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Abstract: Background and Purpose: Machine learning models have been used to diagnose schizophre-
nia. The main purpose of this research is to introduce an effective schizophrenia hand-modeled
classification method. Method: A public electroencephalogram (EEG) signal data set was used in
this work, and an automated schizophrenia detection model is presented using a cyclic group of
prime order with a modulo 17 operator. Therefore, the presented feature extractor was named as the
cyclic group of prime order pattern, CGP17Pat. Using the proposed CGP17Pat, a new multilevel
feature extraction model is presented. To choose a highly distinctive feature, iterative neighborhood
component analysis (INCA) was used, and these features were classified using k-nearest neighbors
(kNN) with the 10-fold cross-validation and leave-one-subject-out (LOSO) validation techniques.
Finally, iterative hard majority voting was employed in the last phase to obtain channel-wise results,
and the general results were calculated. Results: The presented CGP17Pat-based EEG classification
model attained 99.91% accuracy employing 10-fold cross-validation and 84.33% accuracy using the
LOSO strategy. Conclusions: The findings and results depicted the high classification ability of the
presented cryptologic pattern for the data set used.

Keywords: cyclic group of prime order pattern; schizophrenia detection; EEG classification; NCA;
kNN; machine learning

1. Introduction

Schizophrenia is a serious mental illness where patients have difficulty distinguishing
between what is real and what is not [1,2]. Schizophrenia is a chronic brain disorder that
affects a person’s thoughts, feelings, and behavior [3]. People with schizophrenia often ex-
perience symptoms such as hallucinations, delusions, abnormal behavior, and disorganized
speech [4,5]. Although the symptoms come and go, schizophrenia significantly affects the
social lives, education, and professional performance of the affected individuals [6].
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Schizophrenia is a global disorder [7] with a prevalence of approximately 1% world-
wide, and it is reported that 20 million people are affected by schizophrenia [8]. In addition,
studies have shown that schizophrenia is more common in men than women [9,10]. The
disorder usually starts between 18 and 25 years in men and between 25 and 35 years in
women [11]. The causes of schizophrenia are still unknown, but researchers have observed
that genetics, brain chemistry, and environment may be associated with the development of
the disorder [12,13]. Moreover, psychological factors are also known to trigger this disorder.
Schizophrenia is treatable with medication and psychosocial support [14]. Without treat-
ment, people with schizophrenia can develop other mental health disorders and significant
health problems. It is thus essential to establish a correct diagnosis and early treatment of
the disease.

Schizophrenia (SZ) is diagnosed from the patient’s symptoms and a specialist’s opinion
in mental health. In addition, techniques such as magnetic resonance imaging, computed
tomography, and EEGs can also be used in the diagnostic phase [15,16]. In short, there is
no single test method to diagnose SZ. These days, machine learning techniques are actively
used to automatically interpret EEG signals [17]. Due to the fact of these machine learning
techniques, EEG data collected from patients are automatically classified, permitting early
diagnosis of various diseases. One of these diseases is SZ, and there are various studies on
automatic SZ classification in the literature as summarized in Table 1.

Table 1. Automatic SZ classification using ML techniques.

Author(s) Year Data Set Feature Method

R. Buettner et al. [17] 2020
EEG [18,19]; Spectral analysis-based feature extraction

and classification using random forest.14 schizophrenias, 14 HCs;
1 min segmentation.

V. Jahmunah et al. [20] 2019
EEG [18,19]; Nonlinear statistical moment-based feature

extraction, feature selection with t-tests,
and classification using SVM.

14 schizophrenias, 14 HCs;
25 s segmentation.

S.L. Oh et al. [21] 2019
EEG [18,19];

Convolutional neural network14 schizophrenias, 14 HCs;
25 s segmentation.

L.S. Mayo et al. [22] 2017
EEG; Feature extraction at time and frequency

domains, J5 feature selection, and
classification with multilayer perceptron.

16 schizophrenias, 31 HCs;
0.8 s segmentation.

L. Zhang [23] 2019
EEG [24];

Event-related potential feature extraction
and classification with random forest.

49 schizophrenias, 32 HCs;
3 s segmentation.

Magnetic resonance images (MRIs) [26];

Z. Chen et al. [25] 2020 34 schizophrenias, 34 HCs.

Image segmentation for detecting gray
matter, white matter, and cerebrospinal
fluid; two-sample t-test-based feature

selection; classification with SVM.

