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Abstract: Cell-penetrating peptides (CPPs) have been widely used for drug-delivery agents; however,
it has not been fully understood how they translocate across cell membranes. The Weighted Ensemble
(WE) method, one of the most powerful and flexible path sampling techniques, can be helpful to
reveal translocation paths and free energy barriers along those paths. Within the WE approach
we show how Arg9 (nona-arginine) and Tat interact with a DOPC/DOPG(4:1) model membrane,
and we present free energy (or potential mean of forces, PMFs) profiles of penetration, although a
translocation across the membrane has not been observed in the current simulations. Two different
compositions of lipid molecules were also tried and compared. Our approach can be applied to any
CPPs interacting with various model membranes, and it will provide useful information regarding
the transport mechanisms of CPPs.
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1. Introduction

Cell-penetrating peptides (CPPs) have been extensively studied for a long time since
they are capable of transporting various cargoes (e.g., proteins, peptides, DNAs, and even
small drugs) into cells [1]. Various factors, including the concentration of CPPs and the
properties of the membrane affect the transport mechanisms of CPPs [2,3]. It has been
known that the translocation mechanisms of different families of CPPs are not the same,
and most CPPs can have more than a single pathway depending on the experimental
conditions such as a concentration of CPPs [4].

Arginine (R)-rich peptides have been extensively studied because of their effectiveness
in translocation [2,5]. One of the possible scenarios for the insertion of R-rich peptides into
the lipid bilayer is a strong interaction with negatively charged phospholipid heads.

Molecular dynamics (MD) simulations have been used to investigate functional prop-
erties of various CPPs and their interactions with many different lipids; however, the
mechanism of translocation of CPPs and interactions with lipids are still under debate.

Herce et al. [6,7] showed in their MD simulations that the attractive interactions
between the Arg9 (or Tat) peptides and the phosphate groups of the phospholipids results
in significant local distortions of the bilayer, and these distortions lead to the formation of
a toroidal pore. However, Herce et al.’s simulation was criticized by Yesylevskyy et al. [8]
that the spontaneous translocation of CPPs in MD simulations is not expected within a
short time scale (100∼200 ns). It is believed that the time required for the translocation of
CPP is on the order of minutes [9].

It is unclear that we can observe the translocation of CPPs across the membranes using
conventional all-atom MD simulations. However, an MD simulation is still one of valuable
tools to study protein-lipid interactions, and it can provide us with detailed information
such as the contribution of electrostatic energy between CPPs and the membranes, effects of
water molecules, etc. In our previous work [10], we found that the electrostatic interaction
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between Arg9 and a DOPC/DOPG(4:1) membrane plays a role at the initial stage of
translocation. We also quantitatively showed that several water molecules coordinated
by Arg9 increased during the penetration, and this led to a membrane thinning and a
decreased bending rigidity of the membrane. However, we could not find a translocation
of Arg9 across the membrane within a 1 µs time scale.

Due to the short time scale achieved in current MD simulations, people have been
using biased simulations (e.g., umbrella sampling [11–13], steered MD simulations [14]) to
study CPPs and their interactions with membranes. The umbrella sampling is very popular
to obtain free energy barrier between CPPs and membranes. However, people have noticed
that there could be an artifact in the free energy analysis due to a short simulation time in
each window.

In this study, we implement a weighted ensemble (WE) method [15] in our MD simu-
lations (see more in the Section 2). The WE method is one of very flexible path sampling
techniques and it is easy to implement. A detailed review was given by Zuckerman and
Chong [15]. We use the WESTPA software [16,17], which has been widely applied to
various systems, ranging from atomistic to cellular scale. It turns out that the WE method
is very effective for studying interactions between CPPs and membranes and for obtaining
free energy barriers in the current study.

