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ABSTRACT Concrete is an extreme but common environment and is home to micro-
bial communities adapted to alkaline, saline, and oligotrophic conditions. Microbes
inside the concrete that makes up buildings or roads have received little attention de-
spite their ubiquity and capacity to interact with the concrete. Because concrete is a
composite of materials which have their own microbial communities, we hypothe-
sized that the microbial communities of concrete reflect those of the concrete
components and that these communities change as the concrete ages. Here, we
used a 16S amplicon study to show how microbial communities change over 2
years of outdoor weathering in two sets of concrete cylinders, one prone to the
concrete-degrading alkali-silica reaction (ASR) and the other having the risk of the
ASR mitigated. After identifying and removing taxa that were likely laboratory or
reagent contaminants, we found that precursor materials, particularly the large ag-
gregate (gravel), were the probable source of ;50 to 60% of the bacteria observed
in the first cylinders from each series. Overall, community diversity decreased over
2 years, with temporarily increased diversity in warmer summer months. We found
that most of the concrete microbiome was composed of Proteobacteria, Firmicutes,
and Actinobacteria, although community composition changed seasonally and over
multiyear time scales and was likely influenced by environmental deposition.
Although the community composition between the two series was not significantly
different overall, several taxa, including Arcobacter, Modestobacter, Salinicoccus,
Rheinheimera, Lawsonella, and Bryobacter, appear to be associated with ASR.

IMPORTANCE Concrete is the most-used building material in the world and a biologi-
cally extreme environment, with a microbiome composed of bacteria that likely come
from concrete precursor materials, aerosols, and environmental deposition. These
microbes, though seeded from a variety of materials, are all subject to desiccation,
heating, starvation, high salinity, and very high pH. Microbes that survive and even
thrive under these conditions can potentially either degrade concrete or contribute to
its repair. Thus, understanding which microbes survive in concrete, under what condi-
tions, and for how long has potential implications for biorepair of concrete. Further,
methodological pipelines for analyzing concrete microbial communities can be applied
to concrete from a variety of structures or with different types of damage to identify
bioindicator species that can be used for structural health monitoring and service life
prediction.

KEYWORDS concrete, alkali-silica reaction, low biomass, built environment, microbial
communities, bioindicators

Concrete is a uniquely harsh environment characterized by high alkalinity and salin-
ity and low water activity. In outdoor structures, it is also subject to large fluctua-

tions in temperature and moisture. Due to its strength, resistance to weathering, and
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low cost, concrete is the most widely used building material in the world (1). It is,
therefore, a very common environment, and despite the tough conditions, bacteria are
known to live in and on concrete (2–11).

When concrete is poured, its pH is ;12.5, higher than most known naturally alka-
line environments (12, 13) and comparable to that of leachate from steel slag or baux-
ite and Solvay wastes (14). Highly alkaline environments like concrete present meta-
bolic and physical challenges to the microbes inhabiting them, including a reversed
proton gradient, with implications for ATP production, enzyme inactivation, and insta-
bility of membranes and DNA, among others (15). Microbe-concrete relationships have
been extensively studied in the specific contexts of concrete degradation (3–9, 16–18)
and biorepair (19). In these cases, the microbes that alter the concrete structure are
introduced from outside after the structure has been poured. However, very little is
known about the microbes that inhabit ordinary concrete. We hypothesized that the
concrete microbiome comes from the precursor materials and that it is similar to that
of other high-pH environments, like alkaline soils and soda lakes.

We further predicted that concrete mixes with different chemical properties would
have different microbial communities, so we compared the microbial communities of a
concrete mix prone to alkali-silica reaction (ASR) and one for which the risk of ASR had
been mitigated with fly ash. ASR is a concrete-degrading chemical reaction of global
concern that occurs between alkali hydroxides from cement powder and silica in the
fine and large aggregates that constitute most of concrete’s mass (20). ASR results in a
silicate gel that expands when hydrated, creating internal pressure and extensive map
cracking that significantly shortens the life span of affected structures. To prevent ASR,
the Delaware Department of Transportation adds fly ash to the concrete mix, a com-
mon practice (21). In addition to reducing the probability of ASR, fly ash reacts with
lime, and the reaction products fill concrete pores, particularly larger ones most prone
to water infiltration, decreasing concrete porosity (22, 23). Because ASR alters both the
chemistry of the concrete and its structure, allowing more infiltration by water and
waterborne microbes and chemicals (20, 24), while fly ash reduces porosity and excess
alkalinity (21, 25), we expected the microbial communities in these two types of con-
crete to diverge from each other over time.

We expected analysis of these communities to be complicated, because concrete is
a low-biomass environment (2, 26), and such environments are particularly susceptible
to laboratory contamination. Contaminant DNA represents a higher proportion of total
DNA in low-biomass systems than it does in a higher-biomass environment and thus
has more power to obscure noncontaminant sequences or influence interpretation of
the data (27). For this reason, it is important to use rigorous methods to identify and
categorize as many potential contaminants and their likely sources as possible. An
aggressive approach to identifying and removing contaminants increases confidence
that the real concrete microbiome, not reagent or laboratory microbiomes, can be
described.

Our previous work showed that cultivable bacteria are present in concrete and that
microbial DNA can be extracted from concrete and analyzed, providing a snapshot of
the bacteria living in and on concrete a year after pouring (2). Here, we investigated
how precursor materials, probability of ASR, time, weather, and laboratory contamina-
tion influence concrete microbial communities. We addressed these questions using
16S amplicon sequencing to characterize, over 2 years, the microbial communities of
two series of concrete cylinders made with different mix designs to confer or prevent
ASR and the precursor materials used in their preparation.

RESULTS
Concrete cylinder preparation and sampling. To determine howmicrobial commun-

ities change as concrete weathers, and to test the effects of ASR reactivity on community com-
position, we prepared two series of concrete cylinders which were weathered outdoors on a
rooftop for;2years. One cylinder from each series was collected approximately every 6weeks
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and sampled by slicing an internal section from each (Fig. 1a). Although 2 years is short on the
time scale of ASR development, this time frame allows the microbial communities to be
exposed to multiple annual temperature and precipitation cycles (Fig. 1b) and is long enough
to see the early effects of ASR damage (28). DNA was extracted from the concrete samples,
the precursor materials used in the concrete mixes, and triple sterilized glass beads, as the
negative control (Fig. 1c). DNA yields ranged from 1.25ng to 26ng of DNA from 5 g of starting
material, with the highest yields obtained during the second summer (Fig. 1d).

16S amplification, sequencing, and quality filtering. Using primers 357F and
806R (29, 30), the V3-V4 region of the 16S gene was amplified from 105 samples, repre-
senting 90 concrete samples (15 time points � 2 ASR conditions � 3 replicates) and
triplicate samples of each constituent material and negative-control glass beads (see
table S1 at doi.org/10.6084/m9.figshare.14211038). A total of 9.4 million 300-bp
paired-end Illumina MiSeq amplicon reads were obtained (mean, 89,743 reads per sam-
ple). Following initial primer trimming and quality filtering with Cutadapt, 8.6 million
high-quality reads were retained. DADA2 denoising, chimera filtering, and read joining
performed with the QIIME 2 platform (31, 32) resulted in 5.1 million observations
(mean, 48,600 per sample) of 6,924 unique amplicon sequence variants (ASVs) (see ta-
ble S1 at doi.org/10.6084/m9.figshare.14211038). ASVs that were identical in their over-
lapping region but differed in length were merged with vsearch clustering at 100%
similarity, resulting in 6,898 unique ASVs (33). Finally, 31 ASVs of unexpectedly short
length (,400 bp) were discarded, resulting in 48,526 mean reads per sample of 6,867
unique ASVs. For phylogenetic analyses, ASV representative sequences were inserted
into the SILVA reference phylogeny (release 128) (34–36). All sequences that passed
the .400-bp length filter were successfully inserted into the reference tree.

