, ?],H can be written in an
expanded form

H~i
X?
n~0

fnH|n
a LaHað Þ, ð9Þ

where the coefficient

fn~
itð Þnz1

nz1ð Þ! : ð10Þ

In many real problems, the recursive commutations in Eq. (9) can
either repeat or terminate28, indicating an analytical expression ofH.
Thus, this representation of quantum Fisher information would be
very useful in these problems. For the simplest case that Ha 5 aH, all
terms vanish but the first one, thenH~{tH. When [Ha, haHa] 5 C,
with C a constant matrix or proportional to Ha, only the first and
second terms remain. In this case,H reduces to 2t(haHa 1 itC/2). A
more interesting case is that [Ha, haHa] 5 chaHa, with c a nonzero
constant number, then H can be written in the form

H~
i
c

exp itcð Þ{1½ �LaHa: ð11Þ

In the following we give an example to exhibit Eq. (9). Consider the
interaction Hamiltonian of a collective spin system in a magnetic
field

Hh~B coshJxzsinhJzð Þ~BJn0 , ð12Þ

where Jn0~n0
:J with n0 5 (cos h, 0, sin h)T and J 5 (Jx, Jy, Jz)T. B is the

amplitude of the external magnetic field and h is the angle between

the field and the collective spin. Here Ji~
X

k
s

kð Þ
i

.
2 for i 5 x, y, z

with s
kð Þ

i the Pauli matrix for kth spin. Taking h as the parameter
under estimation, H can be expressed by

H~2 sin
Bt
2

� 	








Jn1 , ð13Þ

where Jn1~n1
:J with the vector

n1~m cos
Bt
2

� 	
sinh,{sin

Bt
2

� 	
,{cos

Bt
2

� 	
cosh

� 	T

,

where m 5 sgn(sin(Bt/2)) is the sign function and n1 is normalized.
The operator H for Hamiltonian (12) may be also available to be

solved using the procedure in Ref. 27, in the (2j 1 1)-dimensional
eigenspace of Hh (j is the total spin). In principle, the eigenstates of Hh

can be found by rotating the Dicke state into the same direction of Hh.
However, even one can analytically obtain all the eigenvalues and
eigenvectors, it still requires a large amount of calculations to obtain
H, especially when the spin numbers are tremendous. Comparably,
utilizing Eq. (9), it only takes a few steps of calculation, which can be
found in the method. This is a major advantage of the expanded form
of H.

Utilizing Eq. (13), one can immediately obtain the form ofH for a
spin-half system

Hqubit~ sin
Bt
2

� 	








n1
:s, ð14Þ

with s 5 (sx, sy, sz)T, which was also discussed in the Hamiltonian
eigenbasis in Ref. 27. For any 2-dimensional state, based on Eq. (4),
the quantum Fisher information can be expressed by
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Fh~4 sin2 Bt
2

� 	
r inj j2 1{ n1

:reð Þ2
� �

, ð15Þ

where rin 5 (Æsxæ, Æsyæ, Æszæ)T is the Bloch vector of the initial state r0

and re is the Bloch vector of any eigenstate of r0. For pure states, there
is re 5 rin and jrinj 5 1. Since the Bloch vector of a 2-dimensional
state satisfies jrinj# 1, it can be found that the maximum value of Eq.
(15) is

Fmax
h ~4 sin2 Bt

2

� 	
, ð16Þ

which can be saturated when jrinj 5 1 and n1 ? rin 5 0, namely, the
optimal state to access maximum quantum Fisher information here
is a pure state perpendicular to n1, as shown in Fig. 1. In this figure,
the yellow sphere represents the Bloch sphere and the blue arrow
represents the vector n1. It can be found that all states on the joint
ring of the green plane and surface of Bloch sphere can access the
maximum quantum Fisher information, i.e., all states on this ring are
optimal states. One simple example is ropt 5 n0, and another one is
the superposition state of two eigenstates of H22,27.