First, we apply the WE method to Arg9 with a DOPC/DOPG(4:1) membrane used in
the previous study [10] as well as Tat with identical lipids. Only a few simulations used
mixtures of lipids (e.g., a mixture of DOPC/DOPG or DOPC/DOPE) so far, and it is still
unclear whether the surface charge of a membrane affects the translocation of CPPs. For
example, a DOPC/DOPG(1:1) membrane appeared the better host for the translocation
of KR9C in experiments [18] and the fluorescence probe carboxyfluorescein-labeled R9
(CF-R9) translocates continuously across the lipid membrane of single DOPG/DOPC(2/8),
DOPG/DOPC(4/6), and DLPG/ DTPC(2/8) giant unilamellar vesicles (GUVs) and enters
these GUVs without pore formation [19]. However, Herce et al. showed in their experiments
that DOPG lipids are not necessary for the Arg9 peptides to penetrate bilayers [7]. Thus,
we also simulate two different lipid compositions, DOPC/DOPE(4:1) and DOPC lipids,
respectively, to see if the surface charge of model membranes affects the penetration of CPPs.
Then, the free energy barriers between CPPs and model membranes can be obtained using
the WE simulation data, and these free energy calculations will be helpful to understand
the transport mechanisms of CPPs.

2. Methods
2.1. Equilibrium Simulations

All simulations were performed using the NAMD package [20] and CHARMM36 force
field [21]. The following systems were well equilibrated before starting the WE simulations:
4 Arg9 with a DOPC/DOPG(4:1) membrane (System I), 4 Tat with a DOPC/DOPG(4:1)
membrane (System II), 4 Arg9 with a DOPC/DOPE(4:1) membrane (System III), and
4 Arg9 with a DOPC membrane (System IV). CHARMM-GUI [22] was used to setup a
DOPC/DOPG(4:1) membrane, a DOPC/DOPE(4:1) membrane, a DOPC membrane and
TIP3P water molecules. The DOPC/DOPG(4:1) mixture consists of 76 DOPC and 19 DOPG
lipids in each layer in System I. The same model membrane was used in System II. System
III has a DOPC/DOPE(4:1) mixture which consists of 80 DOPC and 20 DOPE lipids in
each layer. System IV has 95 DOPC lipids in each layer. K and Cl ions were added in each
system to make a concentration of 150 mM. All Arg9 (in System I, III, and IV) or Tat (in
System II) peptides were initially located in the upper solution, and they were bound to
the upper layer during the equilibration.

The NPT simulations were performed at T = 310K. Temperature and pressure were
kept constant using Langevin dynamics. An external electric field (0.05 V/nm) was ap-
plied in the negative z-direction (from CPPs to the membrane) as suggested in previous
work [7,23] and also in our previous simulations [10] to account for the transmembrane
potential [24]. The particle-mesh Ewald (PME) algorithm was used to compute the elec-
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tric forces, and the SHAKE algorithm was used to allow a 2 fs time step during the
whole simulations.

In the case of System I, we use a pre-equilibrated structure in the previous study [10],
which was equilibrated up to 1 µs. System II was also equilibrated for at least 1 µs.
The other two systems (System III and IV) were equilibrated for 100 ns before starting
the WE simulations. This time scale is enough for CPPs to close to model membranes.
Figure S1 (see Supplementary Information) shows both an initial setup and a snapshot
after equilibration for each system, and Figure S2 presents radial distribution functions of
the followings: phosphorus atoms vs. water, phosphorus atoms vs. oxygen in water, ester
oxygen vs. oxygen in water. These plots show that the quality of hydration of membranes
is very similar to each other. During the equilibration, CPPs were confined in the upper
water box so that there is no interaction between CPPs and the lower leaflet of model
membranes. Whenever a CPP is leaving the upper water box, a small force was applied to
pull that CPP inside the box. All CPPs in each system were well contacted with the lipid
molecules after the equilibration, and then the WE simulations were performed using those
equilibrated systems.

2.2. Weighted Ensemble (WE) Simulations

We use the WESTPA (The Weighted Ensemble Simulation Toolkit with Parallelization
and Analysis) software package [16,17] to enable the simulation of rare events, for example,
translocation of CPPs across a model membrane. WESTPA is an open source, and its utility
has been proved for a broad range of problems. All WE trajectories are unbiased and hence
used to calculate conditional probabilities or transition rates.

To use the WE method in MD simulations, we need to define a progress coordinate,
several bins, several walkers (child simulations) in each bin, and a time interval for splitting
and combining trajectories [17]. We define the progress coordinate as a distance in z-
direction between the center of mass of phosphorus atoms in the upper leaflet and that
of a CPP (Arg9 or Tat). After equilibration of each system, an initial distance between
phosphorus atoms and a CPP was measured, and boundaries were set using this initial
position and the position of the center of the membrane, for example, [−18 Å (the center
of membrane), 3 Å (the initial distance)]. Each bin size was 0.25 Å and, the number of
walkers in each bin was 5. The time interval for splitting and combining the trajectories
was set 5 ps during all the WE simulations. The progress coordinate was calculated using
MDAnalysis [25]. The potential mean of force (PMF) profiles were obtained from each WE
simulation data using “w_pdist” and “plothist” codes in the WESTPA package [16,17].