C.W. Espinola et al. [27] 2021

Voice; Acoustic feature extraction, particle swarm
optimization (PSO)-based feature selection,

and classification using SVM.

20 schizophrenias, 11 HCs;
96.9 min HC, 125.7 min schizophrenia

10 s segmentation.

A.N. Chandran et al.
[28] 2021

EEG [18,19]; Time-domain-based feature extraction and
classification deploying long short-term

memory (LSTM).
14 schizophrenias, 14 HCs;

4 s segmentation

MRIs
Combination of five data sets;

D. Lei et al. [29] 2019
295 schizophrenias, 452 HCs;

Gray matter, white matter, low-frequency
fluctuation, regional homogeneity,
structural covariance matrices, and

functional connectivity matrices and
SVM classifier.
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Table 1. Cont.

Author(s) Year Data Set Feature Method

EEG [18,19];
H. Akbari et al. [30] 2021 14 schizophrenias, 14 HCs;

Graphical feature extraction, forward
feature selection algorithm, and

classification with kNN.

Z. Aslan and M. Akin
[31] 2020

Two EEG data sets:
Spectrogram images from EEG signals and
classification using VGG16 deep network.

Data set 1: 45 schizophrenias, 39 HCs [32],
Data set 2: 14 schizophrenias, 14 HCs [18,19];

5 s segmentation.

Various data sources, such as EEG signals and MRI imaging, have been used to support
schizophrenia diagnosis via machine learning. As shown in Table 1, EEG signals are some
of the most commonly used medical data for schizophrenia diagnosis. Table 1 also shows
the various EEG signal-based schizophrenia detection models that were developed using
hand-crafted, feature-based deep learning models. The deep learning models attained high
classification performances but had high computational complexities. Moreover, most of the
EEG signal-based schizophrenia detection models did not use LOSO cross-validation [33].
The signals were segmented, which may cause overfitting with other validation techniques.
On the other hand, real classification performance can be accurately calculated using LOSO
cross-validation. Therefore, LOSO cross-validation is a critical validation technique, and in
this work, we used LOSO cross-validation in our proposed model.

In this paper, two validation techniques (i.e., 10-fold cross-validation and LOSO valida-
tion) were used, and high classification accuracies were obtained with our developed model.
Our proposed model can automatically classify EEG signals collected from schizophrenia
patients and healthy individuals. The new feature extractor (i.e., CGP17Pat) was also tested
on an open-access schizophrenia data set with much success.

Feature engineering is one of the most important machine learning and classification
issues. By deploying feature engineering methodologies, hand-crafted feature engineering
models have been developed. In this work, we employed a cryptologic structure to propose
a new nonlinear pattern. Cryptographic systems generally use finite groups that have
been generated using various algorithms. The most popular finite group creation model is
multiplication-based group creation. The prime numbers have been used to create cyclic
finite group and is named the cyclic group of prime (CGP) order [34,35]. Using the values
of the group and a prime number, unique vectors are generated, and these vectors can
be used to create permutation or substitution boxes. In this work, using these nonlinear
values by generating CGP, a new local binary pattern, such as a signal descriptor, was
generated. A local binary pattern and versions of it, generally, used a pattern to generate
features. Using CGP with modulo 17, eight different patterns were created, and all of these
patterns were applied to the signal to generate a feature vector. Thus, the proposed feature
extraction function was named CGP17Pat.

Schizophrenia is a serious mental disorder, and diagnosing schizophrenia is not easy.
Constant follow ups with suspected cases are required before a diagnosis can be made.
Moreover, early diagnosis and treatment are vital for a better prognosis. Hence, to simplify
the diagnosis process of schizophrenia, an automated EEG-based diagnosis model is pro-
posed. Our machine learning method uses CGP17Pat as the feature extractor. A successful
machine learning method needs an effective feature extractor, a feature selection function
to choose the most discriminative ones, and an appropriate classifier. Our proposed model
extracted 2048 features using eight patterns of the presented CGP17Pat. The MAP decom-
poser was used to create high-level features, while INCA [36] was employed to choose
the top features. kNN [37] was employed to generate channel-wise results using 10-fold
cross-validation and LOSO. Finally, iterative hard majority voting created the general
results. The objectives of this study were (i) to show the feature generation ability of the
proposed CGP17Pat, (ii) develop an automated schizophrenia detection model using EEG
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signals with a low time burden, and (iii) to analyze the schizophrenia detection ability
using each EEG channel.

