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A common task in brain image analysis includes diagnosis of a certain medical condition

wherein groups of healthy controls and diseased subjects are analyzed and compared.

On the other hand, for two groups of healthy participants with different proficiency in a

certain skill, a distinctive analysis of the brain function remains a challenging problem. In

this study, we develop new computational tools to explore the functional and anatomical

differences that could exist between the brain of healthy individuals identified on the basis

of different levels of task experience/proficiency. Toward this end, we look at a dataset

of amateur and professional chess players, where we utilize resting-state functional

magnetic resonance images to generate functional connectivity (FC) information. In

addition, we utilize T1-weighted magnetic resonance imaging to estimate morphometric

connectivity (MC) information. We combine functional and anatomical features into a new

connectivity matrix, which we term as the functional morphometric similarity connectome

(FMSC). Since, both the FC and MC information is susceptible to redundancy, the size

of this information is reduced using statistical feature selection. We employ off-the-shelf

machine learning classifier, support vector machine, for both single- and multi-modality

classifications. From our experiments, we establish that the saliency and ventral attention

network of the brain is functionally and anatomically different between two groups of

healthy subjects (chess players). We argue that, since chess involves many aspects

of higher order cognition such as systematic thinking and spatial reasoning and the

identified network is task-positive to cognition tasks requiring a response, our results are

valid and supporting the feasibility of the proposed computational pipeline. Moreover,

we quantitatively validate an existing neuroscience hypothesis that learning a certain skill

could cause a change in the brain (functional connectivity and anatomy) and this can be

tested via our novel FMSC algorithm.

Keywords: functional connectivity, morphometric similarity, MRI, machine learning, functional morphometric

similarity

1. INTRODUCTION

Functional connectivity networks (FCNs) are representative of relationships between spatially
separated brain regions. The study of FCN, as a technique for diagnosis of clinical conditions, has
gained an increase in popularity due to their high test-retest reliability and reproducibility (Zuo
and Xing, 2014). There are computational methods proposed to generate FCNs which can delineate
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similarities and differences between healthy controls and diseased
subjects (Dosenbach et al., 2010; Chen et al., 2013; Thompson
and Apostolova, 2014). While methods that use machine
learning approaches for analyzing FCNs have shown great
promise (Wee et al., 2012; Chen et al., 2016; He et al.,
2018), FCN-based classification methods could suffer from
high dimensionality issues where there are more features than
the available data. The use of feature selection algorithms
with sparse learning is a common approach employed to
handle such feature dimensionality problems. Sparse learning
techniques, for instance, were successfully applied for diagnosis
of Alzheimer’s disease (AD) (Casanova et al., 2011), attention
deficit hyperactivity disorder (ADHD) (Wang et al., 2015), and
epilepsy (Munsell et al., 2015). While there is evidence that FCN-
basedmethods are useful for studying various clinical conditions,
these have not yet been widely adapted to analyze two groups
of healthy subjects. Structural and functional brain studies have
shown that there are structural correlates of intelligence where
for intelligent people, the brain regions are known to be more
connected (Basten et al., 2015). We propose to extend the
applicability of sparse learning methods from diseased subjects
to healthy subjects consisting of professional chess players (grand
masters) and amateurs.

Skill acquisition, which could include long-term practicing
of a particular set of actions, can lead to changes in the brain
structure. For instance, in rats trained toward a reaching task
with a single fore-paw, an increase in strength of horizontal
connections was observed in the motor cortex (Rioult-Pedotti
et al., 1998). The effect of long-term skill acquisition on
human subjects was studied by evaluating changes in the
gray matter volume using voxel-based morphometry (VBM)
(Gaser and Schlaug, 2003). In another study, VBM was used
to study the morphological changes associated with complexity
of navigation induced learning in the brain for London taxi
and bus drivers (Maguire et al., 2006). An increase in the mid-
posterior hippocampus gray matter volume was observed in
taxi drivers, who tend to remember complex navigation details
better, compared to bus drivers. For another example, for a
group of professional badminton players, altered functional
connectivity patterns were found between the left superior
parietal and frontal regions when compared to controls (Di
et al., 2012). It was hypothesized that even short-term skill
acquisition, such as learning to juggle for 3 months, can lead
toward detectable changes in the human brain (Driemeyer et al.,
2008). A transient increase in gray matter was observed in the
occipito-temporal cortex region which comprises the motion
sensitive area within the brain. In a more recent study, the
effect of mindfulness meditation training in novices identified
structural and functional changes in precuneus and posterior
default mode network (Yang et al., 2019).

