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Abstract 

Background:  Eukaryotic microbes can modulate mammalian host health and disease states, yet the molecular 
contribution of gut fungi remains nascent. We previously showed that mice exclusively colonised with fungi displayed 
increased sensitivity to allergic airway inflammation and had fecal metabolite profiles similar to germ-free mice. This 
marginal effect on the host metabolome suggested that fungi do not primarily use metabolites to modulate the host 
immune system.

Methods:  To describe functional changes attributed to fungal colonisation, we performed mass spectrometry-
based analyses of feces (Label-Free Quantitative; LFQ) and the small intestine (labeling with Tandem Mass Tag; TMT) 
of gnotobiotic mice colonised with defined consortia of twelve bacterial species, five fungal species, or both. We also 
evaluated the effect of microbiome perturbances on the metaproteome by analysing feces from mouse pups treated 
with an antibiotic or antifungal.

Results:  We detected 6675 proteins in the mice feces, of which 3845 had determined LFQ levels. Analysis of variance 
showed changes in the different gnotobiotic mouse groups; specifically, 46% of 2860 bacterial, 15% of 580 fungal, and 
76% of 405 mouse quantified proteins displayed differential levels. The antimicrobial treatments resulted in lasting 
changes in the bacterial and fungal proteomes, suggesting that the antimicrobials impacted the entire community. 
Fungal colonisation resulted in changes in host proteins functional in innate immunity as well as metabolism, predict‑
ing specific roles of gut fungi on host systems during early developmental stages. Several of the detected fungal 
proteins (3% of 1492) have been previously reported as part of extracellular vesicles and having immunomodulat‑
ing properties. Using an isobaric labelling TMT approach for profiling low abundant proteins of the jejunal tissue, we 
confirmed that the five fungal species differentially impacted the host intestinal proteome compared to the bacterial 
consortium. The detected changes in mouse jejunal proteins (4% of 1514) were mainly driven by metabolic proteins.

Conclusions:  We used quantitative proteomic profiling of gnotobiotic conditions to show how colonisation with 
selected fungal species impacts the host gut proteome. Our results suggest that an increased abundance of certain 
gut fungal species in early life may affect the developing intracellular attributes of epithelial and immune cells.

Keywords:  Early life gut microbiome, Quantitative Proteomics, Metaproteomics, Gut fungi, Gnotobiotic murine 
model, Antimicrobials
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Introduction
The fungal portion of the mammalian gut microbiome, 
also referred to as the mycobiome, is estimated to consti-
tute less than 0.1% of the gut ecosystem [1, 2]. Although 
it has been significantly less characterised than the bac-
terial microbiome, the mycobiome has an important and 
often overlooked role in host health and disease [3–5]. 
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Cell numbers alone do not provide a comparable meas-
ure for the microbiome communities as fungal cells are 
up to 100 times bigger in volume and with genomes from 
4 to 200 times larger than most bacteria [6], represent-
ing large biomass with potent production capacities for 
proteins and metabolites. Community ecology provides 
many examples of low abundance species with sizable 
impacts on community structure and function, showing 
that species’ importance cannot be predicted based upon 
their abundance in an ecosystem [7–9].

Fungi are an essential part of terrestrial and aquatic 
ecosystems, engaging in a wide variety of relationships 
with other members of microbial communities (i.e., 
bacteria, archaea, viruses) and their plant and animal 
hosts [10–12]. Bacteria modulate fungi’s ability to colo-
nise mammalian hosts, as evidenced by clinical [13] and 
murine [14, 15] studies describing the effects of antibiotic 
treatment on the gut mycobiome. In general, antibiotic 
use promotes fungal overgrowth, and its immunological 
consequences can be detected at distant sites such as the 
lung [13, 15]. Similarly, antifungals affect bacterial com-
munity structure and can have adverse effects on the 
host health [16]. Controlled release of inbred laboratory 
mice into an outdoor enclosure further demonstrated 
the impact of fungi on the host immune functions [5]. 
Although the mice rewilding enhanced the differentiation 
of immune cell populations previously associated with 
pathogen exposure, the resulting fungi-induced immune 
system changes occurred in the absence of an infection.

The inter- and intra-kingdom relations between 
microbes of the gut microbiome have been mostly 
described using the relative species abundance derived by 
DNA sequencing methods [17]. However, this approach 
does not characterise molecular interactions between 
microbes that occur directly through secreted molecules 
and by physical contact, or indirectly by modulating the 
host immune response. Using a gnotobiotic mice model, 
we previously demonstrated the impact of gut fungal col-
onisation on a defined bacterial consortium and the host 
[18]. Gut fungi promoted shifts in bacterial microbiome 
ecology, and mice colonised exclusively with fungi dis-
played immunological features related to atopy in early 
life. Intriguingly, gut fungi had a marginal effect on the 
host fecal metabolome [18], suggesting that other func-
tional mechanisms are at play. The results led us to inves-
tigate the host-microbiome interactions at the protein 
level, taking advantage of the defined experimental con-
ditions, the availability of the bacterial species’ genomes, 
and reference protein databases for the fungal species 
and mouse host.

Here, we show proteomic analyses of feces and small 
intestine of gnotobiotic mice, which were colonised with 
either 12 bacterial species (Bacteria, -B), a group of 5 

fungal/yeast species (Yeast, -Y), or a combination of the 
17 fungi and bacteria (Bacteria and Yeast, -BY) (Fig. 1A). 
We utilised the Oligo-MM12 bacterial consortium of 
mouse-derived strains that are persistent, inheritable 
and elicit an immune response in mice similar to a com-
plex microbiota [19, 20]. For fungi, we selected six fun-
gal strains from taxa that commonly colonise the human 
gut [21, 22] and have been previously linked to atopy 
and asthma risk [23, 24]. We also evaluated the effect of 
microbiome perturbances to the metaproteome by ana-
lysing feces from mouse pups treated with antibiotic 
Augmentin (BY_ABX) or antifungal Fluconazole (BY_
AFX). We selected Augmentin (Amoxicillin/Clavulanic 
acid) a broad-spectrum antibiotic commonly used in 
the paediatric population [25], as the animal model was 
designed to mimic adverse factors affecting the early life 
gut microbiome.

We observed dynamic relationships between the bacte-
ria and fungi that were reflected by changes in the indi-
vidual species proteome profiles derived from different 
colonisation and treatment conditions. Metaproteomic 
analyses based on label-free quantification (LFQ) of fecal 
proteins documented an extensive impact of microbial 
colonisation on the host and revealed new features of the 
host protein response to fungal colonisation. Proteomics 
of the jejunal tissue based on labeling with Tandem Mass 
Tag (TMT) provided further insights on the host cellu-
lar pathways impacted by the microbial colonisation and 
confirmed that gut fungi elicit distinct effects compared 
to bacteria.