A new generation hand-modeled EEG signal classification method is proposed in this
research, and the novelty of this research is the CGP17Pat. CGP has generally been used for
cryptographic engineering models, since it is a finite group creator. CGP and 17 (a prime
number) were used in this work to present a new feature extractor. The contributions of
this work are given as below.

(i) A new one-dimensional feature extraction function using a cryptographic model
is proposed. The main aim of this feature extractor was to suggest a nonlinear local
feature extractor, and this feature extractor is a local binary pattern (LBP) feature extractor.
Therefore, the proposed CGP17Pat generates textural features. The informative feature
generation ability of CGP17Pat is demonstrated using EEG signals;

(ii) The CGP17Pat is the main feature extraction function of this model. An effective
feature selector (i.e., INCA) was employed to decrease the number of features, and a
shallow/conventional classifier (i.e., kNN) was deployed to obtain the classification results.
Furthermore, two validations methods (i.e., 10-fold cross-validation and LOSO) were
used to validate the robustness of the CGP17Pat-based EEG signal classification method.
A schizophrenia data set with 19 channels was analyzed in this work.

2. Materials and Methods
2.1. Materials

This study used freely available data from a public repository created by Olejarczyk
and Jernajczyk [18,19]. The 10/20 EEG montage methodology was used to collect the EEG
signals. It consists of EEG recordings from 14 schizophrenic patients and 14 healthy subjects
from the Institute of Psychiatry and Neurology in Warsaw (excluding brain disordered
patients). To choose the control group, gender and age criteria were considered. The
patients included in this study consisted of those above 18 years of age with a diagnosis
of F20.0 in the ICD-10 category. These patients did not use any drugs at least seven days
before data recording. Pregnant patients, patients with organic brain pathology, severe
neurological diseases, the presence of a general medical condition, and persons under
18 years of age were excluded from the study. In addition, early-stage patients, such as
those exhibiting their first attack, were not included in the study. The recordings were for
an average of 15 min with eyes closed and in a resting state. The electrodes were placed
according to the 10/20 system. Data were collected from 19 channels (i.e., Fp1, Fp2, F7, F3,
Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2) at a sampling rate of 250 Hz.
Further information on the collected EEG data is given in the Table 2 below.

Table 2. Attributes of the data set used in this work.

Feature Value

Groups 14 Schizophrenic groups, 14 control groups

Gender 28 Patients (14 males, 14 females)

Average Age

27.9 ± 3.3 (7 schizophrenic males)
28.3 ± 4.1 (7 schizophrenic females)

26.8 ± 2.9 (7 healthy males)
28.7 ± 3.4 (7 healthy females)

Length of Each EEG Segment 25 s (250 × 25 = 6250)

2.2. Method

The main aim of the proposed model was to show the automatic detection ability
of a novel nonlinear feature extraction model using the CGP model. CGP has been used
to create finite cyclic groups. A basic EEG signal classification hand-modeled method
has been presented to detect schizophrenia automatically. Our method contains textural
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feature generation using the presented CGP17Pat, the most informative features chosen
using INCA, classification, and iterative hard majority voting phases. The schematic
summarization of our model is illustrated in Figure 1.
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Figure 1. Schematic diagram of the proposed CGP17Pat-based schizophrenia detection model.

In this model, EEG signals are decomposed using the multilevel MAP function. In this
function, 2-, 4-, and 8-sized overlapping blocks are used to generate decomposed signals
(i.e., D1, D2, and D3). In the feature extraction phase, the proposed CGP17Pat is employed
for each decomposed signal and raw EEG signal. Therefore, four vectors (i.e., F1, F2, F3,
and F4) are created. The length of each feature vector generated is 2048. These feature
vectors are merged in the feature merging step (concat), and a feature vector with a
length of 8192 (=2048 × 4) is created. INCA chooses the most informative features, and
kNN calculates the channel-wise results. Iterative hard majority voting is deployed to
generate/calculate the general classification performance using 19 channels.

2.2.1. Feature Creation

The first phase is feature vector creation. Before feature extraction, each EEG signal is
divided into segments of 10 s. Then, a mathematical function/method is used to create the
feature generator automatically. The used mathematical function is CGP. Here, 17 (Z17) is
selected as the prime order. By utilizing 17, eight cyclic groups are obtained. The general
function of the CGP is given in Equation (1):

ai (mod p), a ∈ {2, 3, . . . , p− 1}, i ∈ {1, 2, . . . , p− 1} (1)

By deploying this equation (Equation (1)), cyclic groups are generated. Herein, p
defines the prime number, a represents the used number to create a group, and i is the
exponent. By deploying 17 and Equation (1), eight cyclic groups are generated, and the
generated cyclic groups are tabulated in Table 3.
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Table 3. Generated cyclic group of 17 orders.