3. Results
3.1. WE Simulations Show Much-Enhanced Penetration within a Short Amount of Time

We observe that both Arg9 and Tat penetrate through the middle of the model mem-
brane during the WE simulations; however, translocation across the membrane has not
been observed in the current simulations.

Figure 1 shows the penetration depth of both Arg9 and Tat vs. the number of iterations
of each WE simulation. Here, we define the penetration depth as a distance between the
center of mass of CPP and that of phosphorus atoms of the upper leaflet. The penetration
depth of Arg9 in the previous equilibrium simulation was about −6∼−7 Å [10], and the
current WE simulation shows −17.6 Å and −17.7 Å for Arg9 and Tat, respectively. The
initial positions of Arg9 and Tat after equilibration are different from each other; however,
they quickly penetrate the DOPC/DOPG(4:1) membrane. Please note that these plots show
only one of the trajectories of each simulation which shows the maximum penetration
depth. Multiple trajectories cannot reach the middle of the membrane. As one can see in
the figure, the penetration depth changes a lot within a very short time scale. As described
in the Section 2 each iteration corresponds to 5 ps and the figure shows that both CPPs
reach their maximum penetration depth within a very short time scale (3∼5 ns) after the
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WE simulation started. Therefore, the WE method provides us with a very effective tool to
overcome potential energy barriers.

Figure 2 presents snapshots of both Arg9 and Tat, which show the maximum pen-
etration depth during the WE simulation. The yellow shows each CPP, and gray is the
lipids. The blue and red are phosphorus atoms of the upper and the lower leaflets. Water
molecules, ions, and the other three CPPs are omitted for clarity. As one can see in Figure 2,
the membrane is deformed a lot when Arg9 or Tat penetrates the middle of the membrane.
Figure S3 in Supplementary Information shows membrane curvature more clearly. As
shown in the previous simulation [10], several water molecules around a CPP is increased
when the CPP penetrates the membrane, and a membrane thinning is also observed in the
current WE simulations.
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Figure 1. The penetration depth of Arg9 (blue line) and Tat (red line) vs. several iterations.

Figure 2. Snapshots of Arg9 (left) and Tat (right) with a DOPC/DOPG(4:1) model membrane (yellow:
CPP, gray: lipids, blue and red: phosphorus atoms of DOPC and DOPG, respectively).

3.2. Electrostatic Energy between a CPP and a Model Membrane Plays a Role during the Translocation

In our previous equilibrium simulation of Arg9 with a DOPC/DOPG(4:1) membrane,
we showed that electrostatic energy between Arg9 and the membrane is strongly correlated
with the penetration depth of Arg9 [10]. This proved that electrostatic interaction between
a CPP and a membrane is essential at the early translocation stage [26].

We calculate the same electrostatic energy between Arg9 (or Tat) and the membrane.
We want to see if there is still a strong correlation between electrostatic energy and pene-
tration depth during the WE simulations. We use two trajectories in Figure 1 to calculate
electrostatic energy.
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Figure 3 presents the penetration depth (left axis, black line) vs. electrostatic energy
(right axis, blue line) between Arg9 and the lipid molecules within 15 Å of Arg9. The
red dotted line is an average over every 30 iterations. The figure shows that an absolute
magnitude of electrostatic energy becomes smaller when Arg9 rapidly penetrates inside
the membrane (e.g., between 450th ∼ 550th iterations). Therefore, one can expect that the
penetration increases as the magnitude of electrostatic energy becomes smaller.

We find similar behavior in the case of Tat. Figure 4 shows the same energy calculation
for Tat. The red dotted line is an average over every 30 iterations as before. The penetration
increases gradually as the magnitude of electrostatic energy becomes smaller.