Materials and methods
Gnotobiotic mice
Germ-free (GF) C57Bl/6J mice were obtained from and 
housed at the gnotobiotic mouse facility of the Inter-
national Microbiome Centre (IMC) at the University of 
Calgary. Details of the animal experiments have been 
previously described [18], and all the animal work was 
conducted following animal protocols approved by the 
Institutional Animal Care and Use Committee. Briefly, 
female adult GF mice were orally gavaged twice, three 
days apart, with 100  μl of a consortium of microorgan-
isms or kept under germ-free conditions. Colonisation 
consisted of consortia of (i) 12 mouse-derived bacteria 
[19] (B—bacteria), (ii) five yeast species previously linked 
to atopy and asthma risk in infants [26, 27] (Y—Yeast), 
or (iii) a combination of all 17 bacterial and yeast spe-
cies (BY) (Fig. 1A, Additional file 2: Table S1). We used 
previously described method for mice colonisation with 
the Oligo-MM12 consortium [19], in which inocula were 
prepared under anaerobic conditions by mixing 100  μl 
of 2-day-old microbial cultures of each species. Bac-
teria were grown in fastidious anaerobe broth (LabM, 
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Heywood, England, United Kingdom), and yeasts were 
grown in yeast-mold broth (YM; BD, Sparks, Maryland, 
USA). After the second gavage, mice were paired for 
mating on a 2:1 female:male ratio per cage. Two breed-
ing pairs were used for each group, and they produced 
on average 9 offspring (± 2) per colonisation condition, 
which constituted individual biological replicates in the 
gnotobiotic experiment. To ensure microbial colonisa-
tion with the desired consortia in the offspring, the cor-
responding inocula were further spread on the dams 
abdominal and nipple regions on days 3 and 5 after birth 
[28]. Microbial engraftment was confirmed by sequenc-
ing [18, 29], with an intestinal abundance of bacterial 
communities resembling previously described compo-
sition of the Oligo-MM12 consortium [19]. Two groups 
of mice colonised with both bacteria and yeasts were 
treated with the antibiotic Augmentin (0.2  mg/ml; Mil-
liporeSigma, St. Louis, Missouri, USA) or antifungal 
Fluconazole (0.5 mg/ml; MilliporeSigma) in sterile drink-
ing water from day 7 to 14 after birth (groups BY_ABX 
and BY_AFX, respectively). Treatment solutions were 
prepared by dissolving the antimicrobials in distilled 
water, followed by filter sterilisation. Mice were kept 
at maximum five animals per isolator cage and housed 
inside gnotobiotic flexible-film isolators, under a 12-h 

light/12-h dark cycle, 40% relative humidity, 22–25  °C, 
and ad libitum access to sterile food and water.

Enrichment of microbial cells from fecal sample
Fecal samples were collected from gnotobiotic mice at 
the end of their 3rd week of life and immediately stored 
at − 80  °C until use. After thawing at 4  °C, pooled sam-
ples of ~ 300 mg, originating from co-housed mice of the 
same treatment group, were subjected to differential cen-
trifugation to enrich for microbial cells, according to pre-
viously described methodology [30]. Briefly, each sample 
was resuspended in 4  ml of Phosphate-Buffered Saline 
(PBS), homogenised by using GentleMACS C tubes 
(Miltenyi Biotec, Bergisch Gladbach, Germany), and 
subjected to low-speed centrifugation at 20×g for 5 min 
(Centrifuge 5810 R, Eppendorf, Hamburg, Germany) to 
eliminate gross particulate material. The supernatant 
was transferred to 50  ml conical centrifuge tube and 
kept at 4 °C, whereas the pellet was resuspended in PBS. 
The washing step was repeated until the supernatant 
appeared translucent (5–7 times). The collected superna-
tant was centrifuged at 3214×g for 1  h, and the result-
ing pellet was subjected to cell lysis and protein digestion 
described below. A quality control step comprising of 
microscopic examination of Gram-stained fractions of 

Fig. 1  Description of a gnotobiotic colonisation model by label-free quantitative metaproteomics. A Experimental design of shotgun label-free 
proteomic experiment, including enrichment of fecal microbial cells by differential centrifugation. B Detected fecal metaproteome composed 
of proteins originating from 12 bacterial, 5 fungal species, and mouse. C PCA score plot based on the relative levels of 3845 proteins quantified 
for mouse, bacteria, and fungi/yeast. X- and Y-axis show the first and second principal components, accounting for 53.1% and 12.2% of the total 
variation, respectively. Abbreviations of the mice treatment groups: B, bacteria; BY, bacteria-yeast; BY_ABX/AFX, bacteria-yeast and antibiotic or 
antifungal treatment; GF, germ-free; Y, fungi/yeast



Page 4 of 17Pettersen et al. Animal Microbiome            (2022) 4:14 

the pellet was included to confirm bacterial and fungal 
cell extraction.

Murine intestinal tissue sample
Jejunal tissue dissected from the small intestine of 
4-weeks old mice was cleaned of luminal debris with PBS 
and snap-frozen in liquid nitrogen and stored at − 80 °C 
until further processing.

Protein extraction
Enriched fecal microbiota and jejunal tissue samples were 
resuspended in lysis buffer [2% sodium dodecyl sulfate, 
100 mM Triethylammonium bicarbonate (TEAB) buffer, 
10  mM Ethylenediaminetetraacetic acid, and 1X Com-
plete Mini EDTA free protease inhibitors (F. Hoffmann-
La Roche AG, Basel, Switzerland), pH 8.0] in 1:4 w/v ratio 
and transfer into a 2  ml screw-cap tube with FastPrep 
Lysing matrix A (MP Biomedicals, Irvine, California, 
USA). Cells were mechanically disrupted by bead-beating 
for 2 × 3  min at 30  Hz (TissueLyser II, Qiagen, Hilden, 
Germany). The samples were incubated at − 80  °C for 
10 min and at 95  °C for 10 min, followed by centrifuga-
tion for 30 min at 18,000×g, 4 °C. To disrupt released cel-
lular DNA that would interfere with downstream protein 
quantification, the supernatants were sonicated 3 × for 
10 s with 20 s resting intervals on ice. Sonicated samples 
were centrifuged at 18,000×g, 4 °C, for 10 min, the super-
natants collected, and protein concentration was meas-
ured by using DeNovix Spectrophotometer (DeNovix 
Inc., Wilmington, DE, USA).

Sample preparation for label‑free quantitative (LFQ) 
proteomics
The cell lysates of fecal microbiota-enriched samples 
were processed according to Filter-Aided Sample Prepa-
ration protocol [30, 31]. Briefly, cell lysates containing 
500 μg of total protein were incubated with 10 mM DTT 
in 100 mM Ammonium Bicarbonate (AmBic) at the solu-
tion to total protein ratio (v/w) 1:10 for 45 min at 56 °C. 
The samples were then mixed with 8 M Urea in 10 mM 
HEPES pH 8.0 (UA) in YM-30 Microcon filter units (Mil-
liporeSigma) and centrifuged at 10,000×g for 15  min. 
After discarding the eluate, the filtration units were 
washed once with the UA buffer (10,000×g, 15  min). 
Next, 50 mM iodoacetamide in UA was added to the fil-
ter, and samples were incubated in the dark for 20 min. 
The filter was washed twice with UA, followed by two 
washes with 50 mM AmBic. Proteins were digested with 
trypsin (Promega, Madison, Wisconsin, USA) in 40 mM 
AmBic at 37  °C for 18  h (enzyme to protein ratio (v/w) 
of 1:100). The resulting peptide mixtures were desalted 
by using SepPak C18 solid-phase extraction cartridges 
(Waters, Mississauga, Ontario, Canada), lyophilised at 

30 °C in a vacuum concentrator (Speed Vac Plus SC110, 
Savant Instruments Inc., Holbrook, New York, USA) and 
stored at − 80 °C until further analysis. Prior to the LC–
MS/MS analysis, the peptide mixtures were resuspended 
in 1% formic acid (FA). An aliquot of the tryptic digests 
was used to determine the concentration of the peptide 
mixtures by using Pierce™ Quantitative Colorimetric 
Peptide Assay (Thermo Fisher Scientific, Waltham, Mas-
sachusetts, USA).