In summary, the research to date has shown clear evidences
for structural and functional differences in the brain for two
healthy groups of subjects considering a particular skill set.
Resting-state functional magnetic resonance images (rs-fMRI)
could ideally be suited for studying functional differences by
helping in understanding functionally connected regions when
the brain is at rest. This can be combined with magnetic

resonance imaging (MRI) to extend functional connections to
structural connections to identify local and global changes in the
brain. We intend to identify what makes a person proficient at
a certain skill or what part of the brain (anatomical/functional)
is altered by this skill through analyzing the brain images
and further contribute toward classifying two groups of
healthy subjects in an expert/amateur paradigm by learning
discerning features.

1.1. Summary of Our Contributions
We adapt sparse learning methods (feature reduction and
machine learning algorithms) for the brain analysis of different
groups of healthy subjects, where one group consists of
professional chess players (with many years of experience)
and a second group of amateur subjects. Since chess is a
demanding board game where cognitive ability is linked to skilled
performance; we hypothesize that there are significant differences,
both structurally and in functionally localized brain connections,
that could be identified between professional and amateur chess
players. To test this hypothesis, we use brain imaging data curated
from grand-master level chess players and controls (amateur
chess players) (Li et al., 2015). Our major contributions are
the following,

• We analyze morphometric measures on the basis of functional
dominance by using a functional parcellation network.

• We propose a novel functional morphometric similarity
connectome (FMSC) by combining the anatomical and
functional information and enabling sparse learning.

• We classify two groups of healthy controls (chess players)
based on their skill specialization (professional and amateur)
using the proposed FMSC and hence, identify the structural
and functional differences between these groups.

1.2. Related Work
The precuneus was found to be activated during the perception of
chess board patterns (Wan et al., 2011). To compare anatomical
regions in the brain of chess masters and amateur players,
a voxel-by-voxel volumetric comparison was performed using
a two-sample t-test (Duan et al., 2012a). A decrease in gray
matter volume in the left- and right-caudate regions was found
for chess masters compared to amateur controls. Additionally,
a resting-state analysis with respect to connections from the
caudate also found increased correlations to the posterior
cingulate cortex and bilateral angular gyrus. In another study,
chess experts demonstrated specific anatomical features in the
caudate nucleus, occipito-temporal junction, and the precuneus
(Hänggi et al., 2014). A graph theory analysis on rs-fMRI chess
data revealed evidence of increased small-world topology and
functional connectivity in chess experts compared to amateur
players (Duan et al., 2014). The functional connectivity matrices
were thresholded at different edge strengths to achieve the desired
network sparsity. It can be inferred that differences between chess
masters and amateur players could exist in the brain topology
and functional organization. However, the influence of global
topological changes on functional connectivity and vice-versa is
not know for such healthy subjects. One way of developing such
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TABLE 1 | Subject demographics of the chess masters and amateur

players dataset.

Chess masters Amateur players p-value

Age 28.67 ± 9.06 24.95 ± 6.14 0.1164

Education 13.71 ± 2.64 13.87 ± 2.64 0.8387

Gender (M/F) 16/8 8/15 -

an understanding would be to study the brain morphology using
various non-invasive imaging techniques.

A different approach by Sabuncu et al. (2016) utilized brain
morphology to explain phenotypic variations and identify a
global statistical association between brain morphology and
observable traits. More recently, the morphometric similarity
network (MSN) was proposed to map the network architecture
of anatomically connected regions in the brain (Seidlitz et al.,
2018), where a correlation between morphometric measures and
regions of the brain was computed. It was found that MSN
modules reiterated known cortical cytoarchitectonic divisions
establishing MSN as a valid measure. Structural connectivity
can be considered as the basis of functional connectivity and
the relationship between these two has been studied in mice
(Grandjean et al., 2017), for humans using simulations (Stam
et al., 2016) and real data (Uddin, 2013), and for specific tasks
such as cognition (Zimmermann et al., 2018). However, there
is a limited evidence of work analyzing the combined effects of
anatomical and functional differences. In most cases, anatomical
differences were identified and used to localize the search for
functional differences.

