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Clear cell renal cell carcinoma (ccRCC) is a major histological subtype of renal cell carcinoma and can be clinically divided into four
stages according to the TNM criteria. Identifying clinical stage-related genes is beneficial for improving the early diagnosis and
prognosis of ccRCC. By using bioinformatics analysis, we aim to identify clinical stage-relevant genes that are significantly
associated with the development of ccRCC. First, we analyzed the gene expression microarray data sets: GSE53757 and
GSE73731. We divided these data into five groups by staging information—normal tissue and ccRCC stages I, II, III, and
IV—and eventually identified 500 differentially expressed genes (DEGs). To obtain precise stage-relevant genes, we subsequently
applied weighted gene coexpression network analysis (WGCNA) to the GSE73731 dataset and KIRC data from The Cancer
Genome Atlas (TCGA). Two modules from each dataset were identified to be related to the tumor TNM stage. Several genes
with high inner connection inside the modules were considered hub genes. The intersection results between hub genes of key
modules and 500 DEGs revealed UBE2C, BUB1B, RRM2, and TPX2 as highly associated with the stage of ccRCC. In addition,
the candidate genes were validated at both the RNA expression level and the protein level. Survival analysis also showed that 4
genes were significantly correlated with overall survival. In conclusion, our study affords a deeper understanding of the
molecular mechanisms associated with the development of ccRCC and provides potential biomarkers for early diagnosis and
individualized treatment for patients at different stages of ccRCC.

1. Introduction

Renal cancer is the deadliest urinary malignancy, with more
than 350,000 cases worldwide [1]. Each year, over 140,000
people die from renal cancer, and the disease still has an
increasing incidence [2]. Clear cell renal cell carcinoma

(ccRCC), as the most common histologic subtype of renal
cancer, can be clinically divided into four stages according
to tumor size and the extent of invasion and metastasis
[3, 4]. Currently, radiotherapy and chemotherapy are largely
ineffective in the treatment of ccRCC, so surgery is the main
treatment for most ccRCC, especially at the early stage [5, 6].
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Unfortunately, most of the patients do not present any spe-
cific signs, and only 30% can be diagnosed during the early
stage [7, 8]. For patients progressing to advanced stages, tar-
geted therapies have been proposed as the most potential
nonsurgical treatments because of their specificity and low
toxicity [9]. Many targeted drugs have been approved for
clinical use, while many others are undergoing clinical trials
[10]. Immune checkpoint inhibitors with or without combi-
nation with tyrosine kinase inhibitors are the current stan-
dard of care. However, the median survival time of the
treated patients still remains at a low level [11], which is far
from satisfactory. Therefore, to improve the rate of early
diagnosis and prognosis of ccRCC, it is necessary to compre-
hensively study the tumorigenesis and clinical stages of
ccRCC and establish a relationship with more novel and
specific biomarkers.

Originating from the proximal tubule, ccRCC showed
abundant clear cytoplasm under the microscope because of
deposition of lipid and glycogen, especially for larger tumors
[12]. Although smoking [13], hypertension [14], and obesity
[15] are considered risk factors, genetic variation also plays a
critical role during the tumorigenesis process. Some specific
gene mutations and corresponding signal pathways have
already been proven to be closely associated with ccRCC
[16]. Nearly 90% of ccRCC is characterized by the aberration
of VHL [17], while PBRM1 is considered the second major
tumor suppressor gene in ccRCC [18]. Previous studies have
revealed a correlation between the lower expression of VHL
and PBRM1 and a higher Fuhrman grade [19]. BAP1 is
another tumor suppressor in ccRCC [20, 21], the low expres-
sion of which is significantly associated with high grade but
not survival [22]. However, another study has indicated that
loss of BAP1 expression suggests poor prognosis in metasta-
tic ccRCC [23]. Therefore, dynamic changes in genes in dif-
ferent stages are of great importance in the occurrence and
development of ccRCC, as well as the treatment and progno-
sis of this disease. Notably, a great difference remains in prog-
nosis depending on whether the disease is diagnosed earlier
or later. The 5-year overall survival rate is 92% if diagnosed
in stage I but drops sharply to 23% in stage IV. Thus, identi-
fying clinical stage-related genes is beneficial for improving
the early diagnosis and prognosis of ccRCC.