Tandem mass tag (TMT) labelling
TMT samples were prepared according to the manufac-
turer’s instructions (TMTsixplex™ Isobaric Label Reagent 
Set, Thermo Fisher Scientific). Briefly, 150  μg of jeju-
nal tissue cell lysates were reduced by incubating with 
200  mM Tris (2-carboxyethyl) phosphine hydrochlo-
ride (TCEP) at 55 °C for 1 h and alkylated with 375 mM 
iodoacetamide in the dark for 30 min. The proteins were 
precipitated by acetone, resuspended in 50  mM TEAB, 
and digested with trypsin at 37 °C for 18 h. Resulting pep-
tide mixtures originating from 4 treatment groups (GF, 
B, BY, Y) and 5 biological replicates (n = 5) were labelled 
with TMT reagents distributed into 4 experimental 
groups (Additional file  1: Figure S1). Each experiment 
had one TMT tag (131) that contained pooled samples, 
created by combining equal amounts of peptides (20 ug) 
of each sample from one experimental group. The pooled 
samples served as internal standards for normalising the 
data across the experimental setup. For labelling, the 
peptides were incubated with TMT reagents for 1  h at 
room temperature. The reaction was quenched by adding 
5% hydroxylamine, followed by incubation for 15  min. 
The resulting four multiplexed samples were desalted and 
quantified as described above.

Mass spectrometry data acquisition
Liquid Chromatography: Tryptic peptides were ana-
lysed on an Orbitrap Fusion Lumos Tribrid mass spec-
trometer (Thermo Fisher Scientific) operated with 
Xcalibur (version 4.0.21.10) and coupled to a Thermo 
Scientific Easy-nLC (nanoflow Liquid Chromatography) 
1200 system. Tryptic peptides (2  μg) were loaded onto 
a C18 trap (75  μm × 2  cm; Acclaim PepMap 100, P/N 
164946; Thermo Fisher Scientific) at a flow rate of 2 μl/
min of solvent A (0.1% FA and 3% acetonitrile in LC–
MS grade water). Peptides were eluted using a 120  min 
gradient from 5 to 40% (5% to 28% in 105 min followed 
by an increase to 40% B in 15  min) of solvent B (0.1% 
FA in 80% LC–MS grade acetonitrile) at a flow rate of 
0.3 μL/min and separated on a C18 analytical column 
(75 μm × 50 cm; PepMap RSLC C18; P/N ES803; Thermo 
Fisher Scientific). The Orbitrap Lumos was calibrated 
before each batch and 100 fmol of Pierce BSA protein 
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digest (PI88341) was injected to control the performance 
of the LC and the mass spectrometer before the samples 
were acquired. The dates of sample runs are shown in 
Additional file 2: Table S1.

LFQ: Peptides were electrosprayed using 2.1 kV voltage 
into the ion transfer tube (300 °C) of the Orbitrap Lumos 
operating in positive mode. The Orbitrap first performed 
a full MS scan at a resolution of 120,000 FWHM to detect 
the precursor ion having m/z between 375 and 1575 and 
a + 2 to + 7 charge. The Orbitrap automatic gain con-
trol (AGC) and the maximum injection time were set at 
4 × 105 and 50 ms, respectively. The Orbitrap was oper-
ated using the top speed mode with a 3 s cycle time for 
precursor selection. The most intense precursor ions pre-
senting a peptidic isotopic profile and having an intensity 
threshold of at least 5000 were isolated using the quad-
rupole and fragmented by higher-energy collisional dis-
sociation (HCD, 30% collision energy) in the ion routing 
multipole. The fragment ions (MS2) were analysed in 
the ion trap at a rapid scan rate. AGC and the maximum 
injection time were set at 1 × 104 and 35 ms, respectively, 
for the ion trap. Dynamic exclusion was enabled for 45 s 
to avoid the acquisition of the same precursor ion having 
a similar m/z (plus or minus 10 ppm).

MS3-TMT: Analysis of TMT labelled peptide mixtures 
was carried out on the Orbitrap Fusion Lumos Tribrid 
mass spectrometer (Thermo Scientific) (control software 
Xcalibur™, version 4.0.21.10) using a data-dependent 
method with multi-notch synchronous precursor selec-
tion MS3 scanning for TMT tags. The Orbitrap was 
operated with a positive ion spray voltage of 2.1 kV and 
a transfer tube temperature of 300C. The scan sequence 
began with an MS1 spectrum (Orbitrap analysis, resolu-
tion 120,000; 375–1575  m/z, AGC target 1 × 104, maxi-
mum injection time 50  ms). The maximum number 
of precursors within a 3  s cycle time were fragmented 
using of collision-induced dissociation (normalised colli-
sion energy 35%) and the fragmented ions were analysed 
in the ion trap (turbo mode; maximum injection time 
50 ms). To quantify the TMT reporter ion, we collected 
MS3 spectra using a method in which the top 10 MS2 
ions were fragmented using HCD (collision energy 65%). 
The MS3 were analysed in the Orbitrap (AGC 1 × 105; 
maximum injection time 105  ms; isolation window 
2  m/z; resolution 50,000; scan range m/z 100–500). All 
acquisition methods are available in a summary format, 
as Additional file 1: Figure S2 (LFQ) and Additional file 1: 
Figure S3 (TMT MS3).

Protein identification and quantitation
The raw spectral data were processed using MaxQuant 
[32] (version 1.6.5.0). For the LFQ data, the Androm-
eda search engine [33] integrated into the MaxQuant 

framework performed the spectral data search against 
a matched protein database (Additional file 2: Table S1) 
composed of 12 genome-derived proteomes for the bac-
terial species (downloaded 26th November 2018 from 
NCBI) and 6 UniProtKB-derived protein databases for 5 
fungal species and mouse (downloaded 30th December 
2018). The MS3 spectra were searched against the mouse 
database.

For the MS data search, enzyme specificity was set to 
trypsin, allowing N-terminal cleavage to proline, and 
for ≤ 2 missed tryptic cleavages. Default settings were 
used for the MaxQuant searches, except that lysine acet-
ylation and glutamate/glutamine conversion to pyroglu-
tamic acid were set as variable modifications. N-terminal 
acetylation, methionine oxidation, and carbamidometh-
ylation of cysteines was set as fixed modifications. The 
initial allowed mass deviation of the precursor ion was 
set to ≤ 20 ppm, and the allowed value for the fragment 
mass was set to ≤ 0.5 Da. Match between runs was used, 
with match time window 0.7 min and alignment window 
time 10  min. The maximum false discovery rates (FDR) 
at peptide and protein levels were set to 1%. Proteins 
LFQ intensities were determined by using the MaxLFQ 
algorithms [34], where the normalisation is applied on 
the whole dataset. This LFQ approach is based on accu-
rate determination of spectrometric signal intensities 
(extracted ion chromatograms) of peptides and relies on 
measurements of the three-dimensional space of peptide 
ion intensity, m/z, and chromatographic elution time. 
However, for proteins at low abundance, XICs are often 
contaminated by nearby signals, and although a protein 
can still be identified, it might not be quantified because 
of low-quality data. TMT-MS3 data were processed 
with MaxQuant using Reporter ion MS3 and TMT-
6plex-Lys126-131 internal labels, with the search setting 
described above.

Proteins filtering and functional analyses
The MaxQuant output data were analysed by using Per-
seus (version 1.5.6.0) [38]. Annotations for the identified 
proteins were downloaded from the UniProtKB database 
[35]. Protein functional analyses, including metabolic 
pathway analysis, were performed using the DAVID [36] 
and STRING-db [37] tools. Information on the signifi-
cant differentially produced proteins derived from jejunal 
tissue was used to query the DAVID knowledge data-
base for pathway enrichment analysis, using the mouse 
genome as a reference list.