2. METHODS

2.1. Data Preparation
2.1.1. Anatomical and Functional Imaging Data
The subject demographics are as shown in Table 1. All
experiments were carried out by following and conforming to
the ethical guidelines and the study was approved by research
ethics committee of West China hospital of Sichuan university.
An informed consent was taken from all participants involved in
the study. The anatomical images were acquired using a Siemens
3T TRIO system with a repetition time (TR) of 1,900 ms, echo
time (TE) of 2.26 ms, flip angle of 12◦. A total of 176 sagittal
slices, each with a slice thickness of 1.0 mm and a voxel size of
1 × 1 × 1 mm, were used. The rs-fMRI images were obtained
at TR = 2,000 ms, TE = 30 ms, flip angle = 90◦. The rs-
fMRI data comprised of 205 volumes where 30 whole-head axial
slices (from each volume), each 5 mm thick (without gap) and
a voxel size of 3.75 × 3.75 × 5 mm, were used. The subjects
were instructed to relax with their eyes open and visual fixation
on a crosshair centered on the screen. More information on the
data can be found in the open-source international neuroimaging
data-sharing initiative repository (INDI, 2015).

2.1.2. Anatomical Data Preprocessing
The mostly used anatomical data preprocessing pipeline was
used to support repeatability and reproducibility of our work.

More specifically, and briefly, anatomical features were extracted
from high resolution T1-weighted MR images using FreeSurfer
(Fischl, 2012). The cortical surface parcellation was performed
by following five steps: (1) The MRI volume was registered with
the MNI-305 atlas using an affine registration. (2) Bias-field
correction and skull stripping were performed. (3) Cutting planes
approach was used to remove white- and gray-matter. (4) An
initial white surface was generated for each hemisphere which
was further refined to follow the intensity gradients between the
white- and gray-matter. From this surface, the pial surface was
generated by following the intensity gradients between the gray
matter and cerebral spinal fluid (CSF). (5) Furthermore, surface
labeling was done as in Desikan et al. (2006). The parcellation
of the cortex for each subject was based on the 17 network
functional parcellation (Thomas Yeo et al., 2011). The metrics
of interest, extracted from the cortical parcellations included
surface area (SA), gray matter volume (GMV), cortical thickness
(CT), curvature index (CI), and folding index (FI). The cortical
thickness was measured as the shortest distance from white
matter to pial surface. In particular, average cortical thickness
(CTavg) and standard error (CTsd) was calculated. The rectified
mean curvature (MC) was calculated as,

MC =
κ1 + κ2

2
,

where κ1, κ2 are the maximum and minimum curvatures of
the surface. The rectified Gaussian curvature (GC)—an intrinsic
measure of the curvature of a surface was measured as,

GC = κ1 × κ2.

The value of CI represented the maximum intrinsic curvature
across all points within the surface. The FI value gives a measure
of the local gyrification and was computed as,

FI = |κ1| × (|κ1| − |κ2|).

Hence, a total of eight anatomical features were extracted from
the T1-weighted MRI data. These metrics have been used in
various other studies and shown to be discriminative in general.

2.1.3. rs-fMRI Data Preprocessing
The data preprocessing for rs-fMRI has been intensively explored
and discussed by Arlot and Celisse (2010). In this work, the open-
source AFNI (Analysis of Functional NeuroImages) software was
used for extraction of functional connectivity networks (Cox,
1996). The first 5 volumes of the rs-fMRI were discarded to
account for the time taken by the tissue to reach steady-state
upon application of the magnetic field. Following this, despiking
of the signal was done after which slice timing correction was
performed to account for the time difference when each slice was
acquired. Motion correction was then performed by aligning all
volumes to a reference volume to account for the headmovement
during the course of the data recording. The functional image was
then registered with the corresponding anatomical T1-weighted
MR image and smoothing was performed to enable better group-
wise analysis. The white matter and ventricle maps from the
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FIGURE 1 | Generating the Morphometric Similarity Network (MSN) from anatomical images where morphometric measures are extracted from the cortical surface of

the T1-weighted MRI and Pearson’s correlation is used to build the MSN.