Currently, bioinformatics analysis is becoming a useful
approach to identify relevant genes to certain diseases.
Weighted gene coexpression network analysis (WGCNA)
[24] has emerged as an effective method for analyzing gene
expression data and to discover the relationship between
gene clusters and tumor phenotypes. Several researchers have
applied this approach to screen the genes involved in the gen-
esis of ccRCC [25–29]. They take the understanding of the
molecular mechanisms of ccRCC a step further. However,
precise and efficacious molecular targets for the treatments
of ccRCC have not been found. Thus, identifying novel ther-
apeutic targets or biomarkers is still a priority for diagnostic
or prognostic applications.

In this study, we aim to more precisely identify clinical
stage-related differentially expressed genes (DEGs) that are
significantly associated with the occurrence and development
of ccRCC by applying integrated bioinformatics analysis. We

analyzed a total of 261 raw data files from GSE53757 and
GSE73731, then divided the data into five groups and com-
pared the gene expression of normal tissue with ccRCC stages
I, II, III, and IV. As a result, we identified 500 common DEGs
that were either upregulated or downregulated in each stage
of ccRCC. Furthermore, functional enrichment analyses were
performed and protein-protein interaction (PPI) networks
were constructed so as to explore the biological roles of those
DEGs. Moreover, to obtain DEGs highly correlated with the
stage of ccRCC, WGCNA was applied to detect the modules
and hub genes associated with the tumor stage in two inde-
pendent data sets: The Cancer Genome Atlas Kidney Renal
Clear Cell Carcinoma (TCGA-KIRC) data and GSE73731.
Finally, the intersection results between the hub genes
from key modules and 500 DEGs showed UBE2C, BUB1B,
RRM2, and TPX2 as key hub genes that were highly associ-
ated with the clinical stages of ccRCC. qPCR and the Human
Protein Atlas database were utilized to validate the roles of
key hub genes both at the RNA expression level and at the
protein level. Survival analysis showed that these 4 genes
were all significantly related to overall survival. In short,
UBE2C, BUB1B, RRM2, and TPX2 could probably be poten-
tial biomarkers for early diagnosis and individualized treat-
ment for ccRCC.

2. Materials and Methods

2.1. Screening and Preprocessing of Microarray Data. All
data in this manuscript were collected under the guide-
lines approved by the First Affiliated Hospital of Zhejiang
University School of Medicine’s institutional review board
and complied with the current laws in China. Neglecting lan-
guage, race, region, and time constraints, we systematically
researched the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/) with several defined
strategies: (1) tissue source was ccRCC and/or paracancerous
tissue, (2) the Affymetrix platform was GPL570, (3) data sets
had staging information, and (4) the tissue came from
patients who did not receive any antitumor treatments. The
gene expression profiles of GSE53757 and GSE73731 were
downloaded and analyzed by the affy package [30] in R soft-
ware (R version 3.6). Relative logarithmic expression (RLE)
and normalized unscaled standard errors (NUSE) [31] were
used to evaluate the quality of the data. We fitted a probe-
level model to the data and created two plots for the dataset.
The deviant arrays can be identified by their not being
centered at 0 in the RLE boxplot or 1 in the RUSE boxplot
or being more spread out than the other arrays. After
excluding the outliers, we performed a standard robust
multiarray average (RMA) [32] procedure to create an
expression matrix. During the process, the raw intensity
values were background-corrected, log2-transformed, and
then quantile-normalized.