FIG 1 Experimental design, sample collection, and DNA extraction. (a) Two series of concrete cylinders, one prone to the ASR and
the other having the risk of the ASR mitigated with fly ash, were placed on a campus roof for 2 years. Every 4 to 8weeks, one
cylinder of each type was archived. DNA was extracted from triplicate samples of pulverized concrete and precursor materials and
sent for 16S amplicon sequencing with primers 357F and 806R (29, 30). (b) Temperatures throughout the sampling period. Each
point represents a sample collection date, and reported temperatures are the mean temperature of the 30 days preceding
collection. (c) DNA extraction yields from 5 g of material obtained using the protocol from reference 2. Triple-sterilized glass
beads served as a negative control. Quantification was performed with a Qubit double-stranded-DNA high-sensitivity fluorometric
assay. Differences in extraction efficiency may contribute to apparent differences between materials. (d) DNA yield from 5 g of
concrete for each concrete sample in the series. DNA yields were higher for samples collected during the second summer.
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Contaminant identification and removal. Contaminant ASVs are present in nearly
all 16S samples (27, 37) and can dominate results in low-biomass environments (38), so
several established and custom techniques were used to classify the observed taxa as
concrete-associated or contaminant. The prevalence method of the decontam R pack-
age (39) was used to identify 181 ASVs statistically more likely to be found in negative
controls (glass beads) than samples (see table S2 at doi.org/10.6084/m9.figshare
.14211038; also, see Fig. S1a in the supplemental material). The frequency method of
decontam, which identifies ASVs whose relative abundance is inversely correlated with
sample DNA concentration, was not applied because it is less reliable for very-low-bio-
mass samples (39) and because our DNA concentrations were correlated with other
sample metadata, such as season/temperature.

Reagent contaminants were identified with a correlation approach. ASV-ASV inter-
action networks were determined with SPARCC (40) implemented in FastSpar (41),
SPIEC-EASI (42), and the propr R package (43). In this approach, core groups of highly
intercorrelated contaminants were first identified for two types of contamination: rea-
gent and laboratory environment. The core group of reagent contaminants was identi-
fied as highly intercorrelated ASVs present in negative-control samples with more
strong positive than strong negative correlations with other negative-control ASVs
(scripts available at github.com/MarescaLab/concrete_series). Reagent contaminants
determined with SPARCC were also required to have a mean correlation greater than
0.3 with other negative-control ASVs. All other ASVs were then screened for correlations
with this list of reagent contaminants and classified as contaminants if they exceeded cut-
offs for the net number of positive correlations and/or mean correlation with the core rea-
gent contaminants (see “Pairwise ASV comparisons” and “Contaminant identification”). Six
hundred fifty-four ASVs were identified as suspected reagent contaminants with this
method, of which 359 were uniquely identified by this method (see table S2 at doi.org/10
.6084/m9.figshare.14211038; Fig. S1b). The 149 ASVs observed only in negative controls
were also classified as reagent contaminants. The most abundant reagent contaminants
belong to the Burkholderiaceae (Betaproteobacteria), while ASVs from Enterococcus,
Methylobacterium, Sphingomonas, and Bradyrhizobium were also abundant reagent con-
taminants (Fig. S2 and S3).

Contaminants introduced from nonreagent laboratory sources like air, surfaces, or
human handling were identified in a similar manner. Several strains researched in our
laboratory, such as Rhodoluna lacicola, were unexpectedly observed in the data and
are likely contaminants. Nineteen ASVs with .99% similarity to 5 likely lab contami-
nants (as determined via BLAST alignment [44]) were identified as contaminants (see
table S2 at doi.org/10.6084/m9.figshare.14211038). We identified 167 additional con-
taminants by correlation with these 19 ASVs (scripts available at github.com/
MarescaLab/concrete_series). Of these 167 contaminants, 147 were uniquely identified
by strong correlation with known contaminants while 20 were also identified by other
methods. The most abundant lab contaminants were enterobacteria in the genera
Escherichia-Shigella and Pantoea. Other putative abundant lab contaminants included
ASVs from Microbacteriaceae, Pseudomonas, Sediminibacterium, Pedobacter, Exiguobacterium,
Planococcus, and Bacillus.

Finally, remaining ASVs were screened against a master list of reagent and labora-
tory contaminants identified up to this point, identifying 98 additional contaminants
using correlation metric-specific cutoffs. (see table S2 at doi.org/10.6084/m9.figshare
.14211038; Fig. S1b). Many of these putative contaminants belong to taxa identified as
common contaminants in other studies (45), such as Sphingomonas, Burkholderiaceae,
Enterobacteriaceae, Acidibacter, Planococcaceae, Bacillus, and Micrococcaceae (Fig. S3).
Certain species of Bacteroidia, Pedobacter, and Vibrionimonas were also identified as
contaminants this way.

In total, 1,112 of 6,867 ASVs were determined to be contaminants. The most abundant
contaminants were Proteobacteria (Beta-, Gamma-, and Alphaproteobacteria, in decreasing
order of abundance) and Firmicutes (Fig. S2; see table S3 at doi.org/10.6084/m9.figshare
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.14211038). Removal of potential contaminant reads left 547,573 observations of 5,755
ASVs, an average of 5,368 observations per sample. Only ;15% of reads were retained
because of our aggressive contaminant identification approach; however, there was little
impact on the observed diversity because in about 85% of samples,.50% of the removed
reads were from only a few (,5) high-abundance contaminants.

Prior to decontamination, we observed low replicate similarity (1 2 generalized [0.5]
UniFrac distance). The mean similarity within concrete replicates was 0.480, not signifi-
cantly higher than the mean between-sample similarity of 0.466 (one-sided Welch’s t test;
P = 0.166). This was also true following decontamination where the mean within-replicate
similarity was 0.340 and the between-replicate similarity was 0.332 (one-sided Welch’s t
test; P = 0.111). Decontamination decreased within-replicate similarity (one-sided Welch’s t
test; P = 2.634� 10215).

Concrete microbial community composition. To broadly characterize the micro-
bial communities in concrete, all concrete cylinder samples were pooled after removal
of contaminants. Overall, 50% of sequences were classified at the phylum level as
Proteobacteria, 19% as Firmicutes, 14% as Actinobacteria, 7% as Cyanobacteria, 5% as
Bacteroidetes, ;1% as Acidobacteria, and ;0.5% as Planctomycetes, with other phyla
each representing ,0.5% of observations (Fig. 2). No Archaea were observed in this
data set. All percentages referenced in this section are of the total ASV observation
count (547,573) after decontamination for all taxa.

Of the Proteobacteria, Gammaproteobacteria were the most abundant (;34% of all
reads), in part due to the pseudomonad genera Acinetobacter (9%, the most abundant
genus observed), Pseudomonas (;2%), and Psychrobacter (;1.7%). Other groups of
Gammaproteobacteria were also abundant, particularly the families Enterobacteriaceae
(;5%), Xanthomonadaceae (;2%), and Halomonadaceae (;1%). Nearly 9% of sequen-
ces were classified as Betaproteobacteriales, of which most belong to the family
Burkholderiaceae (;8%). Alphaproteobacteria (;15%) were also observed, particularly
those belonging to the orders Rhizobiales (;5%) and Sphingomonadales (;4%).