FreeSurfer output were used as tissue regressors to detect non-
BOLD (blood oxygen level dependent) signals in the data; hence,
the final data that we used are considered as “clean.” The motion
threshold was set to 0.3 mm, with volumes that exceeded this
threshold were discarded. Spatial smoothing with a 6mm kernel
was performed to further reduce the noise and add up coherent
signals locally. Finally, band-pass filtering was performed to
further isolate the noise with a frequency range of 0.01− 0.10Hz.

2.2. Morphometric Similarity Network
(MSN)
Morphometric similarity network is a recently proposed method
for generating structural connectomes using imaging data from
the brain and successfully applied in predicting chronological
brain development (Seidlitz et al., 2018). In Seidlitz et al. (2018),
the network was generated using diffusion metrics such as
fractional anisotropy, mean diffusivity, magnetization transfer
and anatomical features including SA, GMV, CT, CI, FI, MC,
and GC. For the MSN, the structural connectomes were built
using anatomical features. Since correlation requires a feature
vector with two or more dimensions, we built several MSNs
using combinations of 3 or more anatomical feature vectors.
These features have different range of values, e.g., GM and SA
values are > 100, whereas GI, FI, and others have values < 10.
Therefore each feature (A), from a particular region i, was z-score
normalized across all regions as

Az
i =

Ai − µA

σA
. (1)

The Pearson’s correlation between feature vectors of different
regions (17 networks) was computed to build each MSN. Since,
we used the Yeo-17 network parcellationmap (Thomas Yeo et al.,
2011), there were 34 regions of interest across both hemispheres,

hence the dimension of the generated MSNs was 34 × 34. The
overall network generation process is illustrated in Figure 1.

2.3. Functional Connectivity Network (FCN)
Functional connectivity is defined as the correlation of time-
series between different voxels or different group of voxels. A
FCN can be computed from task-based or rs-fMRI data. In rs-
fMRI, no external stimulus is provided while the BOLD signal is
recorded to observe the resting-state of the brain. While in task-
based evaluation, an external stimulus (finger-tapping, listening
to story etc.) is established which alternates with a duration
of no stimulus in the experimental design paradigm. For this
study, the resting-state paradigm was preferred to examine the
general functional differences between the two groups. The Yeo-
17 network parcellation (Thomas Yeo et al., 2011) map was
overlaid on the preprocessed rs-fMRI images and the average
time-series in each functional parcel was extracted. This step
amounts to averaging the time-series across all nodes in the
parcel. The Pearson’s correlation was then used to compute the
correlation between different parcels and generate the functional
connectivity network.

2.4. Proposed Functional Morphometric
Similarity Connectome (FMSC)
We hypothesize that there are both structural and functional
differences between the brains of two distinct healthy groups, and
that these differences are highly non-linear and hence difficult
to capture. Hence, we propose a novel approach to combine
the anatomical and functional modalities for indirectly building
and identifying this relationship (Figure 2). Toward this, we
first extracted morphometric measures: Figure 2—left, and then
extracted the FCN. Moreover, since graph metrics enable us
to better understand the network topology beyond simple
correlation values (Bullmore and Sporns, 2009), we computed the
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FIGURE 2 | Generating the Functional Morphometric Similarity Connectome (FMSC) from the anatomical and function images. Left: Morphometric measures are

extracted from the cortical surface of the T1-weighted MRI. Right: Functional connectivity is generated from the surface of the rs-fMRI and node degrees (ND) are

extracted via sparsification (thresholding the edge strength). The morphometric and functional measures are combined to generate the FMSC. NS, node strength; @,

thresholded at.

graph metrics—node strength (NS) and node degree (ND), from
the FCN. Node degree treats the network as a binary network
and represents the number of edges connected to the node which
could help in identifying highly connected nodes or hubs in
the brain connectome. While node strength, an analog of node
degree for weighted networks, represents the sum of the weights
of edges connected to the node and helps in identifying the
importance of the node.