2.2. Identification of DEGs. Raw data files contained in
GSE53757 and GSE73731 were divided into five groups
according to their tissue source and stage: ccRCC stages I,
II, III, and IV and normal tissues. The gene expression levels
in ccRCC stages I, II, III, and IV were compared with those in
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normal tissue using the limma package [33] in R software.
Those genes with the cut-off criteria of ∣ log 2FC∣ > 2
(FC: fold change) and an adjusted P value < 0.05 [34] were
considered DEGs, which were further divided into upregu-
lated and downregulated genes.

2.3. Functional Enrichment Analysis. To explore the biologi-
cal functional roles of DEGs associated with ccRCC, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were per-
formed by using the clusterProfiler package [35] (http://
bioconductor.org/packages/release/bioc/html/clusterProfiler
.html) in R software. Under the condition of P < 0:05 and
q < 0:02, significant biological process (BP), molecular func-
tion (MF), cellular component (CC) terms, and KEGG path-
ways were selected and visualized.

2.4. PPI Network Construction. The online database STRING
[36] (version 11; https://string-db.org/) performed PPI net-
works of DEGs, which covered a total of 9,643,763 proteins
from 2,031 organisms. DEGs were uploaded to STRING,
and the results were visualized in Cytoscape software [37]
(version 3.7.0; http://www.cytoscape.org/) with the mini-
mum required interaction score of 0.700. In Cytoscape,
dysregulated genes were plotted in different colors.

2.5. Data Collection and Preprocessing for WGCNA. Raw
RNA sequence data and corresponding clinical information
of KIRC patients were downloaded from TCGA. The data
were concatenated to a matrix with gene symbols as row
names and TCGA patient barcodes as column names. Then,
we removed the control samples and samples with incom-
plete clinical information. Genes with zero counts in more
than 80% of samples were also excluded. We normalized
the matrix by the voom function [38] from the limma pack-
age [39], as RNA-seq read counts usually follow a negative
binomial distribution. In addition to TCGA data, we also
performed WGCNA on the normalized GSE73731 data.
Finally, we chose the top 75% of the variant genes for
WGCNA. In detail, the median absolute deviation (MAD)
was used as a robust measure of variability.

2.6. Weighted Gene Coexpression Network Analysis.
Weighted gene coexpression network analysis was performed
using the WGCNA package in R [24]. The first step in
this process was to calculate a similarity matrix using
biweight midcorrelation [40], as it is more robust to outliers.
After that, a weighted adjacency matrix was defined by
raising the coexpression similarity to an appropriate soft-
thresholding power. We chose the best power (β-value)
based on the criterion of approximate scale-free topology
[41]. Then, to minimize the effects of noise and spurious
associations, we transformed the adjacency into a topological
overlap matrix (TOM) and calculated the corresponding
dissimilarity [42]. We now used hierarchical clustering to
produce a hierarchical clustering tree and dynamic tree cut
method to assign coexpressed genes to each module [43].
Modules were constructed with a minimum module size of
30 genes, and highly similar modules were combined using
a dissimilarity threshold of 0.25.

2.7. Identification of Stage-Related Modules. Along with the
module identification procedure, the module eigengenes
were generated by principal component analysis (PCA). We
used these module eigengenes and external clinical parame-
ters to perform a module-trait relationship (MTR) analysis.
The Pearson correlation coefficient and P value were calcu-
lated in this process. A heat map was drawn to present the
results so that we could easily identify which modules related
to the tumor stage. We also measured gene significance based
on the correlation of a gene expression profile with a sample
trait, and the module significance was the average absolute
value of the gene significance measure for all genes in a given
module. A barplot of the module significance for all modules
detected was drawn. The highest module had the strongest
correlation with the clinical trait.

2.8. Module Preservation Analysis. Sometimes, the modules
identified are not reproducible in another dataset with simi-
lar samples, which means the quality of the modules is poor.
Module quality measures based on density and separability
measures can be used to confirm that the reference modules
are well defined [44]. To verify whether the modules we
selected are preserved, we utilized the modulePreservation
function in theWGCNA package to calculate module preser-
vation statistics between GSE73731 and an independent data
set, GSE53757.