Filtering of protein identifications was performed as 
follows: first, we applied a default filtering of MaxQuant 
search results on proteins marked as “reverse”, “only iden-
tified by site”, and “potential contaminant”. Next, only 
proteins identified in at least two biological replicates 
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were considered. To identify false-positive identifica-
tions of microbial proteins in mice groups not colonised 
with bacteria and/or fungi, and previously ascertained 
by microbiological assays and quantitative PCR [29], 
we checked the protein identification type and filtered 
out those identified by the “match between runs” algo-
rithm of MaxQuant and not directly identified by MS. 
Also, proteins identified only by a single peptide and not 
identified by unique peptides were removed. Any other 
remaining proteins, whose origins were not consist-
ent with the type of microbial colonisation of a specific 
mice group were checked at the peptide level, to confirm 
whether these are valid identifications or not. For protein 
quantification, we considered only proteins with LFQ 
intensities in at least two biological replicates and identi-
fied by two unique peptides.

Statistical analyses
We performed LC–MS/MS analyses from 3–4 replicates 
of pooled fecal samples collected from mice belonging to 
each treatment group that underwent the same microbial 
colonisation and was housed in the same cage and gnoto-
biotic isolator. Jejunal tissue samples were derived from 
20 animals (5 GF, 5 B, 5 BY, and 5 Y mice), and the TMT 
experimental design is described in Additional file  1: 
Figure S1. To assess the biological variability of each 
experimental group, we calculated the Pearson correla-
tion coefficients based on the protein intensities of each 
sample (Additional file 2: Table S2). LFQ intensities were 
derived by the MaxLFQ algorithm, onto which we fur-
ther applied a median-centring normalization strategy. 
Before the normalisation step and statistical analyses, the 
proteins LFQ intensities were log2-transformed. To cor-
rect for differences in the sample amounts injected into 
LC–MS/MS, we normalised the relative protein amounts 
by dividing each protein LFQ intensity by the median 
intensity for all proteins in a given replicate [38] (Addi-
tional file 1: Figure S4). To account for potential peptide 
loading differences in fractions of the 4 different 6-plex 
TMT batches, we applied a correction factor based on 
the pooled samples containing TMT6 label 131 (Addi-
tional file 1: Figure S1). The TMT spectra intensities were 
first median normalised as described above and then 
each relative protein amount was divided by the correc-
tion factor.

To identify proteins with levels that differ substantially 
among the strains, we performed analysis of variance 
(ANOVA) to compare the global mean level of each pro-
tein against its corresponding amount in each condition. 
For the ANOVA test, FDR calculations were performed 
in Perseus by a permutation-based procedure with 250 
randomisations and a cut-off of 5%. To determine the 
exact pairwise differences in protein levels, Tukey’s 

honestly significant difference (THSD) was performed on 
ANOVA-defined significant hits. Each species was ana-
lysed separately, and only relevant mice groups were used 
in the statistical analyses (e.g., only those colonised with 
bacteria were used to analyse bacterial proteins). Princi-
pal component analysis (PCA) was performed by using 
MetaboanalystR 3.0 [39], using log-transformed data nor-
malised by median. Hierarchical clustering analysis based 
on the protein levels was performed in Perseus, by using 
Euclidean distance, average linkage, no constraints, and 
pre-processing with k-means. Figures 1 and 5 were cre-
ated using diagrams from BioRender.com. Data are avail-
able via ProteomeXchange with identifier PXD019355.

Results
Fecal metaproteome of defined gnotobiotic model.
Using a shotgun LFQ approach, we profiled the fecal 
metaproteomes of germ-free mice (GF), and mice colo-
nised with either 12 bacterial species (B—bacteria), five 
fungal species (Y—yeast), both bacteria and fungi (BY), 
and the latter group treated with an antibiotic (BY_ABX) 
or antifungal (BY_AFX) (Fig.  1A). We enriched micro-
bial cells from feces of four-week-old mice by differential 
centrifugation, digested cell lysates by trypsin, and ana-
lysed the resulting peptide mixtures using LC–MS/MS. 
We queried the acquired mass spectra (5.3 × 106 MS/MS) 
against a combined protein database of the 17 microbial 
species and mouse (Additional file 2: Table S1). The prot-
eomic search identified 70,190 unique peptide sequences 
(Additional file  3: Table  S3), mapped to 6675 proteins 
(Additional file  2: Table  S4). Of these, 68% were bacte-
rial, 22% fungal, and 10% were mouse proteins (Fig. 1B). 
Up to 58% of all detected proteins were characterised by 
LFQ intensities using the MaxLFQ method [34]. Prin-
cipal component analysis based on the protein relative 
levels identified three main clusters (Fig. 1C), suggesting 
similar protein profiles of Y and GF, B and BY, and BY 
mice groups treated with antimicrobials (BY_ABX and 
BY_AFX).

From the bacterial proteomes, 4.4% of detected pro-
teins shared peptides with other protein groups (Addi-
tional file  2: Table  S5). However, most of the identified 
peptides belonged to a single protein group (leading pro-
tein group); that is, the sequence coverage of peptides 
unique for the leading protein group was considerably 
higher than the sequence coverage of peptides belong-
ing also to alternative protein groups. For the fungal pro-
teomes, a high percentage of identified peptides belonged 
to multiple homologous proteins from different strains of 
the same species (e.g., Candida albicans strains SC5314, 
WO-1, CD36) (Additional file 2: Table S5). This was due 
to the use of UniProtKB reference protein databases for 
specific fungal species (Additional file 2: Table S1), which 
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included several strains of the same species. The use of 
reference databases was necessary because the fungal 
strains used for the gnotobiotic mice colonisation were 
clinical isolates without sequenced genomes, contrary to 
the bacterial strains, which have their genome sequence 
determined [20]. The shortcomings of using not perfectly 
matched protein databases were most apparent for two 
fungal strains (Pichia kudriavzevii and C. krusei), which 
were recently re-classified as strains of the same species 
[40] and did not have available individual databases. For 
these fungi, we used a common database based on ref-
erence P. kudriavzevii strains available in UniProtKB, 
resulting in decreased specificity of the MS data searches. 
Also, horizontal gene transfer might explain some of the 
homologous proteins; however, these events have been 
speculated to be relatively infrequent among microbial 
eukaryotes [41].

Using genome-specific protein databases for the bacte-
rial stains also had the advantage of accurate assignment 
of proteins for the 12 different bacterial strains, for which 
we did not observe any species cross identifications. 
Nevertheless, the general UniProtKB databases did not 
compromise the accuracy of fungal and mouse protein 
identification, and we observed minimal cross-kingdom 
identifications (e.g., same peptides mapped to a fungal 
and mouse protein), with these proteins being manually 
filtered out.

Inter‑kingdom interactions influence the proteome 
response of gut bacterial species to antimicrobials
From 12 bacterial strains used for the gnotobiotic mice 
colonisation, Clostridium clostridioforme YL32 had the 
most detected proteins (Fig.  1B), while Akkermansia 
muciniphila YL44 had the highest predicted proteome 
coverage (33%) (Additional file  2: Table  S5). The latter 
result correlated with 16S rRNA amplicon sequencing 
data [18], which determined A. muciniphila YL44 as the 
most abundant bacterial species. The number of proteins 
detected per condition was relatively similar for each 
species (Additional file 1: Figure S5).

From 2860 quantified bacterial proteins, we identified 
1317 proteins whose levels significantly varied between 
the mice groups (ANOVA followed by THSD post-hoc 
analysis, FDR 5%, see Additional file  2: Table  S6 for all 
proteins used for statistical analyses). For four bacte-
rial species with the largest number of detected proteins 
(C. clostridioforme YL32, A. muciniphila YL44, Blautia 
coccoides YL58, Muribaculum intestinale YL27), about 
50% of the quantified proteins showed differential levels 
(Additional file 2: Table S5), prompting in-depth evalua-
tion of the strains’ protein profiles.