G1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1

G2 5 8 6 13 14 2 10 16 12 9 11 4 3 15 7 1

G3 6 2 12 4 7 8 14 16 11 15 5 13 10 9 3 1

G4 7 15 3 4 11 9 12 16 10 2 14 13 6 8 5 1

G5 10 15 14 4 6 9 5 16 7 2 3 13 11 8 12 1

G6 11 2 5 4 10 8 3 16 6 15 12 13 7 9 14 1

G7 12 8 11 13 3 2 7 16 5 9 6 4 14 15 10 1

G8 14 9 7 13 12 15 6 16 3 8 10 4 5 2 11 1

By deploying these values (Table 3), a multiple pattern center symmetric feature
extraction function is presented (CGP17Pat). The created eight patterns using Table 3 are
also demonstrated in Figure 2.

To better explain the presented CGP17Pat feature extractor, a schematic denotation is
shown in Figure 3.

MAP is used to create textural features at both low and high levels. The details of our
presented MAP and CGP17Pat-based model are as below.
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Step 1: Create decomposed signals using the MAP method. The mathematical defini-
tion of the MAP is denoted in Equation (2):

MAP(a, b) = max(|bl|), bl(j) = a(i + j − 1)
j ∈ {1, 2, . . ., b}, i ∈ {1, b, . . ., leng − b + 1}

(2)

Herein, MAP(., .) is the maximum absolute pooling function, a is the input signal,
b defines the length of the used non-overlapping block (bl), leng represents the length of the
used EEG signal, |.| function is the absolute value calculation function, and i, j defines indexes.

The raw EEG signal is divided into 2-, 4-, and 8-sized non-overlapping blocks,
and three decomposed signals are created. Decomposed signal creation is defined in
Equation (3).

Dt = MAP
(
ES, 2t), t ∈ {1, 2, 3} (3)

Herein, Dt defines the tth decomposed signal.
Step 2: Extract features from decomposed signals and the raw schizophrenia EEG

signal deploying the presented CGP17Pat.

F1 = CGP17Pat(Sgnl) (4)

Ft+1 = CGP17Pat
(

Dt), t ∈ {1, 2, 3} (5)

where CGP17Pat(.) is the introduced feature extraction function, and F defines the generated
features’ vectors with a length of 2048. Our proposed function (CGP17Pat(.)) was deployed
with raw EEG signals (Sgnl) and decomposed signals to extract features. Our proposed
textural feature extraction function details are depicted in sub-steps (Step 2.1–2.4).

Step 2.1: Create overlapping blocks with a length of 16.

bi(j + 1) = Sgnl(i + j), i ∈ {1, 2, . . . , leng− 15}, j ∈ {0, 1, . . . , 15} (6)

Herein, bi is the ith overlapping block.
Step 2.2: Generate binary features using the signum function.

bith(k) = sign
(

bi
(

Gh(k)
)

, bi
(

Gh(17− k)
))

, h ∈ {1, 2, . . . , 8}, k ∈ {1, 2, . . . , 8} (7)

sign(t, l) =
{

0, t− l < 0
1, t− l ≥ 0

(8)

Herein, bith is the hth bit group with a length of eight, and we generated eight-bit
groups deploying the signum (sign(., .)) function; Gh defines the hth cyclic group (see
Table 2).

Step 2.3: Generate eight map signals deploying the created bits (binary features).

maph(i) =
8

∑
k=1

bith(k)× 2h−1 (9)

Herein, maph is the hth map signal.
Step 2.4: Extract a histogram of each map signal and merge these histograms. The length

of each histogram is 256. Therefore, the proposed CGP17 creates 256 × 8 = 2048 features
from each EEG segment.

Step 3: Merge/concatenate the generated textural vectors (i.e., F1, F2, F3, and F4) to
create a merged feature vector with a length of 8192.

f t(h + 2048× (t− 1)) = Ft(h), h ∈ {1, 2, . . . , 2048}, t ∈ {1, 2, 3, 4} (10)

where f t merges the feature vector that has a length of 8192.
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2.2.2. Feature Selection

The INCA (an improved/developed version of the NCA selector) feature selector is
applied to the most distinctive features from the generated 8192 features in the feature
selection phase. The NCA is a weight-based feature selector and is a kNN-like function.
To increase the automatic feature selection ability of the NCA, INCA was proposed by
Tuncer et al. [38,39]. INCA uses two parameters, and these parameters are named iteration
range and loss value calculator. The iteration range is used to decrease the computational
complexity of the INCA. In this study, the iteration/loop was initialized at 100 and finished
at 1000.