2.9. Identification of Hub Genes. After the construction of the
network and the identification of stage-related modules, we
explored individual genes within the coexpression module.
The hub genes were selected on the basis of the module mem-
bership and gene significance. Module membership is mea-
sured by the correlation between the profile of the gene and
the eigengene of the module, which describes how closely
related the gene is to the module. Criteria for selecting the
hub genes were as follows: modulemembership > 0:8 and
gene significance > 0:2. Finally, we obtained the intersection
of these hub genes and DEGs for further analysis.

2.10. Patient and Tissue Sample Collection. This study was
approved by the Sir Run Run Shaw Hospital and Zhejiang

Table 1: Real-time PCR primers.

Gene Real-time PCR primer sequences

UBE2C
F: 5′- AGTGGCTACCCTTACAATGCG -3′
R: 5′- TTACCCTGGGTGTCCACGTT -3′

BUB1B
F: 5′- AAATGACCCTCTGGATGTTTGG -3′
R: 5′- GCATAAACGCCCTAATTTAAGCC -3′

RRM2
F: 5′- GTGGAGCGATTTAGCCAAGAA -3′
R: 5′- CACAAGGCATCGTTTCAATGG -3′

TPX2
F: 5′- ATGGAACTGGAGGGCTTTTTC -3′

R: 5′- TGTTGTCAACTGGTTTCAAAGGT -3′

β-Actin
F: 5′- ACTCTTCCAGCCTTCCTTCC -3′
R: 5′- CGTCATACTCCTGCTTGCTG -3′
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University Ethics Committee (No. 20100823). All patients
involved in this study had informed consent. Fresh cancerous
tissue samples were obtained directly from the operation
specimens of 8 patients who had undergone surgical resec-
tions for the kidney at the Department of Urology, Sir Run
Run Shaw Hospital, Hangzhou, Zhejiang, China, between
September 2010 and March 2011. Written informed consent
for tissue collection was obtained from all patients prior to
their surgical procedures. The adjacent normal tissues were
collected from more than 5 cm away from the cancerous
tissue.

2.11. qPCR Validation of Key Hub Genes. The overlapping
genes in hub genes and DEGs were defined as key hub genes.

GSE53737 GSE73731

Normal ccRCC

Grouping

Stage I Stage II Stage III Stage IV

Identification of 500 DEGs
|log2FC| > 2 and adjusted P value < 0.05

Enrichment analyses Construction of PPI networks

 KEGG pathways GO terms

Biological
process

Molecular
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Module analysis
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Gene Expression Omnibus
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Data
 processing
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Clinical
data

Dark-grey module
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DEGs

29 hub genes 63 hub genes

Figure 1: The flow chart of our study.

Table 2: GSE datasets involved in our study.

Group Quantity GSE datasets

Normal tissues 72 GSE53757

ccRCC stage I 62 GSE53757+GSE73731

ccRCC stage II 29 GSE53757+GSE73731

ccRCC stage III 41 GSE53757+GSE73731

ccRCC stage IV 57 GSE53757+GSE73731

Total 261

Note: ccRCC: clear cell renal cell carcinoma; GEO: Gene Expression
Omnibus; GSE: GEO series.
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Figure 2: Continued.
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We validated their expression levels by qPCR. Following the
manufacturer’s instructions, the RNA of tissue samples was
extracted using a TRIzol reagent (Invitrogen; Thermo Fisher
Scientific, Inc., Waltham, MA, USA). RNA was quantified by
using a NanoDrop 2000c spectrophotometer (Thermo Fisher
Scientific, Inc., Waltham, MA, USA). cDNA was synthesized
utilizing an RNeasy Mini Kit (Takara, Kyoto, Japan). qPCR
analysis was executed with a SYBR Green Master Mix
(Takara) with a program of 95°C for 5min, 45 cycles of
95°C for 5 sec, and 60°C for 30 sec; 1 cycle of 95°C for 5 sec,
60°C for 1min, and 95°C for 15 sec; and, finally, 50°C for
30 sec. The 2-ΔΔCq method was used to analyze relative
expression. Expression of mRNAs was normalized to β-actin.
The primers were designed with the online tool (https://
www.genscript.com/tools/real-time-pcr-tagman-primer-
design-tool) and synthesized by Shanghai Generay Biotech
Co. Ltd. (Shanghai, China). Primers are listed in Table 1.