In particular, we generated sparsified connectivity matrices by
thresholding the edge strength of the FCN between [0.4, 0.8], at
a step size of 0.1, to successively eliminate weak correlations in
the network. This sparsification approach lead to the generation
of several undirected connectivity matrices. We then used the
ND from these new matrices and the NS from the original
FCN as functional measures in place of the Pearson’s correlation
(Figure 2—right). Finally, we combined the morphometric and
functional measures into a single node feature vector which was
normalized using the z − score (Equation 1). The correlation
between different nodes was computed using this feature
vector to build the novel connectivity matrix, the functional
morphometric similarity connectome.

3. RESULTS

3.1. Statistical Analysis
To identify whether morphometric measures (derived from
functionally defined anatomical regions) are distinct between
chess masters and amateur players, we performed a two-sample
t-test for each brain region and metric (see Figure 1). The
significance value was set at p < 0.05, and a family-wise error
(FWE) correction based on the Holm-Sidak method (Šidák,
1967) was employed to control the number of Type-I errors,
while also reducing the increased risk (due to correction) of
Type-II errors. Two significant regions were identified along with
cortical thickness as the metric of interest. Table 2 shows the
regions and the FWE corrected p-values. It should be noted
that these regions (somatomotor A and peripheral visual) are
different from those previously identified in literature, which
shows the benefit of using functional parcellation. Since the
chosen parcellation comprises of spatially non-contiguous brain
regions, we performed the t-test with the anatomical parcellation
atlas—Destrieux atlas (Destrieux et al., 2010), which has 74
gyral and sulcal regions. Among these regions, six regions were
found statistically significantly different between groups and are
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TABLE 2 | Anatomically significant functionally defined regions and the

corresponding metric of difference.

ROI Metric Hemisphere p-value∗

Yeo-17 network parcellation

Somatomotor A CTsd L 0.0443

Peripheral visual CTavg R 0.0137

Destrieux atlas

Parietal inferior supramarginal G CTsd L 0.0494

Precentral G GMV R 0.0491

Rectus G CTsd R 0.0094

Rectus G GC R 0.0053

Rectus G CI R 0.0135

Central S CI R 0.0397

*FWE corrected; L, Left; R, Right; G, Gyrus; S, Sulcus; CTsd , standard error of cortical

thickness; CTavg, Average cortical thickness; GMV, Gray volume; GC, Gaussian curvature;

CI, Curvature Index; ROI, region of interest.

shown in Table 2. These six regions are known to be part of
the somatosensory (pre-central gyrus, central sulcus, and supra-
marginal gyrus) and central execution (gyrus rectus) networks.
This is in agreement with neuroscience studies that have shown
that highly complex games, such as chess, favors the development
of the frontal lobe (Ortiz-Pulido et al., 2019).

3.2. Classification
After identifying statistically significantly different regions, we
generated the connectivity matrix to identify further differences
between two healthy groups of individuals. To ensure a strong
classification model, the k−fold cross-validation approach Arlot
and Celisse, 2010 was used with the value of k = 10. Note that
cross-validation is an approach to do out-of-sample testing with
limited data wherein the data is split into training and testing
sets to enable model validation. In k− fold cross-validation, the
data is split into k different training and test sets and the average
performance across all metrics is the overall model evaluation.
We used a stratified 10-fold cross-validation technique, where the
data splitting ensures that there are a similar number of samples
from all classes in the test set.