Step 4: Apply the NCA to the generated features and obtain the qualified indexes.
Step 5: Choose the most valuable/meaningful from 100 to 1000 features using the

generated qualified indexes. By using this iterative feature selection, 901 feature vectors
are chosen.

Step 6: Find the feature vector with the minimum loss value.
Step 7: Select the most appropriate feature vector according to Step 6.

2.2.3. Classification

In the classification phase, a conventional/shallow classifier is utilized, and this
classifier is named Fine kNN. The hyperparameters of the classifier are tabulated in Table 4.

Table 4. Fine-tuned hyperparameters of the kNN classifier.

Hyperparameter Value

k 1

Distance Euclidean

Weight None

Standardize Data True

Step 8: Calculate the results of the selected most appropriate feature vector deploying two
validations. The validations used were 10-fold cross-validation and LOSO cross-validation.

2.2.4. Iterative Hard Majority Voting

Iterative hard majority voting [40] is the last phase of the presented CGP17Pat-based
schizophrenia detection model. The used data set had 19 channels. The calculated predic-
tion labels from each channel were used to calculate general results. They were qualified
according to their classification accuracy. The qualified predicted labels were voted using
the mode function. In this work, iteration was initialized from 3 (three channels) to 19.
Finally, the best classification accuracy was chosen using a greedy search.

Step 9: Apply iterative hard majority voting to the generated 19 predicted labels from
19 channels using kNN.

3. Results

The performance of the presented CGP17Pat-based schizophrenia detection model is
evaluated in this section.

3.1. Experimental Setup

The proposed parametric CGP17Pat-based EEG classification model used in this study
contains four phases. To implement the CGP17Pat-based EEG classification model, a
MATLAB (2021b) environment was used. The parameters used in this EEG classification
model are listed in Table 5.
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Table 5. Parameters of our CGP17Pat-based EEG classification model.

Phase Parameters

Feature Extraction
MAP: 2-, 4-, and 8-sized overlapping blocks were used

CGP17Pat: 16-sized overlapping blocks were used,
and eight patterns were deployed

INCA Range: [100–1000]
Error function: kNN

Classification Fine kNN with 10-fold cross-validation and LOSO

Iterative Hard Majority Voting The iteration range selected was [3–19]

3.2. Performance Metrics

By deploying the parameters above (Table 5), the proposed CGP17Pat-based schizophre-
nia detection model was implemented using a MATLAB (2021b) environment. The model’s
accuracy (acc), sensitivity (sen), specificity (spe), and geometric mean (gm) were calculated.
Mathematical notations of the performance metrics are given in Equations (11)–(14) [41,42]:

acc =
tp + tn

tp + f n + tn + f p
(11)

sen =
tp

tp + f n
(12)

spe =
tn

tn + f p
(13)

geo =
√

spe× sen (14)

Herein, tp, f n, tn, and f p are the number of true positives, false negatives, true
negatives, and false positives.

3.3. Performance Evaluation

The results were calculated using 10-fold cross-validation and LOSO. Moreover, this
data set contained 19 channels, and the channel-wise (channel by channel) results are listed
in Table 6.

The best results are noted in bold font type. According to the results in Table 6, the best
accurate channel was Pz based on the 10-fold cross-validation, and our proposed model
reached a 99.82% classification accuracy and geometric mean. Furthermore, our model
yielded an 82.40% classification accuracy using LOSO validation on the F7 channel.

The EEG data set had 19 channels, and the channel-wise results were also calculated
using the presented CGP17Pat-based EEG signal classification model. To calculate the
general (channel-wise) results, iterative hard majority voting was applied to the prediction
vectors. The calculated voted results are tabulated in Table 7.

Table 7 shows that iterative hard majority voting algorithm increased classification
accuracy from 99.82% to 99.91% for the 10-fold cross-validation and from 82.40% to 84.33%
for the LOSO validation.