2.12. Validation and Survival Analysis of Key Hub Genes. To
validate both the RNA expression level and the protein level
of hub genes, the website server GEPIA (Gene Expression
Profiling Interactive Analysis) [45] and the Human Protein
Atlas database [46] were utilized. With the help of the GEPIA
website, the relative RNA expression level between ccRCC
tissue and normal renal tissue was visualized with box plots.

The Human Protein Atlas database was used to map the pro-
teins in the tissues. Finally, the survival analysis of ccRCC
patients was performed using TCGA data from the GEPIA
website as well.

3. Results

3.1. Basic Characteristics of Microarray Data. The work-
flow of our study is shown in Figure 1. On the GPL570
([HG-U133_Plus_2] Affymetrix Human Genome U133
Plus 2.0 Array) platform, we screened out two data sets
(GSE53757 and GSE73731) with pathological stage informa-
tion. Each data set had data from more than 50 patients. All
raw data files were assessed with the RLE and NUSE algo-
rithms. Finally, excluding the data files that did not satisfy
the requirements, a total of 261 raw data files were filtered
out. These data were divided into five groups: ccRCC stages
I, II, III, and IV and normal tissues. The normal tissue group
had 72 raw data files, and ccRCC stages I, II, III and IV had
62, 29, 41, and 57 raw data files, respectively (Table 2).

3.2. Identification of DEGs. The gene expression levels of the
ccRCC stage I, II, III, and IV tissues were compared with
those of normal renal tissues separately. After background
correction, normalization, and logarithmic conversion by
conducting RMA, we obtained 1410 DEGs between normal
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Figure 2: Identification and functional enrichment analyses of 500 DEGs. (a) Constructing a Venn diagram in four comparison groups with
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tissue and ccRCC stage I, 632 DEGs between normal tissue
and ccRCC stage II, 1915 DEGs between normal tissue and
ccRCC stage III, and 1388 DEGs between normal tissue
and ccRCC stage IV with the cut-off criteria of ∣ log 2FC∣

> 2 and an adjusted P value < 0.05. Then, as shown in
Figure 2(a), 500 common DEGs were extracted from the 4
comparison groups. Among these 500 DEGs, 407 genes were
upregulated and 93 genes were downregulated.
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3.3. Functional Enrichment Analyses of DEGs.With the clus-
terProfiler package in R software, we conducted GO and
KEGG pathway enrichment analyses to shed new light on
the functions of the identified DEGs. We uploaded the lists
of DEGs, and the results of the GO analysis showed that these
genes were enriched in different functional categories: BP,
MF, and CC. The top 20 significant terms of each functional
category are plotted in Figure 2(b). Most of the DEGs were
enriched in “leukocyte migration,” “receptor ligand activity,”
and “extracellular matrix” terms. Regarding the KEGG path-
ways, most of the DEGs were associated with the “PI3K-Akt
signaling pathway” and “cytokine-cytokine receptor interac-
tion,” which was consistent with the biological process terms
(Figure 2(c)).

3.4. Construction of PPI Networks. PPI networks of DEGs
were built in accordance with the online database STRING
and visualized in Cytoscape software with the minimum
required interaction score of 0.700. The PPI networks of
500 DEGs were composed of 250 nodes and 1214 edges after

excluded lowest clustering score nodes (Figure 2(d)). Pink
nodes indicated upregulated DEGs, while blue nodes indi-
cated downregulated genes.