Gram-positive taxa account for ;33% of all reads. Almost 19% of sequences were classi-
fied as Firmicutes, which can form spores, potentially allowing them to survive in dormant
states in the harsh concrete environment. Most of these belong to the order Bacillales
(;10%), such as members of the genera Bacillus (;4%) and Staphylococcus (;2%). Nearly
5% of sequences also belonged to the order Lactobacillales. Actinobacteria account for
;14% of sequences, spread across several families: Nocardiaceae (2.0%), Dietziaceae (2.0%),
Corynebacteriaceae (1.4%), Microbacteriaceae (1.4%), Micrococcaceae (1.2%), Nocardiaceae
(0.99%), and Geodermatophilaceae (0.83%).

Three additional phyla each represented more than 1% of all sequences: Cyanobacteria
(;7%), Bacteroidetes (;5%), and Acidobacteria (;1%). Many of the cyanobacteria were
classified as chloroplasts (;6%) and were likely introduced from pollen or other plant
material.

Precursor community composition. Prior to decontamination, higher diversity
(Faith’s phylogenetic diversity [PD]) was observed in sand and fly ash than concrete,
while the diversity of negative controls (glass), cement powder, and gravel was similar
to the median diversity of concrete samples (Fig. S4). Diversity patterns after decon-
tamination were similar, with generally greater bacterial diversity observed in fly ash
and sand samples than in concrete and diversity similar to that in concrete observed in
gravel and powder samples (Fig. 3). Shannon and Faith’s diversity metrics generally
showed similar differences between groups, although decontaminated gravel samples
and cement powder samples before decontamination had comparatively low Shannon
values.

Each of the precursor materials had indicator taxa that were exclusive to that mate-
rial. Indicator values (IndVal), a measure of exclusiveness, were calculated for these
taxa as the product of relative observation frequency (specificity) and likelihood of ob-
servation (sensitivity) with a correction for unequal group sizes (46). Gravel commun-
ities, the least diverse of the precursors, were composed primarily of Acinetobacter,
Pelotomaculum, Bacillus, Aeromicrobium, and Burkholderia (see table S4 at doi.org/10
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.6084/m9.figshare.14211038). Nosocomiicoccus was an indicator for gravel samples
(IndVal=0.82, P = 0.02), although its relative abundance—the proportion of all observa-
tions—was low (6� 1025). Cement powder bacterial communities consisted primarily of
Pantoea, Burkholderia, Acinetobacter, Psychrobacter, Streptococcus, Staphylococcus,
Chryseobacterium, and Corynebacterium (see table S4 at doi.org/10.6084/m9.figshare
.14211038). Nocardia was an indicator of cement powder samples (IndVal =0.996, P =
0.001, rel.abund ; 0.0003). Fly ash microbial communities consisted primarily of
Paracoccus, Hydrogenophaga, Bacillus, Thiobacillus, and Nocardioides (see table S4
at doi.org/10.6084/m9.figshare.14211038). Several genera were indicators of fly ash,
including Thermithiobacillus (IndVal = 1, P = 0.001, rel.abund ; 0.005), Meiothermus
(IndVal = 0.998, P = 0.001, rel.abund; 0.02), Truepera (IndVal = 0.988, P = 0.005, rel.abund
; 0.02), and uncultured members of “Candidatus Kaiserbacteria” (IndVal = 1, P = 0.001,
rel.abund; 0.01).

Of the precursors, sand microbial communities were the most different from those of
concrete. We observed more Alphaproteobacteria in sand samples (see table S4 at doi.org/
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10.6084/m9.figshare.14211038), specifically Sphingomonadaceae like Rubritepida (rel.abund
;0.05), Porphyrobacter (rel.abund ;0.03), Sphingoaurantiacus (rel.abund ;0.002), and
Sandaracinobacter (rel.abund ;0.0004) (all indicator values. 0.99, P , 0.01). Other taxa
with high indicator values for sand were Bacteroidia, including Rhabdobacter (IndVal =0.97,
P = 0.02, rel.abund ;0.06) and Cnuella (IndVal =0.99, P = 0.001, rel.abund ;0.05), and the
Gammaproteobacteria Alishewanella (IndVal =0.99, P = 0.001, rel.abund ;0.07) and
Lysobacter (IndVal =0.98, P = 0.007, rel.abund ;0.02). Gemmatirosa (IndVal =0.99, P =
0.001, rel.abund ;0.02) and several Verrucomicrobia, such as Prosthecobacter (IndVal = 1,
P = 0.001, rel.abund;0.004), also had high indicator values for sand.

Influence of precursor materials on concrete microbial communities. SourceTracker
analysis (47) was used to assess the influence of the concrete constituent material mi-
crobial communities on bacteria in the first (t0; May 2013) and last (tend; February 2015)
concrete samples (Fig. 4). Using microbial community data from concrete precursor
materials (sources), SourceTracker identified the probable fraction of microbes in the
concrete cylinders coming from each precursor material and also estimated the contri-
bution of an “unknown” source (mean contribution to reactive and unreactive con-
crete: t0 ; 39%, tend ; 23%). Precursor sources considered in this analysis were fly ash
(t0 ; 7%, tend ; 1%), the large aggregate gravel (t0 ; 32%, tend ; 41%), the fine aggre-
gate sand (t0 ; 2%, tend ; 3%), and cement powder (t0 ; 14%, tend ; 30%). Amplicon
sequence data were not obtained for the water used in cylinder preparation (Newark,
DE, tap water) and was instead approximated with data from multiple water utilities in
the eastern United States published in reference 48. Leave-one-out cross validation
was performed (Fig. S5). This SourceTracker analysis suggests that precursor materials
contribute a considerable (.50%) portion of the concrete microbiome in early

FIG 3 Within-sample diversity over time. Two metrics of bacterial diversity, Shannon diversity (a to c) and Faith’s phylogenetic diversity (d
to f), show similar trends in both decontaminated cylinder series. In panels b and e, light points are the observed sample values, while
connected dark points were predicted with a linear mixed-effect model. (a and d) Coefficients for both models show that time (months) has
a significant negative effect on diversity, while temperature has a significant positive effect (*, P# 0.05; **, P# 0.01). ASR reactivity appears
to have little effect on bacterial diversity, although reactive concrete is associated with (nonsignificant) increased diversity for both metrics.
The interaction effect of time and ASR reactivity indicates that over time, more diversity is associated with ASR reactivity; however, this
cannot be considered significant, since the effect of ASR reactivity alone was nonsignificant. (c and f) Concrete sample diversity compared
to precursor material diversity.
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samples, which represents an even larger portion of the bacterial community in later
samples (Fig. 4). Gravel had the greatest contribution. Interestingly, sand was found to
have little influence on the composition of the concrete microbial community, though
it is a major constituent material of concrete and had high bacterial diversity (Fig. 3). In
the ASR-mitigated concrete, gravel had a smaller contribution while fly ash and cement
powder had larger predicted contributions to the microbial community (Fig. 4). Over
time, the proportion of microbes predicted to be of unknown origin decreased, while
similarity to gravel and cement powder communities increased.