Alternatively, B could be the parameter that under estimation. In
the spin-half case, with respect to B, HB~{tn0

:s=2, then the
quantum Fisher information can be expressed by

FB~t2 r inj j2 1{ n0
:reð Þ2

� �
: ð17Þ

The optimal states to access the maximum value Fmax
B ~t2 are the

pure states vertical to n0.

Exponential form initial state. For an exponential form initial state
r0 5 exp(G0), the parametrized state reads

ra~Ur0U{~ exp UG0U{� �
: ð18Þ

Recently, Jiang28 studied the quantum Fisher information for
exponential states and gave a general form of SLD operator. In his
theory, the SLD operator can be expanded as

L~
X?
n~0

gnG|n LaGð Þ, ð19Þ

where the coefficient

gn~
4 2nz2{1ð ÞBnz2

nz2ð Þ! ð20Þ

for even n and gn vanishes for odd n. Here Bnz2 is the (n 1 2)th
Bernoulli number and in our case, G 5 UG0U{. Through some
straightforward calculation, the derivative of G on a reads

LaG~{iU G|
0 H

� �
U{: ð21Þ

Based on this equation, the nth order term in Eq. (19) is

G|n LaGð Þ~{iU G|
0

� �nz1H

 �

U{, ð22Þ

whereH is given by Eq. (9). Generally, it is known that the quantum
Fisher information reads

F~Tr Ur0U{L2
� �

~Tr r0L2
ef f

� �
, ð23Þ

where the effective SLD operator Leff 5 U{LU. The effective SLD
operator for pure states is already shown in Eq. (6). Substituting
Eq. (22) into Eq. (19), the effective SLD operator can be expanded as

Lef f ~{i
X
n~0

gn G|
0

� �nz1H: ð24Þ

In most mixed states cases, to obtain quantum Fisher information,
the diagonalization of initial state is inevitable, which is the reason
why the usual form of quantum Fisher information is expressed in
the eigenbasis of density matrix. Thus, it is worth to study the
expression of effective SLD operator and quantum Fisher infor-
mation in the eigenbasis of G0. We denote the ith eigenvalue and
eigenstate of G0 as ai and jwiæ, and in the eigenbasis of G0, the element
of G|n

0 H satisfies the recursion relation

G|n
0 H

� �
ij~ ai{aj
� �

G|n
0

� �n{1H
h i

ij
, ð25Þ

where [?]ij :5 Æwij ? jwjæ. Utilizing this recursive equation, a general
formula of nth order term can be obtained,

G|n
0 H

� �
ij~ ai{aj

� �nHij: ð26Þ

Substituting above equation into the expression of Leff and being
aware of the equality

X?
n~0

gn ai{aj
� �nz1

~2 tanh
ai{aj

2


 �
, ð27Þ

the element of effective SLD operator in Eq. (24) can be written as

Lef f½ �ij~{i2 tanh
ai{aj

2


 �
Hij: ð28Þ

Based on the equation F~Tr eG0 L2
ef f

� �
, the quantum Fisher

information in the eigenbasis of G0 can finally be expressed by

F~
X
iwj

4 eaizeajð Þ tanh2 ai{aj

2


 �
Hij



 

2: ð29Þ

This is one of the main results in this paper. In some real problems,
the eigenspace of G0 could be find easily. For instance, the eigenspace
of a bosonic thermal state is the Fock space. Thus, as long as the
formula of H in Fock space is established, the quantum Fisher
information can be obtained from Eq. (29).

Now we exhibit Eq. (29) with a spin-half thermal state. The initial
state is taken as

Figure 1 | Optimal states to access maximum quantum Fisher
information in a spin-half system. The blue arrow represents the vector n1

and all vectors in the green plane are vertical to n1. All the states in the joint

ring of green plane and Bloch sphere’s surface can access maximum

quantum Fisher information.
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r0~
1
Z

exp {bszð Þ,

~exp {bsz{ln Zð Þ,
ð30Þ

where b 5 1/(kbT) with kb the Boltzmann constant and T the tem-
perature. In Planck unit, kb 5 1. The partition function reads Z 5