The proteomes of these bacterial species displayed an 
array of responses to antimicrobial-induced ecosystem 
perturbances. Figure  2A shows 50 of the most signifi-
cantly changed proteins for four bacterial species with 
the largest number of detected proteins (see list of pro-
teins and their functional annotation in Additional file 2: 
Table S7). In the presence of fungal species, antibiotic or 
antifungal treatment appeared to have a similar effect on 
the proteome of A. muciniphila YL44 (comparison of BY_
ABX vs. BY_AFX groups), while for M. intestinale YL27, 
B. coccoides YL58, and C. clostridioforme YL32, the anti-
biotic treatment led to more proteins with increased lev-
els compared to the antifungal groups (Additional file 1: 
Table S8). For A. muciniphila YL44, M. intestinale YL27, 
and B. coccoides YL58, many proteins had significantly 
increased levels in response to treatment with either anti-
fungal or antibiotic (B/BY compared to ABX/AFX). For 
C. clostridioforme YL32, the detected proteome showed a 
contrasting response to the antimicrobial treatments. For 
instance, compared to the fecal proteome of the B only 
condition, there were 2.6 and 1.3 times less proteins with 
elevated levels than in the BY_AFX and BY_ABX groups, 
respectively (Additional file 1: Table S8). But when fun-
gal species were present in the mouse gut (BY group), 
the effect of the antibiotic on C. clostridioforme YL32 
appeared similar as for the other three strains (BY com-
pared to BY_ABX), while treatment with antifungal led to 
a 1.3-fold increase in proteins with elevated levels in the 
BY group (BY compared to BY_AFX).

It should be noted that the effect of increased protein 
levels in the ABX/AFX groups could be further ampli-
fied by the MS detection method itself, which is less sen-
sitive to low abundant proteins and will preferentially 
identify those with higher abundances (see Additional 
file  2: Table  S1—Summary of MS data search). In any 
case, these comparisons indicate that antimicrobial per-
turbance targeting bacterial or fungi cause differential 
responses among bacterial species that depend on spe-
cies identity and presence or absence of fungi.

For the rest of the bacterial strains, low numbers of 
quantified proteins did not allow for in-depth investiga-
tions. Nonetheless, seven of the strains showed consider-
able differences in the protein profiles between the mice 
groups (Additional file  1: Figure S6). A general picture 
has emerged from this comparison, in which antimicro-
bial treatments targeting bacteria or fungi during the sec-
ond week of the mice’s life resulted in lasting changes in 
the proteomes of the gut bacterial species.

Gut fungi differentially modulate bacterial proteomes
Next, we statistically compared the bacterial protein lev-
els between the B and BY groups to investigate the effect 
of fungi on the proteomes of the four strains with the 
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highest numbers of detected proteins (Fig. 2B). Similarly 
to what we observed for antimicrobials, fungal presence 
diversely influenced the proteomes of individual bac-
terial species. A. muciniphila YL44 and M. intestinale 
YL27 displayed increased amounts of proteins from 
various functional classes in the presence of fungi (Addi-
tional file 1: Figure S7). We observed the opposite for C. 
clostridioforme YL32 and B. coccoides YL58, where the 
levels of 100 out of 107 and 51 out of 52 differentially pro-
duced proteins, respectively (t-test, FDR 5%), decreased 
when fungi were present (Additional file  1: Table  S8). 
The proteomic observations for A. muciniphila YL44 
appeared to be inversely correlated with a decrease in 
A. muciniphila abundance based on 16S rRNA sequenc-
ing in the presence of fungi [18] (Additional file 1: Figure 
S7). For C. clostridioforme YL32, the trend of increased 
protein levels in the B group compared to the BY group 
also appeared to inversely correlate with the 16S-based 
abundances; however, these trends did not reach statis-
tical significance in the 16S sequencing data. Similarly, 
we could not derive a correlation with the sequencing 
data for M. intestinale YL27 and B. coccoides YL58, as 
the strains’ relative abundance appeared similar across 
the mice groups. Metaproteomic analyses thus provided 
complementary information to the sequencing data and 
yielded a higher resolution of the ecological interactions 
between the gut microbial species.

Gut bacteria and antimicrobial treatments modulate 
fungal proteomes
We detected 1492 proteins for the five fungal species 
colonising the gnotobiotic mice, and 39% of these pro-
teins were assigned LFQ levels. The lower numbers 
of proteins detected and quantified, as compared to 
bacteria, were a result of a lower abundance of fungi 
in the gut that we previously confirmed by quantita-
tive PCR and microbiological assays [18]. Also, the 
LFQ approached used [34], is less sensitive to low 
abundant proteins, which are less likely to be quanti-
fied. Most of the identified fungal proteins were pre-
sent in the Y group representing the mice colonised 
exclusively with fungi. We previously showed that the 
Y group harboured higher fungal concentration than 
co-colonised mice [18], confirming that a bacterial 
suppression of the fungal colonisation occurs in the 
host gut [42]. Of the five fungal species, C. glabrata 
had the highest number of identified proteins, which 
also dominated the Y group (Fig.  3A). However, anti-
biotic treatment (BY_ABX) led to higher detection 
of proteins derived from Pichia kudriavzevii/C. kru-
sei. The total number of differentially abundant pro-
teins between the mice groups and their distribution 
among the fungal species were rather similar for the 
following pairs of mice groups: Y—BY_ABX and BY—
BY_AFX (Fig. 3B). When we expressed the number of 

Fig. 2  The response of four bacterial proteomes to treatment with antimicrobials and the presence of gut fungal species. A A selection of 50 most 
significant differentially produced proteins for A. muciniphila YL44, M. intestinale YL27, B. coccoides YL58, and C. clostridioforme YL32 (ANOVA, FDR 
0.05). B Volcano plots representing the results of student t-test statistical comparison in protein levels between B and BY mice groups (FDR 0.05). 
Abbreviations of the mice treatment groups: B, bacteria; BY, bacteria-yeast; BY_ABX/AFX, bacteria-yeast and antibiotic or antifungal treatment
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differentially produced fungal proteins as a percentage 
of each strains detected proteins, we noticed that C. 
glabrata proteome showed a stronger response to the 
antibiotic treatment (BY_ABX), as compared to Y, BY 
and BY_AFX.

The presence of bacteria and early-life antimicrobi-
als had significant effects on the fungal species protein 
profiles. Arrangement into categories using functional 
annotations based on UniProtKB [35] and other data-
bases [36, 37], showed an increased number of fungal 
proteins related to stress responses in the antibiotic 
condition (Fig.  3C), suggesting that the fungal spe-
cies are either negatively affected by the changes in the 
bacterial microbiome or by the antibiotic treatment 
itself. Interestingly, many of the identified fungal pro-
teins were previously reported to be excreted via extra-
cellular vesicles [43, 44] and to have immunogenic 
properties [45, 46] (Additional file 2: Table S9). Among 
these proteins were enzymes of the glycolytic pathway 
(e.g., enolase, glyceraldehyde-3-phosphate dehydroge-
nase, fructose-bisphosphate aldolase, and phospho-
glycerate mutase) and molecular chaperones linked to 
stress response (heat shock proteins). These proteins 
were significantly elevated in the fungal group suggest-
ing that they are critical cytosolic proteins abundantly 
produced by fungal cells living in the mouse gut.