3.5. Weighted Gene Coexpression Network Analysis Using
GSE73731. The WGCNA was performed to analyze the
GSE73731 microarray data and the TCGA RNA-seq data.
Both datasets were properly normalized and filtered to
reduce outliers.

After data preprocessing, 121 samples with complete
clinical information and 9420 varying genes were analyzed
in the GSE73731 dataset by WGCNA. Constructing a
weighted gene network entailed the choice of the soft-
thresholding power to which coexpression similarity was
raised to calculate adjacency. Using the pickSoftThreshold
function in the WGCNA package, we selected 3 as the best
β for the following analysis (Figure 3(a)). As we assigned all
of the genes to their corresponding modules, 23 modules
were detected in the GSE73731 dataset (Figure 3(b)). Accord-
ing to the module-trait heat map (Figure 3(d)), we discovered
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that the dark-orange and dark-gray modules were most
related to tumor stage as well as tumor grade. In addition,
Figure 3(e) showed that the gene significance with the
tumor stage of these two modules was also the highest
across modules. The sequence preservation test indicated
that the dark-gray module was well preserved in the
GSE53757 dataset; however, the dark-orange module was
preserved (Figure 3(c)). Considering that the dark-orange
module had a relatively small size and poor preservation,
we chose the dark-gray module as our target module that
contained 553 genes in this module.

3.6. Weighted Gene Coexpression Network Analysis Using
TCGA-KIRC Dataset and Filtration of Hub Genes. Since the
GSE73731 dataset had relatively few data with a clinical stage
phenotype, we used the TCGA-KIRC dataset to verify the
hub genes by constructing another coexpression network.
With the TCGA-KIRC dataset, the network was composed
of 12,000 gene expression profiles derived from 502 KIRC
tumor tissues. Following the above procedure, we clustered
genes into 16 different modules (Figure 4(a)) and determined
that the cyan module was most related to the tumor stage
phenotype (Figures 4(b) and 4(c)). Using the criteria men-
tioned earlier, we filtered out 29 hub genes (Figure 4(d)) in
the dark-gray module with high module membership and
gene significance. With the same criteria, 63 genes in the cyan
module were identified as hub genes (Figure 4(e)). When we
combined the hub genes from the GSE73731 and TCGA-
KIRC data, 21 genes were found in common. Finally, we took
the intersection of the common hub genes and DEGs from
the previous section. Four genes that were identified as DEGs
were also presented among the common hub genes (Table 3).

3.7. Validation of RNA and Protein Expression Level for Key
Hub Genes. Table 4 showed the histopathological character-
istics of ccRCC patients. Experimental validation of UBE2C,
BUB1B, RRM2, and TPX2 was successful in 8 paired clinical
ccRCC samples, demonstrating that all of them were upregu-
lated in ccRCC (Figure 5(a)). As for the protein expression
level’s validation, it was assessed to indicate that UBE2C
and TPX2 expressions were significantly higher in tumor tis-
sues than in normal tissues in accordance with the Human
Protein Atlas database (Figure 5(b) and Table 5). Besides, it
could be seen from the microscope’s photographs of IHC
staining that there was a clear boundary between the cells
of normal kidney tissues, while the cell morphology of kidney
cancer tissues exhibited diversities, and nuclear hetero-
morphs could be observed as well.

3.8. Validation and Survival Analysis of Key Hub Genes.
The RNA expression levels of UBE2C, BUB1B, RRM2,
and TPX2 were also validated in the TCGA dataset. With
the cut-off criteria of ∣ log 2FC∣ > 1 and P < 0:01, UBE2C,
BUB1B, RRM2, and TPX2 were upregulated in 523 ccRCC
samples as compared to 72 normal samples (Figure 6(a)).
Meanwhile, pathological stage plots showed that UBE2C,
BUB1B, RRM2, and TPX2 were significantly correlated
with the stage of ccRCC (Figure 6(b)). These genes were more
abundantly expressed in advanced kidney cancer as compared
to early ccRCC, which was consistent with the above analysis.
In Figure 6(c), we analyzed the overall survival (OS) of
UBE2C, BUB1B, RRM2, and TPX2 in ccRCC. The lower
expression levels of hub genes predicted better prognosis of
ccRCC than higher expression.