Tr[exp(2bsz)] 5 2 cosh b. In this case, G0 5 2bsz 2 ln z. Denoting
the eigenstates of sz as j0æ and j1æ, i.e., sz 5 j0æÆ0j 2 j1æÆ1j, the
eigenvalues of G0 read a1 5 2bsz 2 ln z and a2 5 bsz 2 lnz. The
parametrization process is still taken as Hh 5 Bn0 ? s/2 with h the

parameter under estimation, indicating that H~ sin
Bt
2

� 	








n1
:s,

then the squared norm of the off-diagonal element of H in the
eigenbasis of sz reads

H01j j2~sin2 Bt
2

� 	
1{cos2h cos2 Bt

2

� 	� �
: ð31Þ

Immediately, the quantum Fisher information can be obtained from
Eq. (29) as

FT~4 tanh2b sin2 Bt
2

� 	
1{cos2h cos2 Bt

2

� 	� �
: ð32Þ

The maximum value of above expression is obtained at Bt 5 (4k 1
1)p for k 5 0, 1, … and

Fmax
T ~4 tanh2 bð Þ: ð33Þ

From this equation, one can see that the value of maximum
quantum Fisher information is only affected by the temperature.
With the increase of temperature, the maximum value reduces. In
the other hand, quantum Fisher information in Eq. (32) is related to
Bt and h. Fig. 2 shows the quantum Fisher information as a function
of Bt and h. The values of Bt and h are both within [0, 2p] in the plot.
The temperature is set as T 5 1 here. From this figure, it can be found
that the maximum quantum Fisher information is robust for h since
it is always obtained at Bt 5 p for any value of h. Furthermore, this
optimal condition of Bt is independent of temperature. With respect
to Bt, there is a large regime near Bt 5 p in which the quantum Fisher
information’s value can surpass 2, indicating that the quantum
Fisher information can be still very robust and near its maximum
value even when Bt is hard to set exactly at p.

Multiparameter processes. For a multiparameter system, the
element of quantum Fisher information matrix in Ref. 30 can also
be written with H operator,

F ab~
XM

i~1

4picovi Ha,Hb

� �

{
X
i=1

8pipj

pizpj
Re yih jHajyjihyjjHb yij i

 �

,

ð34Þ

where U is dependent on a series of parameters a, b and so on, and

Hm~i LmU{� �
U , ð35Þ

with the index m 5 a, b, …. The covariance matrix on the ith
eigenstate of initial state is defined as

covi Ha,Hb

� �
: ~

1
2

yih j Ha,Hb

� �
yij i{ yih jHa yij i yih jHb yij i,

with {?, ?} the anti-commutation. For a single qubit system, Eq. (34)
reduces to

F qubit,ab~4 2Trr2{1
� �

cov1 2ð Þ Ha,Hb

� �
: ð36Þ

Similarly with the single-parameter scenario, the subscript in Eq. (36)

can be chosen as 1 or 2 since the covariance for two Hermi-
tian operators are the same on two orthonormal states in 2-
dimensional Hilbert space. From this equation, the element of quan-
tum Fisher information matrix for pure states can be immediately
obtained as

F pure,ab~4covin Ha,Hb

� �
, ð37Þ

namely, for pure states, the element of quantum Fisher information
matrix is actually the covariance between two H operators on the
initial state. When the total Hamiltonian can be written as

X
i
aiHi

and [Hi, Hj] 5 0 for any i, j, above equation can reduce to the
covariance between Hi and Hj

31. For the diagonal elements, they
are exactly the quantum Fisher information for the corresponding
parameters.

For multiparamter estimations, the Cramér-Rao bound cannot
always be achieved. In the scenario of pure states, the condition of
this bound to be tight is ImÆyoutjLaLbjyoutæ 5 0, ;a, b32,33. Here
jyoutæ is dependent on the parameter under estimation. In the unitary
parametrization, jyoutæ 5 Ujy0æ and this condition can be rewritten

into Im y0h jLa
ef f Lb

ef f y0j i~0, ;a, b. Here La bð Þ
ef f ~U{La bð ÞU is the

effective SLD operator for parameter a(b). Utilizing Eq. (6), this
condition can be expressed in the form of H operator,

y0h j Ha,Hb

� �
y0j i~0, Va,b: ð38Þ

In other word, y0h jHa,Hb y0j i needs to be a real number for any a
and b. WhenHa commutes withHb for any a and b, above condition
can always be satisfied for any initial state.