Fungal and bacterial colonisation induces distinct 
and persistent changes in the host fecal proteome
We identified 674 mouse proteins as part of the mice fecal 
metaproteome. From proteins quantified by LFQ (405), 
71% displayed differential abundance between the groups 
(ANOVA followed by THSD post-hoc analysis, FDR 5%, 
Additional file 2: Table S10). PCA score plot based on the 
quantified proteins showed four clusters (Fig.  4A): the 
first contained co-colonised mouse groups treated with 
antimicrobials (BY_ABX/AFX), and the second consisted 
of the B and BY groups. The third and fourth clusters 
included the Y and GF groups, and these were consid-
erably more dissimilar from the first two clusters. Host 
proteins in the Y group were more clearly separated from 
the GF mice, in contrast to clustering when also micro-
bial proteins were considered (Fig. 1C), revealing that the 
proteome response to fungal colonisation may be more 
pronounced in the host proteome than in microbial cells. 
The GF group displayed the highest number of proteins 
associated with lipid metabolism, regulation, and molec-
ular processing, while the BY and BY_AFX groups had 
the highest numbers of immune proteins (Fig. 4B). In the 
BY_ABX group, we identified an increased number of 
stress response proteins. Moreover, the Y and GF groups 
displayed an increased number of proteins associated 
with energy metabolism (e.g., mitochondrial proteins).

Fig. 3  Response of fungal proteomes to antimicrobials and presence of bacteria. A Distribution of detected fungal proteins across four mice group 
(n = 1492). B Distribution of fungal proteins with significantly changed levels across four mice groups (n = 99, ANOVA, FDR 5%). Additional file 2: 
Table S6 shows the fungal proteins identified as having significantly different levels. C Distribution of the main functional classes of detected fungal 
proteins (n = 1492). Proteins functional annotation was downloaded from the UniProtKB database [29] and compared to annotations obtained 
using the DAVID [30] and STRING-db [31] tools. Abbreviations of the mice treatment groups: BY, bacteria-yeast; BY_ABX/AFX, bacteria-yeast and 
antibiotic or antifungal treatment; Y, fungi/yeast
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Proteins whose levels significantly varied between the 
mouse groups belong to the following functional classes: 
processing proteins such as proteases, hydrolases, and 
chaperones (14%), proteins linked to cell cycle regula-
tion, motility, and cytoskeleton, including components 
of the tight junctions (14%), transport and membrane 
proteins including epithelial cell surface receptors (13%), 
proteins of energy and lipid metabolism (12% and 9%, 
respectively), and gut immune and barrier factors (9%). 
To tease apart the mouse proteome response to different 
microbes, we statistically compared pairs of treatment 
groups containing either fungi or bacteria (Additional 
file  1: Figure S8). The introduction of the 12-species 
bacterial consortium led to a striking decrease in the 
mouse protein levels, and this was valid both for germ-
free mice (GF vs. B) and mice colonised with fungi (Y vs. 
BY). Although gut fungi did not have the same significant 
effect on the mouse proteome as bacteria, we detected a 
fivefold decrease in the number of proteins whose lev-
els increased in the Y group compared to GF (GF vs. Y). 
The presence of fungi and bacteria resulted in a twofold 
increase compared to bacteria alone (BY vs. B), particu-
larly of proteins associated with the immune system, 
energy metabolism, and cellular processing.

Because the mouse protein levels were strongly 
dependent on the gut microbial consortium, we gave 
special attention to the individual functional classes of 
differentially produced proteins. Figure  4C shows 45 
differentially produced mouse proteins with the largest 

variation between the mice groups. Levels of 27 immune 
proteins were the highest in GF mice, followed by those 
colonised only with fungi. Two immune proteins were 
elevated in the presence of fungi: acid mammalian chi-
tinase (Chia), implicated in the defense response against 
fungi, and regenerating islet-derived protein 3-gamma 
(Reg3g), a bactericidal C-type lectin reported to have 
bactericidal activity [47, 48]. Thus, our results suggest 
that Reg3g might also be involved in the intestinal cells’ 
response to fungal colonisation. However, more data will 
be needed to support the involvement of Reg3g in the 
epithelial cell response to fungi.

Bacterial presence resulted in a reduction in the 
mucosal Pentaxin (Mtx2) levels, a secreted protein 
involved in complement activation, Intelectin 1 (Itln1), 
a receptor that binds microbial glycans, and Dipeptidyl 
peptidase 4 (Dpp4), cell surface receptor and dipeptidyl 
protease involved in T-cell activation. In addition, lev-
els of other immune proteins, such as Mucin 2 (Muc2), 
Poly-Ig receptor (Pigr), and immunoglobulin heavy chain 
(IgH), were altered by the shifts in microbial composition 
caused by antimicrobial treatments.

The absence of microbes resulted in elevated levels of 
mouse proteins linked to carbohydrate metabolism both 
at the cellular [e.g., Pyruvate Kinase (Pkr)] and host level 
[glycosidases such as Pancreatic Alpha-Amylase (Amy2), 
Lactase (Lct), and Trehalase (Treh)]. Amy2, a glycosidase 
that hydrolyses alpha-linked polysaccharides such as 
starch and glycogen, had the highest levels in the Y group, 

Fig. 4  The response of host fecal proteome to microbial colonisation and antimicrobial treatment. A PCA score plot based on 405 quantified 
mouse proteins. X- and Y-axis show the first and second principal components, accounting for 22.9% and 14.8% of the total variation, respectively. B 
Functional classes of 651 detected mouse proteins, with the protein annotations derived from the UniProtKB database [29] and compared to those 
obtained by the DAVID [30] and STRING-db [31] tools. C Selection of differentially produced mouse proteins extracted from feces. Abbreviations of 
the mice treatment groups: B, bacteria; BY, bacteria + fungi; BY_ABX/AFX, bacteria + fungi and antibiotic or antifungal treatment; GF, germ-free; Y, 
fungi/yeast
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suggestive of increased Amy2 production response to 
either fungal polysaccharides or fungal metabolism on 
dietary sugars. Fungi also elicited a strong effect on host 
proteins associated with lipid metabolism. The highest 
levels were identified in the Y group for the host enzyme 
Colipase (Clps), a cofactor of pancreatic lipase facilitat-
ing lipids digestion, and Phospholipase A2 (Pla2g1b), a 
secreted protein involved in lipid degradation and innate 
immune mucosal response. Closely connected to the 
immune system are phospho- and sphingolipid metabo-
lism enzymes, which often have regulatory properties 
towards immune cells. Of those, we identified Neutral 
Ceramidase (Asah2), a membrane protein hydrolysing 
sphingolipid ceramides into sphingosines and free fatty 
acids, whose relative levels were the lowest in BY and B 
groups.

Cytoskeletal and cell adhesion proteins were also sig-
nificantly increased in the GF and Y mice. These included 
cadherin-related proteins 2 and 5 (Cdhr2 and Cdhr5), 
which regulate microvilli length, and Claudins 3 and 7 
(Cldn3 and Cldn7), controlling tight junction-specific 
obliteration of the intercellular space. Notably, Keratin-
33A and -81 (Krt33a and Krt81), structural proteins that 
form the cytoskeleton’s intermediate filaments in epi-
thelial cells, displayed the highest levels in the Y group, 
followed by the B group and had the lowest levels in the 
BY groups treated with antimicrobials. Adhesion pro-
teins with regulatory properties and links to the immune 
system included Tetraspanin-8 (Tspan 8), Epithelial Gly-
coprotein 314 (Epcam), and Basigin (Bsg), a cell surface 
receptor. All three proteins showed increased levels in 
the GF and Y groups.

One of the most prevalent functional classes among 
the differentially produced proteins were proteases, 
which had the highest levels in the GF and Y groups, 
and the lowest in the BY and B groups. Among these was 
for example Angiotensin-converting enzyme (Ace2), a 
carboxypeptidase with multiple regulatory functions, 
including gap junction assembly. Other proteases with 
regulatory properties included membrane-bound met-
alloproteases Meprin A (Mep1a) and B (Mep1b), impli-
cated in the inflammatory response. Alongside proteases, 
protease inhibitors followed the same quantitative pat-
tern as described above. These included Serpins, serine 
protease inhibitors that negatively regulate endopepti-
dase activity in response to cytokines (Serpinb1a, Ser-
pina1d), innate immune response, inflammation, and 
cellular homeostasis (Serpinb1a, Serpinb6).