Table 4: Histopathological characteristics of the ccRCC patients.

Patient Sex Age (years) Pathology Location Tumor size (cm) Stage

1 Male 65 ccRCC, partially PRCC Left 12 ∗ 10:5 III

2 Male 80 ccRCC Left 14:8 ∗ 9:8 IV

3 Female 58 ccRCC, partially PRCC Left 7 ∗ 4 ∗ 2:5 I

4 Male 63 ccRCC Right 4:5 ∗ 4:5 IV

5 Female 81 ccRCC, partially PRCC Left 3 ∗ 2:2 I

6 Female 56 ccRCC Right 2:5 ∗ 3:1 IV

7 Male 57 ccRCC Right 5 ∗ 4:5 II

8 Male 34 ccRCC Right 3:5 ∗ 3:2 I

Note: ccRCC: clear cell renal cell carcinoma; PRCC: papillary renal cell carcinoma.

Table 3: Four key hub genes selected from among 500 DEGs and 21 common hub genes from GSE73731 and TCGA-KIRC data.

Gene symbol Description
Log FC in
stage I

Log FC in
stage II

Log FC in
stage III

Log FC in
stage IV

UBE2C Ubiquitin-conjugating enzyme E2C 2.92 2.60 3.68 3.76

BUB1B BUB1 mitotic checkpoint serine/threonine kinase B 3.07 2.24 3.26 3.19

RRM2 Ribonucleotide reductase regulatory subunit M2 3.08 2.9 3.74 4.10

TPX2 TPX2 microtubule nucleation factor 2.59 2.51 3.14 3.50
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4. Discussion

To explore the occurrence and development of diseases from
a novel perspective, bioinformatics analysis is becoming an
emerging and effective technique [47, 48]. Clear cell renal cell
carcinoma is a major histological subtype of renal cell carci-

noma, which is one of the deadliest forms of urinary malig-
nancy [1]. Sequential changes in gene expression in
different clinical stages play essential roles in ccRCC. In
recent decades, strides have been made in identifying
pathogenesis-related genes and therapeutic potential bio-
markers of ccRCC [26, 49, 50]. However, most of them only
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look into how genes were dysregulated between cancerous
and paracancerous tissues. Our study has a more detailed
grouping, as there are five comparison groups in total. The
gene expression levels in ccRCC stages I, II, III, and IV are
compared with those of normal renal tissues. More precisely,
we filter four genes highly related to clinical stages by
WGCNA and multidimensional validations.

In our study, we downloaded the gene expression profiles
of GSE53757 and GSE73731 and screened 500 DEGs
involved in the development of ccRCC. GO terms of BP
revealed that most of the DEGs were enriched in inflamma-
tion- and immunity-related categories. KEGG pathway anal-
ysis revealed that the DEGs were mainly involved in the
“PI3K-Akt signaling pathway,” “cytokine-cytokine receptor
interaction,” and “focal adhesion” pathways. The above
results further suggest that ccRCC is a disease associated with
cytokinesis and inflammation [51, 52], providing bioinfor-
matics evidence for deep research. Moreover, aiming to make
our results more accurate, WGCNA was performed in
GSE73731 to identify gene coexpression modules related to
clinical stages of ccRCC, and the modules were preserved in
GSE53757. The dark-gray module was confirmed, and hub
genes were derived from this module. By the same token,
TCGA-KIRC data were also downloaded to perform
WGCNA, and the corresponding results were obtained.