Generally, for the unitary parametrization process, the element of
quantum Fisher information matrix can be expressed by

F~Tr r La,Lb

� �� �
~Tr r0 La

ef f ,L
b
ef f

n o
 �
. From the definition equa-

tion of SLD, one can see that La
ef f satisfies the equation hhr 5 U{r0,

Leff}U{/2. The quantum Fisher information matrix has more than
one definitions. One alternative candidate is using the so-called Right
Logarithmic Derivative (RLD)24,34,35, which is defined as har 5 rRa,
with Ra the RLD. The element of RLD quantum Fisher information
matrix can be written as

J ab~Tr rRaR{
b


 �
~Tr r0Ra

ef f Rb{
ef f


 �
, ð39Þ

where the effective RLD reads Ra bð Þ
ef f ~U{Ra bð ÞU . For a unitary para-

metrization process, assuming the initial state has nonzero determin-

θ

Figure 2 | Quantum Fisher information as a function of Bt and h. The

initial state is a spin-half thermal state and the temperature is set as T 5 1

here.
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ant, Ra
ef f can be expressed by Ha and the initial state r0, i.e.,

Ra
ef f ~i r{1

0 Har0{Ha

� �
: ð40Þ

With this equation, the element of RLD quantum Fisher information
matrix can be expressed by

J ab~Tr Har2
0Hbr{1

0 {2HbHar0zHaHbr0

� �
: ð41Þ

When the parametrization process is displacement, this equation can
reduces to the corresponding form in Ref. 35. For pure states, the
element reads J pure,ab~Tr Larð Þ Lbr

� �� �
~F pure,ab

�
2. Recently,

Genoni et al.35 proposed a most informative Cramér-Rao bound
for the total variance of all parameters under estimation. From the
relation between J pure,ab and F pure,ab, one can see that TrF{1

pure is

always larger than TrF{1
pure, namely, the SLD Cramér-Rao bound is

always more informative than the RLD counterpart in this scenario.
We still consider the spin-half system with the Hamiltonian H 5

Bn0 ? s/2. Take both B and h as the parameters under estimations.
First, based on aforementioned calculation, theH operator for B and
h read

HB~{
t
2

n0
:s, ð42Þ

Hh~ sin
Bt
2

� 	








n1
:s: ð43Þ

Based on the property of Pauli matrices {n0 ? s, n1 ? s} 5 2n0 ? n1,
the anti-commutation in the covariance reads

HB,Hhf g~{t sin
Bt
2

� 	








n0
:n1: ð44Þ

For a pure initial state, the off-diagonal element of the quantum
Fisher information matrix is expressed by

F Bh~2t sin
Bt
2

� 	








 n0

:r inð Þ n1
:r inð Þ, ð45Þ

where rin is the Bloch vector of the initial pure state and the equality
n0 ? n1 5 0 has been used. When the initial pure state is vertical to n0

or n1, this off-diagonal element vanishes. Compared with the optimal
condition for maximum quantum Fisher information for B and h
individually, the Bloch vector n2 5 n0 3 n1 can optimize both the
diagonal elements of quantum Fisher information matrix and vanish
the off-diagonal elements. However, all above is only necessary con-
ditions for the achievement of Cramér-Rao bound. To find out if the
bound can be really achieved, the condition (38) needs to be checked.
In this case,

HB,Hh½ �~{it sin
Bt
2

� 	








n2
:s: ð46Þ

With this equation, condition (38) reduces to n2 ? rin 5 0, i.e., to
make the Cramér-Rao bound achievable, the Bloch vector of the
initial state needs to in the plane of n0 and n1. Unfortunately, n2 is
not in this plane. Thus, B and h cannot be optimally joint measured
simultaneously.