All connectivity matrices/connectomes generated were
symmetrical i.e., they were identical across the diagonal. The
diagonal itself represented self-correlation and was always equal
to 1. Thus, only the upper-right triangle was extracted from
these connectivity matrices and the resulting feature vector was
used in the classification task. For an m × m matrix the feature
vector dimension was computed as m×(m−1)

2 . Since the networks
were 34 × 34, the extracted feature vector was of dimension
561. The feature dimension was greater than the size of the
training data and thus, feature selection was used to reduce the
feature vector size. Toward this, a simple student’s t-test was
performed and only significant features (at a confidence interval
of p < 0.05) were chosen. The selected features were then used
to train a support vector machine (SVM) (Cortes and Vapnik,
1995) with a linear kernel, regularization and scaling parameters
were set to C = 1 and γ = 1e − 4, respectively. Note that

TABLE 3 | Ten-fold cross-validation performance using functional connectivity

features.

Approach Accuracy (%) Precision (%) F1-score (%)

w/o t-test 64.83 62.67 64.83

w t-test 76.33 76.83 74.05

The bold values show that the performance improved in all matrices using feature

selection. w/o, without; w, with.

any other off-the-shelf classifier can be used for this purpose
(including deep learning classifiers), however, the classification
performance of SVM is at par. The performance was evaluated
using accuracy, precision, and recall. These evaluation metrics
are commonly used and widely known in the literature; however,
to make the manuscript self-contained, we briefly summarize
them as follows.

Accuracy is defined as the ratio of the total number of correctly
classified items to the total number of items and was computed as

Accuracy =
TP + TN

TP + FP + TN + FN
,

where TP—true positives, FP—false positives, TN—true
negatives, and FN—false negatives. Precision is defined as the
ratio of correctly predicted positive results to the total predicted
positive results and was computed as

Precision =
TP

TP + FP
.

F1-score is defined as the harmonic mean of precision and recall,
where recall is the proportion of correctly predicted positive
results, and was computed as

F1 = 2 ·
precision× recall

precision+ recall
.

3.2.1. FCN-Based Classification
The effect of feature selection on FCN-based classification was
evaluated by first performing a 10-fold cross-validation using all
the extracted features. As a result, SVM was trained using 561
features, resulting in the classification performance presented in
Table 3. Later, feature selection (via t-test) was performed prior
to training the SVM in each fold. This resulted in an average
accuracy of 76.33%, a significant improvement (of over 11%)
compared to the baseline. The common significant connections
across all 10-folds of the cross-validation were identified and are
shown in Figure 3A. Lateral and medial views show the intra-
hemispheric connections and inter-hemispheric connections are
presented in the dorsal view.

3.2.2. MSN-Based Classification
Having established the benefit of using feature selection toward
the classification task and our baseline classification accuracy,
we performed classification using connectivity features from the
MSN networks. Since, we consider the construction of MSNs
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FIGURE 3 | Top-10 connections identified in classification of chess masters vs. amateur players. (A) Functional connections. (B) Morphometric connections. Table 5

lists the names of the ROIs in these top connections.

using 3 or more measures, the total number of MSNs was
computed as

MSNs =

n=8
∑

k=3

(

n

k

)

,

where the total number of morphometric measures was 8. There
were a total of 219 MSNs and thus, 219 trained SVM models.
Among these models, the best 10-fold classification accuracy
was achieved using SA, CTsd and CI as the morphometric
features of interest. The MSN representing the connections for
this particular model is shown in Figure 3B. We found that the
saliency and ventral attention network in the left hemisphere
and the dorsal attention network in the right hemisphere had
significantly different connections across networks.

3.2.3. FMSC-Based Classification
We validated our hypothesis that MSN- and FCN-based
approaches contribute complementary information using a
simple majority voting strategy, called pseudo-FMSC, combining
the best performing MSN- and FCN-based classification models.
The common connections across the majority voting model
are shown in Figure 4A. The saliency and ventral attention

network, dorsal attention network, and central visual network
were common across the models. The resulting model had a
6 and 3% improvement in classification performance over the
best performing MSN and FCN models, respectively, reaching
an overall accuracy of 80%. This indicated the presence of
potentially complementary information in the MSN to that of
FCN. Thus, we combined the MSN and FCN metrics via feature
concatenation. The FCN was thresholded at edge strengths
of [0.4, 0.5, 0.6, 0.7, 0.8] and NDs were computed for each of
these sparse un-directed networks, whereas NS was computed
directly from the FCN. The total number of features was now
reduced to 14 (8 morphometric measures and 6 functional
measures). Similar to MSN-based classification, we tested all
possible combinations and this resulted in 364 (

(14
3

)

) different
models. The highest accuracy of 88%was achieved and Figure 4B
shows the common significant connections across the 10-fold
cross-validation in the best performing FMSC model.