CGP is the most widely used mathematical model to create cyclic groups for cryp-
tographic applications. Here, CGP was utilized to propose a new generation nonlinear
pattern. By using 17 as modulo, eight cyclic groups were created. Each group’s creation was
considered to create a center symmetric local feature extractor. The presented CGP17Pat
created 2048 features. The most valuable feature vector was chosen using the INCA selector.
The range of the length of the selected optimal feature vectors was [133–973]. INCA chose
133 features for the Fp2 channel, and 973 features for the P3 channel. The number of the
selected features from each channel chosen by INCA are depicted in Figure 4.
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Table 6. The 10-fold cross-validation and LOSO cross-validation results (%) of the CGP17Pat-based model.

Channel
10-Fold Cross-Validation LOSO Cross-Validation

Accuracy Sensitivity Specificity Geometric Mean Accuracy Sensitivity Specificity Geometric Mean

Fp1 99.47 99.36 99.61 99.49 75.48 69.65 82.56 75.83
Fp2 98.95 99.04 98.84 98.94 82.22 80.03 84.88 82.42
F7 99.47 99.20 99.81 99.50 82.40 80.83 84.30 82.55
F3 99.30 99.20 99.42 99.31 73.99 69.49 79.46 74.31
Fz 98.77 98.56 99.03 98.80 71.72 70.13 73.64 71.86
F4 99.30 99.52 99.03 99.28 71.80 66.77 77.91 72.13
F8 99.12 99.36 98.84 99.10 77.58 77.96 77.13 77.54
T3 99.39 99.20 99.61 99.41 79.68 80.51 78.68 79.59
C3 99.30 99.04 99.61 99.33 71.28 77.48 63.76 70.28
Cz 98.77 98.72 98.84 98.78 71.10 68.05 74.81 71.35
C4 99.65 99.52 99.81 99.66 74.96 69.17 81.98 75.30
T4 99.65 99.52 99.81 99.66 81.61 82.27 80.81 81.54
T5 99.56 99.36 99.81 99.58 81.61 80.67 82.75 81.70
P3 99.65 99.52 99.81 99.66 72.50 73.80 70.93 72.35
Pz 99.82 99.84 99.81 99.82 76.09 80.35 70.93 75.49
P6 99.47 99.52 99.42 99.47 79.60 77.80 81.78 79.76
T6 99.56 99.68 99.42 99.55 74.69 71.73 78.29 74.94
O1 99.65 99.36 100 99.68 79.95 77.48 82.95 80.16
O2 99.65 99.52 99.81 99.66 79.60 78.12 81.40 79.74

Table 7. The calculated voted results (%) according to the 10-fold cross-validation and
LOSO cross-validation.

Validation Number of
Channels Accuracy Sensitivity Specificity Geometric

Mean

10-fold 3 99.91 99.84 100 99.92
LOSO 17 84.33 77 93.22 84.72
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Figure 4. The lengths of the optimal feature vectors chosen by INCA.

These feature vectors were then classified using kNN. By using the kNN classifier, the
results of all channels were calculated. Iterative hard majority voting was used to calculate
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the general classification results, and 99.91% and 84.33% classification accuracies were
obtained using 10-fold cross-validation and LOSO cross-validation, respectively.

The second evaluation parameter was time/computational complexity. Big O notation
was used to calculate the time complexity of our proposed CGP17Pat-based model, and the
phase-by-phase results are given below.

Feature extraction: In this phase, a decomposition model and CGP17Pat feature genera-
tion function were used. The time burden of the CGP17Pat was equal to O(8n) ∼= O(n).
Furthermore, this feature extractor (CGP17Pat) generates features from decomposed sig-
nals. Therefore, O(ndlognd) is calculated as the time complexity of the CGP17Pat-based
multilevel feature extraction method. Here, n represents the length of the signal, and
d defines the number of instances.

Feature selection: In the feature chosen phase, the INCA function was used, and it uses
two parameters: loop range and loss function. Moreover, NCA was applied to calculate
the indexes qualified of the features. Considering these parameters, the complexity of the
INCA was calculated as O(td + lnd). Herein, t is the complexity coefficient of the NCA,
and l defines the number of feature vectors.

Classification: kNN was employed to obtain the classification results. The time com-
plexity of the kNN is O(nd).

The computational/time complexity of this model is equal to O(ndlognd + td + lnd
+nd) ∼= O(ndlognd + td + lnd). This result demonstrates that our proposed CGP17Pat-
based schizophrenia classification model has linear complexity. Therefore, this model is a
lightweight classification model.