In the plane constructed by n0 and n1, any Bloch vector of pure
state can be written as rin 5 n0 cos w 1 n1 sin w, then we have
F BB~t2sin2w, F hh~4 sin2 Bt=2ð Þcos2w, and F Bh~2t sin Bt=2ð Þj j
coswsinw. From these expressions, one can see that the determinant
of quantum Fisher information matrix is zero, i.e., det F~0. This
fact indicates that, utilizing any pure state in this plane, the variances
of B and h cannot be estimated simultaneously through the Cramér-
Rao theory.

Discussion
We have discussed the quantum Fisher information with unitary
parametrization utilizing an alternative representation. The total
information of the parametrization process is involved in aH oper-
ator in this representation. This operator is totally determined by the
parameter and parametrization transformation U. As long as the
parameter and transformation are taken, H is a settled operator
and independent of the initial state. More interestingly, H can be
expressed in an expanded form. For the Hamiltonians owning
recursive commutations with their partial derivative on the para-
meter under estimation, this expanded form shows a huge advantage.
Utilizing this representation, we give a general analytical expression
of quantum Fisher information for an exponential form initial state.
Moreover, we have also studied the H representation in multipara-
meter processes. The condition of Cramér-Rao bound to be achiev-
able for pure states are also presented in the form of H operator. In
addition, we give the H representation of Right Logarithmic
Derivative and the corresponding quantum Fisher information
matrix.

As a demonstration, we apply this representation in a collective
spin system and show the expression ofH. Furthermore, we provide
an analytical expression of quantum Fisher information in a spin-
half system. If we consider this system as a multiparameter system,
the corresponding quantum Fisher information matrix can also be
straight-forwardly obtained by this representation. From these
expressions, one can find the optimal states to access the maximum
quantum Fisher information. For the parameter B, the optimal state
is a pure state vertical to n0, and for the parameter h, the optimal one
is also a pure state, but vertical to n1. By analyzing the off-diagonal
element of quantum Fisher information matrix, the states to optim-
ize the diagonal elements and make the off-diagonal elements vanish
are found. However, these states fail to satisfy the condition of
achievement. Thus, B and h cannot be optimally jointed measured.

Methods
Collective spin system in a magnetic field. For the Hamiltonian (12), its derivative
on parameter h is LhHh~n’0:J~Jn’0 ~{iH|

h Jy with the vector

n’0~dn0=dh~ {sinh,0,coshð ÞT. Based on Eq. (9), H can be written as

H~ exp itH|
h

� �
{1

� �
Jy : ð47Þ

It is worth to notice that H|
h ~BJ|

n0
, then H is

H~ exp iBtJ|
n0


 �
{1

h i
Jy : ð48Þ

Being aware of the commutation relations

Jn0 ,Jy
� �

~iJn’0 , ð49Þ

Jn0 ,Jn’0½ �~{iJy , ð50Þ

one can straightforwardly obtain the nth order term as below

J|n
n0

Jy~
Jy for even n;

iJn’0 : for odd n:

�
ð51Þ

With this equation, H can be expressed by

H~ cos Btð Þ{1½ �Jy{sin Btð ÞJn’0 , ð52Þ

equivalently, it can be written in a inner product form:H~r :J , where the elements of
r read rx 5 sin(Bt) sin h, ry 5 cos(Bt) 2 1 and rz 5 2 sin(Bt) cos h. After the
normalization process, H is rewritten into the form of Eq. (13).

For a spin-half system, the quantum Fisher information can be expressed by

F~4 sin2 Bt
2

� 	
r inj j2 1{ n1

: sh i1 2ð Þ


 �2
� �

, ð53Þ

where rin is the Bloch vector of r0 and can be obtained through the equation

r0~
1
2

z
1
2

X
i~x,y,z

rin,isi, ð54Þ

with the identity matrix. Æsæi 5 (Æsxæi, Æsyæi, Æszæi)T is the vector of expected values on
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the ith (i 5 1, 2) eigenstate of r0. It can also be treated as the Bloch vector of the
eigenstates. In previous sections, we denote re :5 Æsæi.
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