4. DISCUSSION

In this work, we have proposed a novel approach (FMSC)
for combining metrics from anatomical and functional brain
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FIGURE 4 | Functional anatomical connections differentiating chess masters from amateur players. (A) Common functional and morphometric connections. (B)

Functional-morphometric connections. Table 5 lists the names of the ROIs in these top connections.

images, to identify distinct connectomes between two groups
of healthy subjects, specifically chess masters and amateur
players. Our trained machine learning-based model achieved a
classification accuracy of 88% showing drastic improvements
over the standard functional connectivity-based approach. The
performance measures for the top performing models are
presented in Table 4. It should be noted that the best model
(using sparsification-based FMSC) significantly improves the
performance (accuracy) by ≈ 14% when compared with MSN-
based approach, and ≈ 11% when compared with FCN-based
approach. These results add credence to the success of the
proposed FMSC-based classification.

Additionally, we have used functional parcellation that
combines functionally coupled regions into the same networks.
This allowed us to study whether broadly defined functional
networks show morphometric differences. We identified two
such coupled regions with statistically significant differences in
cortical thickness. The network analysis using the functional
parcellation enabled us to look at higher-order connectivity
across anatomical regions which are non-local, owing to the
functionally defined parcellation. We analyzed the use of
morphometric similarity networks toward the classification and
found an accuracy above that of a simple coin flip. This further
indicates that there are anatomical differences between non-
local regions and that the relationship may not be a simple
linear relationship.

TABLE 4 | Classification results of morphometric similarity networks (MSN),

functional connectivity networks (FCN) and functional morphometric similarity

(FMSC) on 10-fold cross-validation.

Approach Model Accuracy

(%)

Precision

(%)

F1-score

(%)

MSN SA+ CTsd + CI 73.83 77.5 70.92

MSN SA+ CTsd + FI+ CI 71.83 73.5 69.33

FCN FCN 76.33 76.83 74.05

Pseudo-FMSC Majority voting 80.17 84.67 79.33

FMSC CTavg+GC+FI+CI+

ND@0.4+ ND@0.8

87.17 91.17 86.57

FMSC CTsd+GC+FI+CI+

ND@0.6+ ND@0.8

88.00 91.58 87.52

SA, Surface area; CT_avg, Average cortical thickness; CT_sd, Cortical thickness standard

error; FI, Folding index; CI, Curvature Index; GC, Gaussian curvature; ND@, Node degree

at threshold level.

The bold values represent the highest values on each of the metrics.

The proposed FMSC-based classification shows that there
exists a complex functional-morphometric relationship. To
establish whether functional-morphometric measures provide a
unique look into the organization, we examined the overlap of
top connections between the best MSN, FCN, and FMSCmodels.
The metrics used in each of these networks were different;
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TABLE 5 | Top-10 significant connections based on morphometery, functionality,

and functional-morphometery.

Connectome ROI-1 ROI-2

Somatomotor A (L) Control A (L)

Control B (L) Saliency and ventral

attention A (R)

Somatomotor A (L) Control C (L)

Somatomotor A (L) Tempoparietal (L)

Morphometric similarity

network

Somatomotor A (L) Dorsal Attention B (R)

Somatomotor A (L) Control A (R)

Somatomotor A (L) Limbic B (R)

Somatomotor A (L) Control B (R)

Somatomotor A (L) Control C (R)

Somatomotor A (L) Default Mode C (R)

Peripheral visual (L) Saliency and ventral

attention A (L)

Dorsal attention B (L) Saliency and ventral

attention A (L)

Somatomotor B (L) Control C (L)

Somatomotor B (L) Default mode A (R)

Functional connectivity

network

Somatomotor B (L) Dorsal attention B (R)

Saliency and ventral

attention B (L)