4. Discussion

In this work, a hand-crafted feature extraction function (CGP17Pat)-based EEG signal
classification model was presented to detect schizophrenia automatically. The proposed
hand-modeled learning method uses kNN as both the INCA classifier and loss value
generator. This classifier was selected according to the experiments. According to the
results of the shallow classifiers (testing results), the best classifier was Fine kNN. The
test results of the tested classifier on the Fp2 by employing a 10-fold cross-validation are
depicted in Figure 5.
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Figure 5. Classification accuracies of the decision tree (DT), quadratic discriminant (QD), logistic
regression (LR), naive Bayes (NB), support vector machine (SVM), Fine kNN (kNN), bagged tree
(BT), ensemble subspace kNN (ESkNN), and artificial neural network (ANN) for the Fp2 channel
with 10-fold cross-validation.
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From Figure 4, the best classifier was weighted kNN for this data set. Therefore, kNN
was used as the classifier in this research. Moreover, two validation techniques were used,
and they were 10-fold cross-validation and LOSO cross-validation. The classification results
according to the validation techniques are shown in Figure 6.
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Figure 6. The obtained comparative results according to the validation technique.

From Figure 6, the best accurate validation technique was the 10-fold cross-validation.
This model attained the best results on the Pz channel for 10-fold cross-validation and the
F7 channel for LOSO validation. Iterative hard majority voting was applied to these results,
and the general results calculated are denoted in Figure 7 using confusion matrices.
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To denote the success of the presented model, we compared our results with other
machine learning models for the automatic detection of schizophrenia reported from
2019 to 2021 as tabulated in Table 8.
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Table 8. Automatic schizophrenia classification based on EEG signals (2019–2021).

Author(s) Year Method Segmentation Validation Result(s)

R. Buettner
et al. [17] 2020 Spectral analysis, random forest 1 min 10-Fold

cross-validation

Acc. = 96.77
Bac. = 96.77
Kap. = 93.55

R. Buettner
et al. [43] 2019 Independent component analysis,

random forest
- 10-Fold

cross-validation
Acc. = 71.43
Bac. = 80.0

P.T. Krishnan
et al. [44] 2020

Multivariate empirical model decomposition,
entropy computation, recursive feature

elimination, and SVM
2 s 10-Fold

cross-validation

Acc. = 93.0
Auc. = 98.31
Sen. = 94.0
Spe. = 92.0
Pre. = 92.71
FScr. = 93.04

A.N.
Chandran
et al. [28]

2021
Time-domain feature extraction, long

short-term memory (LSTM) 4 s
Holdout

Acc. = 99.0
Pre. = 99.2

88:12
Rec. = 98.9
FScr. = 99.0

K. Singh et al.
[45] 2021

Fast Fourier transform, spectral feature
extraction, CNN, and LSTM 5 s

Holdout
Acc. = 98.96
Sen. = 99.05

90:10
Spe. = 98.88
FScr. = 98.87

S.L. Oh et al.
[21] 2019

Custom convolutional neural network
(CNN) design, subject and non-subject

based testing
25 s 10-Fold

cross-validation

Non-Sub.
Acc. = 98.07
Sen. = 97.32
Spe. = 98.17

Subject
Acc. = 81.26
Sen. = 75.42
Spe. = 87.59

M. Baygin
[46] 2021

Tunable Q-factor wavelet transform (TQWT),
statistical moment, ReliefF, and kNN 25 s 10-Fold

cross-validation

Acc. = 99.12
Pre. = 99.04
Rec. = 99.36
Geo. = 99.10
FScr. = 99.20

K. Kim et al.
[47] 2021

Microstate features; statistical, frequency,
and time domain features; t-test; recursive

feature elimination; SVM
5 s 10-Fold

cross-validation

Acc. = 75.64
Auc. = 80.19
Sen. = 71.93
Spe. = 75.50

Acc. = 90.26
Sen. = 88.64M.

Krishnaveni
et al. [48]

2019

Non-local mean algorithm, empirical mode
decomposition, discrete Fourier transform,
mel-warp triangular filter, and optimized

backpropagation neural network

- 10-Fold
cross-validation Spe. = 89.17

V. Jahmunah
et al. [20] 2019 Nonlinear feature extraction, t-test, and SVM 25 s 10-Fold

cross-validation

Acc. = 92.91
Sen. = 93.45
Spe. = 92.24

H. Akbari
et al. [30] 2021

Graphical feature extraction, forward
selection algorithm, and kNN

- 10-Fold
cross-validation

Acc. = 94.80
Sen. = 94.30
Spe. = 95.20

Z. Aslan and
M. Akin [31] 2020 Spectrogram images from EEG signals,

VGG16-based CNN
5 s -

Acc. = 97.0
Rec. = 97.0
FScr. = 97.0

A. Shoeibi
et al. [49] 2021 CNN and LSTM 25 s 5-Fold

cross-validation

Acc. = 99.25
Pre. = 98.33
Rec. = 98.86
Auc. = 99.73
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Table 8. Cont.