Time and season affect diversity and community composition. We analyzed the
bacterial diversity in concrete and precursor materials and how diversity in concrete
changed over time. Within-sample (alpha) diversity metrics, Shannon and Faith’s phylo-
genetic diversity, were calculated with QIIME 2 on decontaminated individual concrete
samples subsampled to 1,000 observations (Fig. 3). Shannon diversity summarizes
both richness and evenness; however, because it can obscure absolute richness, Faith’s
phylogenetic diversity was also included. Linear mixed-effect models were applied to
both metrics, yielding similar results: diversity decreased over time (months of weath-
ering) (Shannon’s estimate = 20.47, P = 0.001; Faith’s PD estimate = 25.35, P = 0.04),
with seasonal increases associated with warmer temperatures (Shannon’s estimate=0.3,
P = 0.004; Faith’s PD estimate=5.13, P = 0.01). Probability of ASR did not have a significant
effect on observed diversity, although reactive samples had slightly higher diversity than
mitigated samples with both metrics (Shannon’s estimate=0.096, P = 0.6; Faith’s PD
estimate=3.2, P = 0.5) (Fig. 3). To understand the effects of decontamination, alpha diver-
sity was also calculated from raw (before decontamination) data (Fig. S4). Removing labo-
ratory contaminants strengthened the apparent effect of season on diversity, though the
effect was present in the raw data.

Permutational multivariate analysis of variance (PERMANOVA) models (49, 50) were
used to assess environmental influences on community composition. Like alpha
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FIG 4 Influence of precursors on concrete bacterial communities. Concrete composition by weight (a and b,
left) compared to the mixing proportion of source materials inferred by comparing concrete microbial
communities to precursor material communities (a and b, right). Using sequenced microbial community
information for concrete samples (“sinks”) and precursor materials (“sources”), the SourceTracker2 tool was
used to infer the proportion of bacteria in concrete sinks originating from each precursor source.
SourceTracker also predicts a proportion of bacteria from an unknown source. Inferred proportions are for the
first concrete samples in each series, archived prior to weathering. Unlike the other precursor materials,
sequence data were not directly obtained from the water used for concrete production (Newark, DE, tap
water). Instead, tap water samples from multiple utilities in the eastern United States were used (48).
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diversity, time (months of weathering) and temperature were associated with signifi-
cant changes (P , 0.05) in overall community structure as determined with
PERMANOVA performed on generalized (0.5) UniFrac distances (Table 1). This signifi-
cant effect was observed when added sequentially to the model (distance ; tempera-
ture 1 time 1 ASR) and also when the marginal effect of each term was considered.
The marginal effect of time was greater than that of temperature, indicating that the
time since pouring has a greater impact than temperature. No significant difference in
overall community composition was observed between ASR-reactive and ASR-unreac-
tive cylinders. Dispersion was also assessed, since it can confound PERMANOVA mod-
els, but no significant differences were found (Table 1). Other distance metrics yielded
consistent results (Table S1), as did Mantel matrix correlation tests, although the
Mantel tests did not find time alone to be significant (Table S2). PERMANOVA on pre-
decontamination data also revealed significant time and temperature effects
(Table S3).

Taxonomic changes over time. Large-scale changes in diversity and community
composition are often driven by changes in the presence and/or abundance of particu-
lar taxa. Therefore, each pattern observed with alpha- and beta-diversity metrics
should have groups of bacteria following the same pattern. The changes in diversity
associated with time and temperature reflect changes in patterns of abundance of
both common and rare taxa.

Time was associated with decreased diversity and changes in community composi-
tion. Similarly, generally decreasing diversity with seasonal peaks in warmer summer
months was observed over the series in the most abundant phyla: Proteobacteria,
Firmicutes, Actinobacteria, Bacteroidetes, and Cyanobacteria (Fig. 5). Decreasing preva-
lence (the proportion of samples a group appears in) of the most abundant genera like
Acinetobacter and Bacillus could help explain this trend, especially when coupled with
taxa that became significantly less common, like Beijerinckiaceae (log odds = 0.24, P =
0.0004) (Fig. 5; see table S8 at doi.org/10.6084/m9.figshare.14211038). Many taxa were
more frequently observed in the summer, such as Ferruginibacter (Fig. 5; see table S9
at doi.org/10.6084/m9.figshare.14211038), whose seasonal change in relative abun-
dance was detected by fitting a 1-year cyclical spline as part of a general additive
mixed model (R2 = 0.8, P = 0.00014), used previously to detect long-term and seasonal
trends (51).

While community-level analyses capture the largest changes, they also obscure
smaller changes. We were particularly interested in bacteria capable of surviving the
harsh conditions of concrete, which would increase in relative abundance and/or prev-
alence throughout the series as other species die off. Psychrobacter was identified as
an example of a taxon that increased throughout the series in both prevalence (log
odds = 1.83, P = 0.017) and relative abundance (Fig. 5; see table S10 at doi.org/10.6084/
m9.figshare.14211038).

TABLE 1 PERMANOVA results for the generalized UniFrac metrica

Term testing Coefficient R2 F P value Dispersion P value
Sequential Temp 0.024 1.851 0.003** 0.891

Mo 0.025 1.972 0.002** 0.891
ASR 0.01 0.802 0.896 0.671

Marginal Temp 0.02 1.607 0.015* 0.891
Mo 0.025 1.939 0.001*** 0.891
ASR 0.01 0.802 0.898 0.671

aPERMANOVA models (distance; temperature1months1 ASR) were computed with the adonis2 function of
the vegan R package for generalized (0.5) UniFrac distances. The effect of terms was tested both sequentially
and marginally. For both models, temperature and time had significant (*, P# 0.05; **, P# 0.01; ***, P# 0.005)
associations with observed bacterial community differences. Pseudo-F ratios compare the total sum of squared
dissimilarities between groups to those within groups, a measure of group separation, with larger F ratios
indicating greater differences between groups. Dispersion was also assessed with the betadisper function of the
vegan R package for each distance/term pair because of potential for confounding. No significant differences in
dispersion were observed.
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Earth Microbiome Project comparison. The Earth Microbiome Project (EMP) is a
data set of microbial communities from many different environments analyzed using a
standardized protocol and classified in a standardized ontology (52). As little is known
about the concrete microbiome, the EMP provides a simple comparison to similar envi-
ronments and to potential influences such as aerosolic deposition or animal feces.
Decontaminated concrete ASVs were trimmed to 90 bp and merged (vsearch at 99%
similarity) with EMP ASVs to create a combined table of operational taxonomic units
(OTUs).

Principal-coordinate analysis (PCoA) ordination of generalized (0.5) UniFrac distan-
ces shows that concrete communities overlap communities from aerosols, surfaces,
negative controls (EMP sterile water blanks), sebum, dust, animal and corpus/surfaces,
nonsaline waters, and hyperalkaline environments (Fig. 6a). Concrete samples are near
the middle of PC1, between the major groups driving variance, with animal-associated
communities found at high PC1 values and plant/soil communities at low PC1 values.
However, concrete samples clearly have some spread along PC1, with most precursor
samples found at lower, less animal-associated PC1 values. Concrete samples are also
found at central PC2 values, above water samples. Concrete communities are more
similar to nonsaline water and tap water communities than to saline water and plant
corpus communities, which are separated along the PC3 axis.