Control C (R)

Saliency and ventral

attention A (L)

Default mode A (R)

Saliency and ventral

attention A (L)

Dorsal attention B (R)

Saliency and ventral

attention A (L)

Control C (R)

Tempoparietal (L) Control C (R)

Default mode A (L) Somatomotor B (L)

Control A (L) Somatomotor A (L)

Control A (L) Somatomotor A (R)

Functional morphometric

similarity connectome

Limbic B (L) Control C (R)

Default mode B (L) Somatomotor B (L)

Default mode B (L) Saliency and ventral

attention (L)

Somatomotor B (L) Dorsal attention B (R)

Somatomotor B (L) Dorsal attention B (A)

Saliency and ventral

attention A (L)

Dorsal attention B (R)

Default mode A (R) Default mode B (R)

ROI, Region of Interest; L, Left; R, Right.

therefore; we expected very few regions to be common. We
identified an atypical within- and between-hemisphere dorsal
attention network (DAN) connection. Since DAN plays a key
role in visuo-spatial attention and hence the differences borne
from the long-term training in a spatially oriented game, such
as chess (Atherton et al., 2003), suggests an increased visuo-
spatial intelligence. It should be noted that DAN is a task-positive
network that is cued during externally directed attention tasks
(Spreng et al., 2010). We also studied the top-10 connections

in the MSN-, FCN-, and FMSC-based classification and are
presented in Table 5. The saliency and ventral attention (SVA)
network was identified to be in the top-10 connections in both
the FCN and FMSC-based approaches, serving as a kind of
hub to connections that were significantly different between
chess masters and amateur players. The SVA network commonly
serves as a switch between the default mode network and the
central execution network (Goulden et al., 2014). The between-
hemisphere connection of the SVA and the control network was
identified to be functionally different. We also found that the
right hemisphere control network is common in both FCN-
based and FMSC-based networks as a kind of hub. The default
mode network (DMN), in particular default mode A, was
identified in both FCN- and FMS-based approaches. The DMN
was identified in a previous study showing increased functional
connectivity in chess masters (Duan et al., 2012b; Wang et al.,
2018). The precuneus, which is a core region in the DMN, was
also previously identified to be important in chess (Wan et al.,
2011). A minimal overlap between the significant connections
across different approaches validates the hypothesis that there
are indirect and non-linear relationships between anatomy and
function. This indirect relationship can be identified using the
proposed FMSC and potentially help in an early diagnosis of
several neurological disorders.

There are a few limitations to the proposed approach and
analysis. The relatively large voxel volume results in a low signal
to noise ratio and thus limits the ability to study small brain
regions. Existing studies show that local functional connectivity
density differences may exist between women and men (Tomasi
and Volkow, 2012). This may be true for differences in processing
efficiency in the motor mental rotation task (Christova et al.,
2008). In our study, corrections for gender were not performed
in the current analysis due to lack of enough statistical power
analysis. Although, in a subset of our experiments, we observed
that with a gender matched dataset (resulting in fewer subjects),
the performance of FCN- and MSN-based methods dropped
drastically. But our proposed FMSC-based method continues
performing reasonably using different feature combinations even
with limited data. We also noted that, by reducing the size of the
dataset, the statistical power of the analysis was reduced. Hence
gender could make a difference in the identified top significant
connections, but the way the data was collected, we could only
employ indirect ways to address this and 10-fold cross-validation
is good for that. We will study gender as a biological covariate
in our future work to establish fundamental differences between
the chess masters and amateur players by using a well-matched
larger cohort. In future work, we will use a further splitting
of the network labels to analyze morphometric features of
individual regions within the functional cluster. Moreover, with
the increased dimensionality of the feature vectors, deep learning
algorithms can be utilized to perform classification but the size
of the dataset may prove to be a limiting factor (RaviPrakash
et al., 2019). While MSN enabled us to combine structural
information, as a potential extension of this work, we would
combine structural information from diffusion tensor imaging
based measures such as fractional anisotropy, mean diffusivity,
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and structural node degree into the morphometric measures to
further strengthen the functional-morphometric relationship.
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