After that, we obtained 4 key hub genes of interest that
overlapped between 500 DEGs and 21 common hub genes
selected in the GSE73731 and TCGA-KIRC data by
WGCNA, including UBE2C, BUB1B, RRM2, and TPX2.
Although previous studies have reported the association of
these genes with ccRCC, most of them either used simple
methods or lacked experimental verification, reducing the
credibility of their results. For instance, overexpressed
RRM2 was experimentally confirmed to be associated with
a trend toward the advanced pathological stage, high Fuhr-
man grade, and poor prognosis [53]. In addition, a recent
study reported that miR-99a-3p could regulate RRM2 in
sunitinib-resistant ccRCC, showing a potential antitumor
effect [54]. Analyzing TCGA and tissue microarray data
showed that TPX2 was associated with advanced grade and

stage of ccRCC, which could be a potential therapeutic target
as well [55]. These results are consistent with ours. As for
UBE2C and BUB1B, Yuan et al. reported that UBE2C and
five other genes identified in WGCNA and PPI networks
were highly related to progression and poor prognosis of
ccRCC [56]. However, they did not validate the genes in
any experiment. Studies on BUB1B in ccRCC are rare.
Although a study reported that along with 31 other genes,
the four genes that we screened out were related to metastasis
of ccRCC [57], it still had no validation. In our study, we
screened UBE2C, BUB1B, RRM2, and TPX2 as key hub
genes of ccRCC by integrated bioinformatics analysis. Exper-
imental validation of RNA and protein levels showed that
they were higher in cancerous than in paracancerous tissues.
Overexpression of the four genes was also associated with an
advanced clinical stage and poor overall survival rate. Thus,
the neoteric key hub genes discovered in our study are likely
to become a group of potential therapeutic targets of ccRCC.

Compared with other studies of ccRCC, our study is
innovative in several aspects. Integrated bioinformatics anal-
yses were applied to shed light on the relationship between
DEGs and tumor clinical features in ccRCC. Moreover, we
combined two gene expression microarray datasets from
the GEO database and one RNA-seq dataset with corre-
sponding clinical information from TCGA to screen out
tumor stage-relevant DEGs of ccRCC. Moreover, the inter-
section of hub genes selected from key modules of WGCNA
and DEGs selected from GEO datasets helped us identify 4
highly believable and accurate genes, which further validated
the relevance between the genes and the progression and
prognosis in ccRCC by multiple methods. However, a limita-
tion of our approach is that further biological experiments on
such aspects need to be carried out to verify the function of
these potential biomarkers.

5. Conclusions

In conclusion, the present study identified key hub genes
associated with the clinical stage and overall survival of
ccRCC patients. Our study offers a deeper understanding of

Table 5: IHC staining characteristics of hub genes from the Human Protein Atlas database.

Gene Patient ID Gender Age (years) Staining Intensity Quantity Location

Normal tissues

UBE2C 3229 Male 59 Medium Moderate >75%
Cytoplasmic
Membranous

Nuclear

RRM2 1859 Male 61 Not detected Negative None None

TPX2 1933 Female 56 Low Weak 25-75%
Cytoplasmic
Membranous

Cancerous tissues

UBE2C 2540 Male 61 High Strong >75%
Cytoplasmic
Membranous

Nuclear

RRM2 3616 Female 63 Not detected Negative None None

TPX2 1831 Male 77 Medium Strong 25% Nuclear

Note: IHC: immunohistochemistry.
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the molecular mechanisms associated with the development
of ccRCC and provides potential biomarkers for early diag-
nosis and individualized treatment of patients at different
stages of ccRCC.
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Figure 6: Validation of hub genes in the TCGA dataset. (a) UBE2C, BUB1B, RRM2, and TPX2 expressions in 523 KIRC patients compared
with 72 normal samples. (b) Assessing hub genes’ expression at different stages. (c) Overall survival curves of UBE2C, BUB1B, RRM2,
and TPX2.
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