Pairwise generalized (0.5) UniFrac similarities (similarity = 1 2 distance) (53, 54)
were used to assess the mean similarity of microbial communities for all concrete and
EMP samples grouped at level 3 of the EMP ontology (EMPO) (55) (Fig. 6b). The
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FIG 5 Taxon changes over time. Changes in the diversity (top), prevalence (middle), and relative abundance (bottom) of certain taxa observed over the 2
years during which concrete cylinders were weathered. The diversity (number of ASVs) of the five most abundant phyla is shown in the top row; they
generally exhibit the same trends of decreasing diversity with seasonally increased diversity in summer seen for overall diversity (Fig. 3). Several examples
of prevalence (the proportion of samples in which a group appears) at each time point are shown, including for the two most abundant genera,
Acinetobacter and Bacillus, whose prevalence roughly mirrors prevailing diversity patterns. Logistic regression of presence/absence across the series was
used to identify taxa with increasing (Psychrobacter) or decreasing (Beijerinckiaceae) prevalence. Seasonally associated taxa were detected with general
additive mixed models, such as the summer-associated genus Ferruginibacter. The bottom row shows how relative abundance of the prevalence examples
changes over time. While the same patterns are generally seen, they are more apparent for some taxa, like Psychrobacter and Ferruginibacter, and
obscured for taxa like Beijerinckiaceae and Acinetobacter. Lines show local regression (locally estimated scatterplot smoothing [LOESS]).
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communities observed in the cement powder and gravel used in the concrete mix
were on average as similar to concrete communities as those of other concrete sam-
ples (;0.34), with fly ash communities being slightly less similar (;0.31). The most sim-
ilar EMPO3 groups to concrete were sebum and dust, which were approximately as
similar as the sand used in concrete production (;0.29). Aerosols, animal surfaces, tap
water, and sterile water blanks were the next most similar (;0.26). Microbial commun-
ities from alkaline environments, plant and saline surfaces, and nonsaline water had a
similarity of about 0.22, while sediment, soil, animal gut, and hypersaline environment
microbial communities were the least similar to concrete communities. Changes in the
similarity of concrete and EMP groups were also observed over time (Fig. S6).

To characterize the effects of decontamination, similarities of concrete before decon-
tamination to the EMP were also computed. Removing contaminant taxa increased the

FIG 6 Concrete compared to Earth Microbiome Project samples. A merged OTU table was made with concrete ASVs clustered at 99%
similarity with EMP ASVs (52) and tap water ASVs (48). (a) PCoA plot based on generalized (0.5) UniFrac distances. Concrete and precursor
samples (bold) cluster together in the center of the PCoA plot, an area shared with a large diversity of other sample types that likely have
many influences, such as animal surfaces, aerosols, surfaces, tap water, and alkaline environments. However, there is a clear spread from
greater similarity to animal-related EMP samples (higher PC1 values) to environments like water and soils (lower PC1 values). (b) Similarity of
concrete samples to precursor materials and EMPO3 groups shown with violin plots, where points represent the mean similarity.
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similarity of concrete sample communities to EMP samples from aerosol, plant rhizosphere,
sebum, surface (saline, nonsaline, and plant), nonsaline water, dust, and nonsaline sedi-
ment communities (Fig. S7). It had little effect on similarity to saline water and sediment,
hypersaline environments, hyperalkaline environments, animal guts and secretions, and
tap water (Fig. S7). Decontamination also resulted in decreased similarity between con-
crete samples and all precursor materials except sand, which increased in similarity but
remained the least similar precursor. Contaminant removal also decreased similarity to ani-
mal and plant corpuses, sterile water blanks, and animal surfaces, suggesting that they
might be sources of contaminants.

Bacteria found in concrete were also found in many hyperalkaline and hypersaline
EMP samples. The genus Paenibacillus was an indicator for hyperalkaline, plant rhizo-
sphere, and aerosol EMP samples (IndVal = 0.63, P = 0.001), as was the genus Bacillus
(IndVal = 0.60, P = 0.001) (see table S11 at doi.org/10.6084/m9.figshare.14211038). The
genus Halomonas was an indicator for hypersaline, saline surface, and concrete sam-
ples (IndVal = 0.44, P = 0.001) (see table S11 at doi.org/10.6084/m9.figshare.14211038).
At the ASV level, an Exiguobacterium sp. was an indicator of concrete and hyperalkaline
samples (IndVal = 0.36, P = 0.001) while a Halobacillus indicated concrete and hypersa-
line samples (IndVal = 0.21, P = 0.009) and a member of Rhodobacteraceae found in
concrete was an indicator for alkaline EMP samples (IndVal = 0.58, P = 0.001) (see table
S4 at doi.org/10.6084/m9.figshare.14211038). We were also interested in bacteria
uniquely associated with concrete and identified several indicators belonging to sev-
eral genera: Aliidiomarina (IndVal = 0.44, P = 0.001), Alishewanella (IndVal = 0.34, P =
0.001), and Chroococcidiopsis SAG 2023 (IndVal = 0.26, P = 0.005) (see table S11 at doi
.org/10.6084/m9.figshare.14211038).

Microbial bioindicators of ASR. Taxa associated with ASR (Fig. 7) could potentially
serve as bioindicators of the ASR. Several methods were used to identify bioindicator
taxa grouped at the genus level, including indicator species analysis (46), smoothing
spline analysis of variance (ssANOVA) from the metagenomeSeq R package (56), and
logistic regression using presence/absence data. Indicator species analysis considers
both the specificity and sensitivity of potential indicators, and it identified Arcobacter
(IndVal = 0.54, P = 0.007) and Bryobacter (IndVal = 0.39, P = 0.023) as potential bioindi-
cators of the ASR (Fig. 7).

In contrast, ssANOVA allows time to be explicitly considered in selecting indicators, as it
finds time periods of differential abundance. As the ASR increases over time, we expected indi-
cators to become or remain differentially abundant later in the series. ssANOVA identified the
following potential indicators and their periods of differential abundance, with month 21
being the last in the series: Bryobacter (interval, 10 to 21months; P = 0.004), Sediminibacterium
(interval, 9 to 21months; P = 0.009 [data not shown]), Lawsonella (interval, 16 to 21months; P
= 0.016), Arcobacter (interval, 16 to 21months; P = 0.024), Modestobacter (interval, 12 to
21months; P = 0.027), Salinicoccus (interval, 19 to 21months; P = 0.031), and Carnobacterium
(interval, 15 to 21months; P = 0.036) (Fig. 7).

Finally, logistic regression was used on presence/absence data to find potential
indicators with a significant (P , 0.05) effect for the interaction of time and ASR reac-
tivity. Potential indicators of the ASR identified with logistic regression included
Rhodocyclaceae (log odds=5.19, P = 0.016), Rheinheimera soli (log odds=5.5, P=0.020),
Flavobacterium (log odds=4.62, P=0.046), and Lawsonella (log odds=5.94, P=0.038). In
total, Arcobacter, Lawsonella, and Bryobacter were identified with multiple methods as ro-
bust potential bioindicators. The potential bioindicator taxa have increased abundance in
ASR-reactive samples but, more importantly for use as indicators, are also found in more
ASR-reactive samples than mitigated samples. Further, the differentiating power generally
increases with time, as do the effects of the ASR.

DISCUSSION

As the most-used building material in the world, concrete is a very common envi-
ronment. However, relatively few microbes can survive this dry, salty, alkaline habitat
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with very low macronutrient concentrations. We predicted that the microbial commu-
nity of concrete would be seeded from the component materials and that over time it
would begin to resemble communities from other dry, saline, and/or alkaline environ-
ments. We further hypothesized that the physical and chemical changes due to ASR
damage would be reflected in the microbial communities of ASR-reactive and ASR-
mitigated concrete.

Here, we show that microbial communities in ASR-prone and ASR-mitigated con-
crete series reflected those of the components of concrete. The inclusion of fly ash to
prevent ASR in the ASR-mitigated concrete mix, and the resulting difference in proba-
bility of ASR, did not have a statistically significant effect on overall community compo-
sition. However, individual taxa were identified with significantly different abundance
patterns in the ASR-reactive and ASR-mitigated series, and these could potentially
serve as microbial bioindicators of the ASR. As the cylinders in both series weathered,
the diversity in their bacterial communities decreased, though we observed seasonal
increases in diversity in the summer.