Numerous regulatory proteins were present among 
the proteins with increased levels in the GF and Y group, 
such as the Annexin family of Ca2+-regulated phospho-
lipid-binding and membrane-binding proteins (Anxa4, 
Anxa11, Anxa13) and nuclear proteins such as Onzin 

(Plac8) suggested to regulate immune responses. Over-
all, the metaproteomic analyses documented an exten-
sive impact of microbial colonisation in a controlled early 
life gut microbiome model, underlining the intertwined 
functional development of the host and its gut microbi-
ome, and revealing new features of the host response to 
fungal colonisation.

Fungal colonisation drives alterations in the mouse jejunal 
tissue proteome
Given the exciting findings from the mice fecal metapro-
teomes, we decided to investigate more closely the 
host proteome. We selected the small intestine as our 
site of interest because it contains the body’s largest 
immune organ (the gut-associated lymphoid tissue) and 
is an important site of the host-microbe interactions 
[49]. We used a tandem mass tag labelling approach 
(TMT 6-plex) to gain a higher sensitivity for low abun-
dant proteins (Fig.  5A). From the TMT 6-plex experi-
ment, we identified 10,201 peptides (Additional file  2: 
Table S11) matched to 1514 mouse proteins (Additional 
file 2: Table S12), and the levels of 45 were significantly 
altered between the mice groups (ANOVA, THSD post-
hoc analysis, FDR 5%, Additional file 2: Table S13). PCA 
score plot revealed different grouping results than for the 
mouse fecal proteomes (Fig. 5B). Functionally, the 45 sig-
nificantly changed proteins were mainly associated with 
cellular metabolism and regulation of cellular processes 
(Fig.  5C). Pathway analysis identified oxidation–reduc-
tion, glutathione metabolism and cell–cell adherence 
as significantly enriched processes (Additional file  2: 
Table S14).

Compared to the fecal mouse proteome, proteome 
changes of the jejunal tissue related to microbial colo-
nisation were more subtle. Figure 5D shows the relative 
levels of 45 differentially produced mouse jejunal pro-
teins with significant variation between the mice groups. 
Among immune proteins whose levels increased with the 
presence of fungi were Alpha-defensin 2 (Def20) and Ig 
gamma-1 chain C region secreted form (Ighg1). From 10 
proteins functionally connected to lipid metabolism, two 
Glutathione S-transferase enzymes (Gstm2 and Gsta4) 
were significantly decreased in the fungal group. We 
also detected two proteins of retinol metabolism (Retsat 
and Aldh1a1), which play a key role in mucosal immune 
responses. Fungal colonisation further appeared to 
impact the intestinal cells’ energy metabolism, as several 
mitochondrial proteins had decreased levels in the fungi 
group, most notably, two subunits of Cytochrome C oxi-
dase (Cox5b and Cox7a1).

Some of the differentially produced proteins have 
functional links to NF-κB pathway, such as the apop-
totic marker Poly (ADP-ribose) polymerase (Parp1). In 
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some contexts, particularly in response to cellular stress, 
stimulation of the NF-κB pathway promotes apoptosis 
[50]. Selenium acts as a key element that controls NF-κB 
activation and the half-life of its inhibitor IκBα, and we 
detected two selenium-binding proteins (Selenbp1 and 
Selenbp2). Overall, the TMT 6-plex analysis of the jeju-
nal tissue provided further insight on host cellular path-
ways impacted by defined microbial colonisation and 
confirmed that gut fungi elicit differential effects com-
pared to bacteria.

Discussion
In this work, we used a controlled environment of gnoto-
biotic mice colonised with defined microbial consortia to 
precisely describe changes in the metaproteome profiles 
associated with alterations in the gut microbiome. By 
reducing the gut microbiome’s complexity to 12-bacte-
rial species, five fungal species, or the combination of the 
17 microbes, the gnotobiotic model allowed us to isolate 
specific contributions and cross-kingdom interactions 
between the gut-associated bacteria and fungi, as well as 
the host response to the microbial colonisation.

Several normalisation methods for quantitative 
metaproteomic data have been suggested, including 
generation of a mock community, and normalisation of 
protein levels for each sample and species to a constant 
value [51]. The latter method depends on a sufficient 
number of measurements for each species to be normal-
ised. We described in our earlier study [29], using DNA 

sequencing data, that some of the bacterial and fungal 
species are in low abundance. For that reason, we chose 
not to normalise the data for each species to a constant 
value because only very few proteins would be consid-
ered for the low abundant species and possibly skew the 
data in favour of the more abundant species. However, it 
is possible to avoid normalisation to species if the refer-
ence protein sequences of the organisms under study 
are used for generating quantitative proteomic data [51]. 
Indeed, we took advantage of the genome-sequenced 
bacterial consortium [20] and used matched protein 
databases for MS data searches. This strategy yielded an 
accurate and specific identification of proteins from the 
12 bacterial species. For fungal strains that did not have 
sequenced genomes, the use of UniProtKB reference pro-
tein databases resulted in decreased specificity of the MS 
data searches, yet still correct assignment of fungal pro-
teins to specific species. In this way, we avoided the issue 
of protein identifications shared between two or more 
species, which would compromise the accuracy of the 
determination of the protein’s relative quantitative lev-
els and prevent its use in subsequent statistical analysis. 
Moreover, the used MaxLFQ normalisation method [34] 
have been applied in other metaproteomic studies for 
accurate label-free quantification of proteins [52].

The fungal species chosen for the gnotobiotic experi-
ment are amongst the ones commonly reported from 
human samples [1, 27, 53]. Still, we acknowledge that a 
limited number of species was investigated, and the effect 

Fig. 5  Response of mouse jejunal proteomes to microbial colonisation. A Experimental design of Tandem Mass Tag (TMT) labelling experiment. B 
PCA score plot based on 1019 mouse proteins quantified in a minimum of 5 biological replicates. X- and Y-axis show the first and second principal 
components, accounting for 34% and 17.7% of the total variation, respectively. C Functional classes of 45 differentially produced mouse jejunal 
proteins (ANOVA followed by THSD, FDR 5%). D Selection of differentially produced mouse proteins extracted from jejunal tissue. Abbreviations of 
the mice treatment groups: B, bacteria; BY, bacteria + fungi; GF, germ-free; Y, fungi/yeast
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of other important fungi (Malassezia sp., Saccharomy-
ces sp.) remains to be tested. Our previous work deter-
mined the impact of the selected gut fungal species on 
the structure of gut microbiome community and host 
immune development [18]. Here, we strengthened these 
results using a metaproteomic approach that provided an 
independent functional measure of the microbiome-host 
crosstalk. Similarly to other multi-omics studies [54, 55], 
we found discrepancies between the quantitative pro-
teome profiles and the DNA-based relative abundance 
of individual species. These differences likely stem from 
complex regulatory networks along the gene to protein 
expression path, which differ between microbial king-
doms. The latter was recently documented in a study 
showing dynamic ratios between protein and RNA levels 
that depended on the type of microbial population [56].

For the fungal species, a meaningful comparison 
between the protein and DNA data was hindered by 
the absence of genome-specific protein databases that 
would guide the raw MS data searches. However, cor-
responding with our earlier results [18], the proteomic 
data showed that fungi grew in higher concentrations in 
bacteria’s absence. This finding is in line with the interk-
ingdom competition and antagonism between bacteria 
and fungi in other ecosystems, such as the rhizosphere 
and soil [57], and in mammalian hosts, where commensal 
bacteria limit fungal colonisation via activation of innate 
mucosal immunity [42] and directly by producing inhibi-
tory metabolites such as short-chain fatty acids [58].