Author(s) Year Method Segmentation Validation Result(s)

M. Sharma
and U.R.

Acharya [50]
2021 L1 Norm, ES-KNN 25 s

10-Fold
cross-validation

and LOSO

10-fold CV
Acc. = 99.21
LOSO CV
Acc. = 97.2

Our Method
CGP17Pat, MAP, INCA, kNN, and iterative

hard majority voting 25 s
10-Fold

cross-validation
and LOSO

10-fold CV
Acc. = 99.91
LOSO CV

Acc. = 84.33

Acc. = accuracy; Sen. = sensitivity; Spe. = specificity; Bac. = balanced accuracy; Kap. = kappa; FScr. = F-score;
Pre. = precision; Rec. = recall; Geo. = geometric mean; SVM = support vector machine; kNN = k-nearest neighbor;
CV = cross-validation.

As observed from Table 8, Shoeibi et al. [49] attained 99.25% accuracy using five-
fold cross-validation when CNN and LSTM were used. Oh et al. [21] presented a CNN-
based model, where they calculated both subject-wise and non-subject-wise results. An
accuracy of 98.07% was obtained using 10-fold cross-validation and 81.26% with LOSO
cross-validation. Shoeibi et al. [49] and Oh et al. [21] used deep learning to attain high
classification accuracies. Our CGP17Pat-based model, on the other hand, achieved the
highest classification accuracy of 99.91% for 10-fold cross-validation and 84.33% with LOSO
validation. Furthermore, our presented model is a lightweight EEG classification method,
where the time complexity of the CGP17Pat is O(n) and the time burden of the presented
multilevel CGP17Pat-based feature extraction method is O(nlong). Since a hand-modeled
classification method was used here, parameter tuning was not required. Baygin [46]
presented a statistical model to automatically detect SZ and attained over 99% classification
accuracy deploying 10-fold cross-validation. However, there were no results on LOSO
cross-validation in the paper. In summary, the presented CGP17Pat-based EEG signal
classification model attained the best classification accuracy among the available machine
learning methods with 10-fold cross-validation.

The benefits and limitations of the work are discussed below.
Benefits:

• A cryptographic model (CGP) was used, where CGP was used for its feature
extraction ability;

• A simple machine learning model was presented using the presented CGP17Pat;
• A hand-modeled EEG signal classification model was proposed with low time complex-

ity. Only CGP17Pat was used to extract the salient features, and the time complexity
of this function is O(nlong) according to Big O notation;

• LOSO and 10-fold cross-validations were used to depict the robustness of this model;
• To denote the feature generation capability of the CGP17Pat, a shallow classifier was

used, and high accuracy values were obtained.

Limitations:

• Using LOSO validation, the presented model (i.e., CGP17Pat-based classification
model) attained unsatisfactory results for several channels (especially Fz, F4, C3,
and Cz);

• We used a hand-modeled learning technique, but INCA had high time complexity;
• The hyperparameters of the kNN can be optimized.

The proposed model can be used in psychiatry clinics to detect schizophrenia using
EEG signals, and we also intend to use this model to detect different types of schizophrenia
to help clinicians in their treatment.
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5. Conclusions

We presented a new feature extraction function using a cryptologic method, which we
named CGP17Pat. The CGP17Pat function was used to classify EEG signals for automatic
detection of SV. The model attained high accuracies of 99.91% and 84.33% with 10-fold
cross-validation and LOSO cross-validation, respectively. The results demonstrated the
excellent feature classification ability using CGP17Pat. By deploying LOSO cross-validation,
the real-world performance of the proposed CGP17Pat-based model was simulated, and
comparable results were obtained using 10-fold cross-validation. This model can assist
psychologists/psychiatrists in their diagnosis of schizophrenia so that early treatment can
be provided to affected patients.

Our future plan is to develop an automated detection application for various mental
disorders using EEG signals. These signals collected from worldwide medical centers
will be fed into our smart system. As a result, the computerized system will diagnose the
different mental disorders quickly and accurately so that the medical professionals can
provide the necessary treatment and intervention to help their patients. Moreover, many
feature extraction functions can be presented using CGP with other modulo values and
another new CGP-based deep learning model can be developed in the near future.
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