ASR generates a hygroscopic silica-rich gel, which, as it expands, cracks the concrete
from the inside. We expected the ASR-reactive samples to be more alkaline than the ASR-
mitigated samples, because fly ash reduces the pH (21). We also expected that because of
the cracking, more water and nutrients would infiltrate the ASR-reactive samples. ASR
reactivity, therefore, might increase selection for alkaliphiles while reducing selection for
oligotrophs or xerophiles. In fact, the identification of Bryobacter as a potential bioindicator
for the ASR was surprising, given its description as “mildly acidophilic” (57) and its previous
association with wet environments: bogs (58), wetlands (59), and wastewater (60). Its pres-
ence may imply greater water infiltration into ASR-damaged concrete, though this genus

FIG 7 Potential bioindicators of the ASR. Bioindicators of the ASR determined with ssANOVA (indicated with the
letter “a”) in metagenomeSeq (which determined time periods of differential abundance), indicator species analysis
(indicated with the letter “b”) in indicspecies (which considers both specificity and sensitivity of the indicator), and
logistic regression (indicated with the letter “c”) for presence/absence. All taxa are summarized at the genus level
except for Rheinheimera soli and the family Rhodocyclaceae. For ssANOVA, indicator taxa that remained differentially
abundant through the end of the series were identified. The following indicators were identified with ssANOVA:
Bryobacter (interval, 10 to 21months; P value, 0.004), Sediminibacterium (interval, 9 to 21months; P value, 0.009),
Lawsonella (interval, 16 to 21months; P value, 0.016), Arcobacter (interval, 16 to 21months; P value, 0.024),
Modestobacter (interval, 12 to 21months; P value, 0.027), Salinicoccus (interval, 19 to 21months; P value, 0.031), and
Carnobacterium (interval, 15 to 21months; P value, 0.036). The following indicators were identified with indicator
species analysis: Arcobacter (IndVal=0.54, P = 0.007) and Bryobacter (IndVal =0.39, P= 0.023). Logistic regression, run
at multiple taxonomic levels, identified the following indicators: Rhodocyclaceae (log odds=5.19, P = 0.016),
Rheinheimera soli (log odds=5.5, P = 0.020), Flavobacterium (log odds=4.62, P = 0.046), and Lawsonella (log
odds=5.94, P = 0.038).
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has also been observed in desert biocrusts (61, 62). Another putative ASR bioindicator,
Modestobacter (family Geodermatophilaceae), is commonly associated with dry environ-
ments: stone surfaces, desert biocrusts, and endolithic biofilms (63, 64). Salinicoccus is a
member of the Staphylococcaceae commonly found in high-salt environments, including
desert soils (65, 66), saline soils (67), coastal water (68), salt mines (69, 70), salterns (71),
and soda lakes (72–74). These potential bioindicator genera are not known to be alkali-
philes. Alternatively, because concrete is seeded from several different materials, we also
expected to see generalist species capable of surviving a variety of different stresses, as
previously observed in a cultivation campaign (2). Several of the other potential ASR indi-
cators identified, including Arcobacter, Flavobacterium, Rheinheimera, and Rhodocyclaceae,
are generalists found in a wide range of environments. Interestingly, Rheinheimera spp. are
found in marine (75), coastal (76–78), freshwater (79–81), industrial waste (82, 83), and
alkaline environments (84, 85). One strain produces calcite (86)—potentially applicable for
concrete biorepair—and another has recently been associated with stainless steel corro-
sion (87). The Flavobacterium and Rhodocyclaceae groups are true generalists (88, 89).
Since the ASR-mitigated and ASR-reactive cylinders were produced using the same start-
ing materials, with the exception of the fly ash, these bioindicators suggest that differen-
ces due to physical and chemical effects of the ASR are reflected in their microbial com-
munities. Further work using genomics and metagenomics to analyze microbial metabolic
functions in different types of concrete may better elucidate the physiological reasons for
the differences.

Concrete samples share similarities with microbial communities in the Earth
Microbiome Project (EMP) (52) from physically and chemically similar environments
such as alkaline soils and travertine, desert soils, stone surfaces, and hypersaline lakes.
Indicator species analysis with the combined EMP data found several bacterial groups
strongly associated with both concrete and saline EMP samples, including the gam-
maproteobacterial genus Halomonas and the Firmicutes genus Halobacillus, which
include both halotolerant and alkalitolerant species (90–92). Other groups of bacteria
in the concrete community were strongly associated with alkaline environments,
including Paenibacillus, Bacillus, Exiguobacterium, and Rhodobacteraceae. Several taxa
were indicators of concrete, including halotolerant and alkalitolerant Aliidiomarina (93–95),
Alishewanella (96, 97), and the desiccation-resistant cyanobacterium Chroococcidiopsis
(98–100). We also observed several taxa in concrete that are commonly found in desert
soil crusts (101, 102), including the radiation-resistant genera Rubrobacter (103) and
Acinetobacter (104), the nitrogen-fixing genus Frankia (105), and the halophile- and alkali-
phile-containing genera Halomonas (91, 106), Bacillus (107), and Stenotrophomonas (108,
109). Photosynthetic Chloroflexi (110) and Cyanobacteria belonging to the genus Nostoc
(111, 112) are also common in saline soil crusts and were present in concrete. Common
epilithic bacteria were also found in concrete, including Sphingomonas, Frankiales,
Truepera, Hymenobacter, Sphingobacteriales, Massilia, Stenotrophomonas, and Paenibacillus
(113–115). In addition, several species belonging to groups common in alkaline soda lakes
were detected, including Dietzia, Halomonas, Paenibacillus, Exiguobacterium, Bacillus, and
Rhodobacteraceae (116, 117). Fundamentally, these groups all tolerate osmotic stress,
which is likely necessary for survival in concrete, whether it is imposed by salt concentra-
tion, pH, or low water activity.

Although each batch of concrete is seeded from its materials, the chemical and
physical characteristics of all concrete are similar, which may impose strong enough
selective pressure that after a time, microbial communities in concrete become broadly
similar. Thus, we expected concrete to have a community of generally resilient microbes,
with a few (poly)extremophiles, rather than an endemic community of unique microbes
that have adapted to harsh conditions over a long period of time. Characteristics of the
gravel (large aggregate) typically determine the ASR reactivity of the concrete (24), and 30
to 40% of the microbial community in these cylinders likely came from gravel. The contri-
bution from cement powder (;14% and 30% at the beginning and end of the study,
respectively) was surprising, since it is a highly alkaline, oxidized material produced in
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high-temperature (;1,500°C) furnaces (118). The gravel- and cement powder-associated
microbes make up a larger portion of the microbial community in aged samples, suggest-
ing that gravel and cement powder resemble concrete in terms of the constraints imposed
on the microbial community. As the microbial community became less diverse, the survi-
vors from these materials increased in relative abundance.

Unlike naturally occurring extreme environments, which are stable on time scales
up to hundreds of thousands of years and allow ample time for evolution of specialists,
concrete is unlikely to have endemic microbes. Instead, its microbial community is
seeded from precursor materials in each batch and is also likely influenced and/or
seeded by the surrounding environment, as suggested by summertime increases in di-
versity and DNA yield, a proxy for biomass (119). Seasonal changes in diversity and bio-
mass are common in environments such as temperate soils and aerosols (120–122)
and tend to be greater in stressed environments (123). In our samples, microbial
growth or survival might have been enhanced in the summer due to greater precipita-
tion, since infiltration of water would relieve xeric stress and could also bring dissolved
nutrients into the concrete matrix. Further studies of older concrete, concrete exposed
to different environmental conditions, or concrete subject to different types of damage
will therefore have implications not just for bioindicators in the built environment but
also for understanding microbial seeding of and adaptation to both concrete and other
composite materials.