Despite the lack of a linear relationship between the 
DNA and protein data, our earlier results from the 16S 
rRNA sequencing aided the interpretation of the bac-
terial proteome responses, and the combined analy-
ses revealed antagonistic and synergistic relationships 
between the bacterial and fungal species. For example, 
we identified Lactobacillus reuteri as a potent responder 
to the fungal presence from the sequencing data, as the 
bacterium abundance was significantly reduced in the BY 
group. Only a few L. reuteri proteins were quantified, and 
those displayed lower amounts in the absence of fungi, 
conversely to the DNA sequencing results (Fig.  6A). 
Some of the most abundant bacterial proteins were 
detected in the B-only group (ribosomal protein L31, 
enolase, and translational factor Tu) along with three 
dehydrogenases, whose increased production often indi-
cates cellular stress. For another low abundant bacterial 
species, Clostridium innocuum, we observed a similar 
reciprocal relation between the proteomic and sequenc-
ing data (Fig.  6B). Taken together with the observed 
variations in the proteome response of the four most 
abundant bacterial species (Fig. 2), the proteomic data is 
suggestive that the cells are affected by changes in the gut 
environment related to the fungal presence (L. reuteri, A. 

muciniphila, M. intestinale) or absence (C. innocuum, B. 
coccoides, C. clostridioforme). Similar results were found 
in samples from mice treated with antimicrobials, which 
impacted levels of numerous proteins and often led to 
their elevated production (Fig.  2 and Additional file  1: 
Fig. S6). Such proteome response has been documented 
for bacterial cells treated with antibiotics [59], where the 
cells optimise their proteins’ production to deal with the 
adverse environmental factor. Moreover, protein aggre-
gation is a likely bacterial strategy to survive antibiotic 
treatment [60].

One of this study’s most striking findings was a similar 
impact of the antibacterial and antifungal treatments on 
bacterial and fungal species’ proteomes. Inhibitory effects 
of antifungal drugs on the growth of commensal bacteria 
are poorly described [61], but it may be that the antifun-
gal Fluconazole inhibits intestinal bacteria to some extent 
via direct or indirect mechanisms, similarly to other 
non-antibiotic drugs [62]. The antibiotic and antifungal 
treatments also had a strong effect on the quantities and 
types of fungal proteins being produced, revealing how 
these antimicrobial drugs impact the entire community, 
with similar functional consequences. Ecosystem pertur-
bances caused by either antibiotics or antifungal drugs 
may impact the gut microbiome keystone species, caus-
ing a widespread effect on microbial networks and food 
webs [63].

Host proteins present in the intestine are essential for 
maintaining a mutualistic relationship with the microbes 
on the mucosal interface and serve as reporters on the 
host-microbe interactions. Host fecal proteome has 
been reported to exhibit signatures specific to coloni-
sation states [64]. However, to our knowledge, protein 
response to exclusive fungal colonisation has not been 
characterised before. For the first time, we described at 
the proteome level the cellular pathways and their pro-
tein components involved in the interactions between 
the mammalian host and gut fungal species. Fungal colo-
nisation resulted in changes in host proteins functional 
in innate immunity as well as metabolism (Fig.  4), sug-
gesting specific roles of gut fungi on host systems dur-
ing early developmental stages. Further research aimed 
at investigating these roles has great potential for novel 
discovery, given that most host-microbiome interactions 
described to date have been limited to bacteria.

In the host jejunal proteome, most of the differen-
tially produced proteins had metabolic functions (Fig. 5). 
The quantitative profiles of proteins with significantly 
changed levels showed closer clustering of the GF and B 
groups (Fig. 5D). These results likely reflect the host con-
trol of the number of bacterial cells in the small intestine, 
where they would otherwise compete for easily digest-
ible nutrients. Alternatively, the more subtle differences 
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in jejunal proteomes across microbial colonisation con-
ditions, as compared to profound changes identified in 
fecal metaproteomes, may also reflect host homeostatic 
pressures present in intestinal tissues. Nonetheless, these 
findings indicate that fungal colonisation influences host 
jejunal proteome in a distinct way from bacteria.

The identification of multiple fungal proteins hypothe-
sised to be abundant components of the extracellular ves-
icles suggests that fungi influence the host through direct 
cell-to-cell contact. Possible mechanisms may be akin to 
recently described interactions between segmented fila-
mentous bacteria and mice intestinal epithelial cells [65]. 
These bacteria protruded into the epithelial cells and 
used adhesion-triggered endocytosis to transfer antigens 
into intestinal epithelial cells and modulate host T cell 
homeostasis. Similarly, epithelial internalisation of fun-
gal hyphae, a morphology into which fungal cells transi-
tion to strengthen their adherence to epithelial cells [66], 
can deploy fungal extracellular vesicles with host cell-
modulatory properties. Fungal cells produce a diverse 

array of biologically active compounds [67, 68], but the 
understanding of the mycobiome contribution to immu-
nomodulatory substances present in the gut remains 
rudimentary.

It should be noted that the results of this experimen-
tal study need to be interpreted with caution, since only 
a limited number of microbial species was included. We 
used a selection of prevalent fungal species of the mam-
malian gut, yet many more remain to be explored and 
characterized. In addition, the complexity of interac-
tions between the host and the gut microbiome, as well 
as within the different microbial kingdoms, will likely 
increase exponentially with an increasing number of spe-
cies. Other limitations of this work include the lack of 
genome references for the fungal strains colonising the 
mice. Further efforts to carry out whole genome sequenc-
ing of fungal species and strains commonly associated 
with mammalian gut will reveal a better-resolved analy-
sis of the functional role of these understudied microbes 
to their microbial ecosystems and their impact on the 

Fig. 6  Detection of stress response in bacterial proteomes. The relative abundance based on 16S rRNA sequencing and differentially produce 
proteins of Lactobacillus reuteri (A) and Clostridium innocuum (B). Proteins quantified in a minimum of two replicates are shown; grey fields in 
heatmaps indicate the protein amount was below the quantification limit. Colour denotes microbial colonization (red B – bacteria, blue BY – 
bacteria + yeast, cyan blue BY_Abx – BY + antibiotic, purple BY_Afx – BY + antifungal)
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host. Also, fecal samples are a proxy for the colon micro-
biome. Although technically challenging, sampling along 
the gastrointestinal tract will reveal additional insights on 
microbial colonisation of the small and large intestine. 
Finally, label-free quantification is a common strategy 
adopted in metaproteomic studies but has low sensitivity 
to more scarce proteins as well as limitations in quanti-
fication accuracy. The application of metabolic labelling 
for improved peptide quantification [69] holds the poten-
tial to improve the accuracy of quantitative metaprot-
eomics, and promote the application of proteomics for 
functional studies of intestinal microbiomes.

Conclusions
In this work, we report previously unknown interactions 
between specific gut bacteria, fungi, and a mammalian 
host by using quantitative proteomic analyses of gnotobi-
otic mice colonised with defined microbial communities. 
Broad changes in microbial proteomes reflected interk-
ingdom interactions between bacteria and fungi, as well 
as a response to antimicrobials. Our data also described 
for the first time the key role of fungal colonisation and 
how it impacts the host intestinal proteome. Further, we 
characterised cellular pathways and their protein com-
ponents involved in the interactions between the mam-
malian host and gut fungal species. Our results suggest 
that an increased abundance of certain fungal species 
in early life may impact the developing intracellular bal-
ance of epithelial and immune cells. The work sets the 
stage for future studies that will explore the details of 
molecular mechanisms by which gut fungi modulate host 
physiology.
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