Conclusions. This work provides a comprehensive picture of microbial commun-
ities in concrete during the first 2 years of weathering. We discovered that most of the
microbiome in concrete is seeded from the materials used to make it and that this mi-
crobial community is broadly similar to other communities exposed to different types
of osmotic stress. We show that the community composition changes over the 2 years,
decreasing in diversity over time, and that weather also impacted community composi-
tion, with increased diversity in summer months. Knowing how bacterial communities
in and on concrete change over time potentially benefits several applications.
Understanding the naturally resident bacteria and their temporal dynamics in concrete
could improve ongoing efforts to repair concrete via microbially induced mineral dep-
osition, and identification of indicator species of the concrete degrading alkali-silica
reaction could enable earlier detection of the ASR and thus more effective damage
mitigation.

MATERIALS ANDMETHODS
Preparation and exposure of test cylinders. Two series of concrete cylinders (Fig. 1), one prone to

ASR and the other having the risk of ASR mitigated with fly ash, were prepared in the UD Structures Lab
using materials obtained from the Delaware Department of Transportation (DelDOT). ASR-reactive con-
crete was prepared following the mix design for DelDOT class A-503 concrete and contained 20.14 kg of
cement, 6.76 kg of tap water, 26.94 kg fine aggregate (sand), and 47.40 kg large aggregate for a total
weight of 101.24kg. ASR-mitigated concrete was prepared using the mix design for DelDOT class A-3-50 with
the same materials but with replacement of half of the cement with fly ash. ASR-mitigated concrete contained
15.38 kg each of cement and fly ash, 12.25kg tap water, 46.31kg fine aggregates, and 81.37kg large aggre-
gates for a total weight of 170.69kg. Additional water was added to improve workability.

Concrete cylinders were produced using cylindrical plastic forms, 4 in. in diameter by 8 in. high, agitated
with a shaker table after pouring to remove air pockets, and then capped and allowed to cure at room temper-
ature for 2weeks before removal from forms. One cylinder from each series was archived on 2 May 2013, and
the rest were placed on the roof of Colburn Laboratory at the University of Delaware for exposure to weather
while protected from foot and car traffic. One cylinder from each series was then archived every 4 to 8weeks
until 17 February 2015.

Weather data.Weather data for the sampling period were downloaded from Weather Underground
for the KILG (New Castle Airport) site with the rwunderground R package. Summary weather information
was compiled for the 30 days prior to each sampling. The R script used to generate summary informa-
tion is included in the GitHub repository (github.com/MarescaLab/concrete_series).

Sample processing, DNA extraction, 16S amplification, and sequencing. From each cylinder, slices
perpendicular to the long axis were obtained using a saw (blade and platform cleaned with 70% ethanol); a
chisel cleaned with 70% ethanol was then used to remove the outside edges and break apart the section.
Subsamples were pulverized using a ring and puck mill cleaned with 70% ethanol, and the resulting powder
was stored at 220°C until DNA extraction. DNA was extracted in triplicate as described by Maresca et al. (2): 5
g of sample was washed with 20ml of 0.5 M EDTA to remove divalent cations, followed by suspension in a lysis
buffer and lysozyme with agitation at 37°C for 30min. Proteinase K and 20% SDS were then added and
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incubated for 2.5 to 3h with gentle agitation at 56°C, followed by chloroform (20ml) extraction. One milliliter
of 1.95 M sodium acetate was added to the aqueous phase of each sample and re-extracted with 0.8 volume
of chloroform. Finally, DNA was precipitated with 1 volume of cold isopropanol and 0.1 volume 3 M sodium ac-
etate, washed with 70% ethanol, allowed to dry, and resuspended in 200ml Tris-EDTA (TE). DNA was reprecipi-
tated with 13% polyethylene glycol (PEG) 8000, washed with 70% ethanol, dried, resuspended in 25ml 10mM
Tris (pH 8.0), and stored at220°C.

DNA was also extracted in triplicate from equivalent quantities (5 g) of precursor materials used in
concrete cylinder production: large aggregates (gravel), fine aggregates (sand), Portland cement, and fly
ash. Triplicate negative-control DNA extractions were also performed on glass beads (5 g) that had been
sterilized by bleaching, UV irradiation, and autoclaving. Extracted DNA was quantified with an Invitrogen
Qubit 2.0 fluorometer. PCR with general 16S primers 357F and 806R and visualization with gel electrophoresis
were performed to check that no PCR inhibitors were present. 16S amplicon libraries were generated at the
UD Sequencing and Genotyping Center following the Illumina 16S metagenomic sequencing library prepara-
tion protocol (124) using primers 357F (CCTACGGGNGGCWGCAG) and 806R (GACTACHVGGGTATCTAATCC)
targeting the V3-V4 region of the 16S gene (29, 30). Libraries were sequenced with an Illumina MiSeq system
using 2� 300-bp paired-end reads. One outlier sample (021715U_6) was discarded at this point because only
1,313 reads were obtained, while all other samples had.50,000 reads.

Determination of ASVs, taxonomy assignment, and phylogenetic placement. Primers were trimmed
from reads using Cutadapt (v. 1.18) (125) with the following parameters: -g, CCTACGGGNGGCWGCAG; -a,
GGATTAGATACCCBDGTAGTC; -G, GACTACHVGGGTATCTAATCC; -A, CTGCWGCCNCCCGTAGG; -minimum-
length, 50, -n, 2. Exact amplicon sequence variants were determined using the DADA2 denoiser (32) plugin for
QIIME 2 (version 2019.10) (31) with the following parameters: p-trunc-len-f=270, p-trunc-len-r=191, and p-
max-ee=2. ASVs are more specific than commonly used operational taxonomic units (OTUs), which consist of
sequences clustered by similarity (typically 97%). DADA2 infers exact ASVs, merges paired-end reads, removes
chimeric sequences, and generates a per-sample count table of ASV observations.

Taxonomy was assigned to ASVs using the QIIME 2 naive Bayes machine-learning feature classifier
(126) trained on the Greengenes (127) and SILVA (release 132) (34) databases trimmed to match the V3-
V4 region sequenced. Trees were constructed using SEPP (35, 36) to place ASV representative sequences
into the SILVA reference phylogeny (release 128) (34). This approach was developed to overcome diffi-
culties in de novo tree construction from short sequencing fragments and facilitates comparison of
amplicon data from different variable regions (36).

Pairwise ASV comparisons. Correlation, or analogous metrics in the case of SPIEC-EASI and propr,
were computed using SPARCC (40) implemented in FastSpar (41) with the parameters iterations = 50
and permutations = 1,000, the SPIEC-EASI R package (42) with the parameters method = ‘glasso’, lambda.
min.ratio=1e23, nlambda=30, and rep.num=50, and the Propr R package (43) with the parameters metric =
“rho.” and P = 999. SPARCC P values were computed by permutation, and only correlations with an absolute
value greater than 0.35 (the default cutoff) and P values of,0.05 were considered. In addition to the inherent
error control in SPIEC-EASI, pseudo-P values were computed as 1-edge stability across the sparsity path. Only
edges with a pseudo-P of#0.5 were used. Only propr rho valuesof.0.65 and,20.5 were considered, in line
with recommended false discovery rate (FDR) control.

Levenshtein edit distances for sequence similarity were computed for each ASV pair using the string-
distmatrix function of the stringdist R package (128).

Chi-square tests were used to compare distributions for each ASV pair using the chisq.test function
in the R stats package (129). P values were simulated with 100,000 permutations.

Contaminant identification. Contaminant ASVs were identified with the prevalence method of the
decontam package (39) with a threshold of 0.33, corresponding to a probability threshold below which
the null hypothesis (noncontaminant) is rejected in favor of the alternative hypothesis (contaminant).

Sequences with a BLAST similarity of .99% to unique lab strains were identified as contaminants.
Correlation analyses were used to identify additional suspected lab contaminants.

Using pairwise ASV correlations calculated as described above, ASVs highly correlated with identified
contaminants were also deemed to be contaminants. Two groups of contaminants were used as starting
points: a cluster of highly intercorrelated ASVs present in negative controls (calculated independently with
each correlation-like metric [sparcc # of pos - neg.0 and mean cor. 0.3; spiec easi # pos - neg. 0; propr #
pos - neg. 0]) and lab contaminants identified by BLAST similarity as described above. For both contami-
nant starting groups, highly correlated ASVs were separately identified as contaminants with each of the cor-
relation-like metrics (reagent: sparcc # pos. 10 & mean cor. 0.25; spiec-easi # pos - neg .5; propr # pos -
neg. 0; lab: sparcc # pos. 1 & mean. 0.3; spiec-easi # pos - neg. 5, propr # pos. 0). For each metric, a
secondary search for highly correlated ASVs was then conducted against all contaminants identified up to
this point (sparcc mean. 0.3 & # pos. 5; spiec-easi # pos. 5; propr mean. 0.3 & # pos. 1). Cutoffs were
chosen based on plotted distributions of net positive correlations versus mean correlation. ASVs found only
in negative-control samples were also classified as contaminants.

To account for residual sequencing errors (baseline Illumina error rates, ;0.0042 error per base;
DADA2 residual error rate, ;2.5� 1028), ASVs only one nucleotide edit away (Levenshtein edit distance,
calculated as described above) (32, 130) from identified contaminants were also classified as contami-
nants and assigned the same detection method as their match.

Statistical analysis.Within sample (alpha) diversity metrics Faith’s PD and Shannon were calculated
with the QIIME 2 Diversity Plugin (31). Changes in alpha diversity over time were evaluated with linear
mixed-effect models [alpha.div ; scaled_months 1 scaled_avg_temperature 1 ASR_status 1 (1 j
ASR_status)] using the lmer function of the lme4 R package (131) and lmerTest package to obtain P val-
ues (132).
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The between-sample (beta) diversity metrics Bray-Curtis, Jaccard, UniFrac, weighted UniFrac (53),
and generalized UniFrac (54) were also calculated with the QIIME 2 diversity plugin (31). Permutational
multivariate analysis of variance was performed with the adonis2 function of the vegan R package (50).

Principal-coordinate analysis was performed using the QIIME 2 diversity plugin (31).
Indicator species analysis was used to determine indicators of ASR status, implemented in the multi-

patt function of the indicspecies R package (version 1.7.8) (46) using the IndVal.g association statistic and
1,000 permutations. Taxonomic agglomeration at the genus level was performed using the tax_glom
function of the speedyseq (133) R package. Only genera with more than 5 observations in more than 5
samples were considered.

Leveraging this study’s longitudinal design, the fitMultipleTimeSeries function of the MetagenomeSeq
R package (version 1.28.0) (134, 135) applied ssANOVA to identify ASVs with differential abundance that
increased throughout the experiment (formula, abundance ; time � ASR status; permutations, 1,000).
Only genera with more than 5 observations in more than 5 samples were considered.

The ASV observation table was converted to presence/absence, and logistic regression was per-
formed with the glm function of the R stats package using family = “binomial” and the formula pres-
ence/absence ; ASR � scale (months). This model was applied to taxa summarized at all levels that
were observed in at least 5 samples.

Following methods described in reference 51, general additive mixed models were applied with the
mgcv R package (136). Abundances were Hellinger transformed prior to running the model scaled.abun-
dance ; s(DoY, bs = “cc,” k = 4) 1 s(months, bs = “cr,” k= 1). The cyclic cubic regression spline for day of
year detects seasonal changes in abundance, limited in complexity to 4 knots. In addition, time of year
with peak abundance can be identified by inspection of this spline. The cubic regression spline limited
to 1 knot is essentially a linear regression, which models changes occurring over the entire length of the
series. This model was applied to taxa summarized at all levels that were observed in at least 5 samples.

To understand potential sources of bacteria in concrete samples, SourceTracker2 (47, 137) was used to cal-
culate source mixing proportions for each concrete sample (alpha1=0.01, alpha2=1). Sources were pooled
and subsampled to a depth of 8,000, while sink samples were subsampled to a depth of 635.

Comparison to Earth Microbiome Project. Comparison to the EMP is limited to broad comparisons
(36) due to different primer biases of the EMP V4 region primers 515F and 806R and the V3V4 primers
357F and 806R used here (138, 139) and the short amplicon length (90 bp) from early EMP samples. The
90-bp release 1 of the Earth Microbiome Project was downloaded from ftp://ftp.microbio.me/emp/
release1/otu_tables/deblur/emp_deblur_90bp.release1.biom. From this, an expanded version of the
standard 5k sample EMP subset was produced, with additional inclusion of sterile water blanks and sam-
ples from highly alkaline environments. Representative sequences were extracted from the OTU table
for import into QIIME 2. Additional samples from a study of tap water (48) prepared with the EMP proto-
col were included; representative sequences and a BIOM table generated from reads trimmed to 90 bp
and processed with deblur (140) were downloaded from Qiita (141) study 10251.

Representative sequences for ASVs from the current study were trimmed to the same 90bp as EMP and tap
water samples using the GetV4Region.py script released by the EMP authors. After tables and representative
sequences were merged, the QIIME 2 VSEARCH plugin (33) was used to cluster reads from this study, tap water
samples, and EMP samples at 99% nucleotide similarity. The 99% similarity threshold was chosen to account for
slight variability but was set higher than the standard 97% due to the short sequence length and because both
EMP reads and those from this study were previously denoised.

Combined EMP, tap water, and concrete tables were produced for raw concrete samples, “decon-
taminated” concrete samples, and only contaminants of concrete samples, allowing evaluation of con-
crete decontamination. Sequences from this combined data set were inserted into release 128 of the
SILVA reference phylogeny using SEPP (35). Taxonomy was assigned to ASVs using a naive Bayes classi-
fier trained on the 515F-806R region of the SILVA 132 release.

QIIME 2 was used to calculate distance tables based on several diversity metrics (Bray-Curtis, Jaccard,
UniFrac, weighted UniFrac, and generalized [0.5] UniFrac) and corresponding PCoA ordinations.

Indicator species analysis was conducted with the multipatt function of the Indicspecies R package
(46). EMPO level 3 groups were used for groupings with 999 permutations and max.order = 3. This analy-
sis was also conducted at the genus level with prior taxonomic agglomeration using the tax_glom func-
tion of the speedyseq (133) R package.

The relative occurrence frequency was calculated as described by Thompson et al. (52) using custom
R scripts available at github.com/MarescaLab/concrete_series. Per-ASV Shannon entropies of the relative
occurrence frequencies were calculated with the diversity function of the vegan R package (50).

Figure plotting. Figures 1, 4, and 7 and many of the supplemental figures were produced with the
ggplot2 (142) R package. Heat trees (Fig. 2; Fig. S2 and S3) were produced using the Metacoder (143) R
package.

Data availability. Data processing and analysis scripts are available at github.com/MarescaLab/
concrete_series. Demultiplexed 16S amplicon data sets trimmed of Illumina adapters, but otherwise
unmodified, were deposited at the NCBI Sequence Read Archive (SRA) under the BioProject number
PRJNA629592. For tables S1 to S4 and S8 to S11 (tsv files), see doi.org/10.6084/m9.figshare.14211038.
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