At the initial stage of translocation, it is well known that the interaction between
positive charges of CPPs and a negative part of lipid molecules is essential for binding.
The current simulations show that electrostatic interaction between CPPs and membranes
still plays a role during the translocation of CPPs. In System I and System II Arg9 and Tat
strongly interact with DOPG lipids, and the translocation seems not easy. However, our
simulations show that the translocation of CPPs is possible even in this strong electrostatic
interaction. During the translocation, the electrostatic interaction should be diminished.
We conjecture that water molecules play a role to make electrostatic energy weaker. As
shown in the previous work [10], several water molecules around CPPs are increased
during the translocation.
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and lipids molecules within 15 Å of Arg9 (right axis, blue line). The red dotted line is an average
over every 30 iterations.

3.3. The Free Energy Profiles Based on the WE Simulation Data Show That Arg9 Penetrates
through a DOPC/DOPG(4:1) Model Membrane Much Easier Than Tat Does

This section presents the potential mean of force (PMF) profiles of Arg9 and Tat along
the penetration paths shown in Figure 1. Another advantage of using the WE method is
that it provides a free energy analysis without any biased sampling (e.g., umbrella sam-
pling) [17]. Therefore, these PMF profiles will tell us how much potential energy barriers
exist along those paths and which CPP can penetrate the membrane more efficiently.

Figure 5 shows the PMF profiles of both Arg9 and Tat as a function of a progress
coordinate (or reaction coordinate). We use a penetration depth as the progress coordinate.
The progress coordinate becomes negative when Arg9 and Tat penetrate below the upper
leaflet of the membrane. The blue line is the PMF profile for Arg9 and the red line for Tat.
One can notice that the free energy of Arg9 is much lower than that of Tat. Figure 5 shows
that a free energy barrier is about 100 kT for Arg9 to reach the middle of the membrane
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while it is about 280 kT for Tat to reach a similar position. This means that Arg9 penetrates
the DOPC/DOPG(4:1) membrane much easier than Tat does. However, these analyses can
depend on the type of model membranes, and we cannot conclude that Arg9 is always more
efficient for penetrating membranes than Tat regardless of membrane types. The order
of magnitude of free energy for Arg9 (∼100 kT) is very similar to a previous result [27],
which used umbrella samplings. On the other hand, Tat’s order of magnitude of free
energy is much higher than those of previous simulations [8,13]. Please note that most of
the previous free energy analyses were done with a single lipid molecule (e.g., DOPC or
DPPC), while we use a mixed composition of lipid molecules (DOPC/DOPG(4:1)) in our
simulations. Although the magnitude of free energy can depend on systems studied, the
observed tendency between Arg9 and Tat is consistent with experimental results [28,29]
which showed more efficient cellular uptake of Arg9 than Tat.
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3.4. Different Lipid Compositions Slightly Affect the PMF Profiles of Arg9

It is interesting to see whether a different lipid composition can affect the pene-
tration depth and the PMF profile. Figure 6 presents the PMF profiles of Arg9 with
DOPC/DOPG(4:1) lipids, DOPC/DOPE(4:1) lipids, and DOPC lipids, respectively. The
blue line is for Arg9 with DOPC/DOPG(4:1) lipids shown already in Figure 5. The red
one is for Arg9 with DOPC/DOPE(4:1) lipids and the orange for Arg9 with DOPC lipids.
DOPC and DOPE lipids are neutral, while DOPG lipids are negatively charged. We want
to see if the translocation of CPPs strongly correlates with the lipid types, e.g., the charge
of membranes.

Version November 27, 2021 submitted to Membranes 8 of 11
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The minimum point in each plot is different from each other because the initial position
of each CPP after equilibration is not the same. Although the initial positions are different
from each other, the slope of each plot looks very similar to each other. Although Arg9
in System III (with DOPC/DOPE(4:1) lipids) and Arg9 in System IV (with DOPC lipids)
have not reached the final position as of System I (with DOPC/DOPG(4:1)), the similar
slope means similar variations in free energy. Based on these plots, we can conjecture that
the penetration of Arg9 is not much dependent on the lipid composition, and the effect of
surface charge is minimal.

4. Discussion

Both Arg9 and Tat do not show any translocation across the model membranes during
the WE simulations. However, the WE method can be helpful to identify the transport
mechanisms of CPPs and interactions between CPPs and lipid molecules because conven-
tional equilibrium MD simulations have difficulty in sampling. Free energy (potential
mean of force, PMF) profiles can be obtained without any biased simulation (e.g., umbrella
sampling) within the WE approach. The WE simulation and its free energy analyses can be
used to study the efficiency of penetration of CPPs.

Is it possible to observe the translocation if we simulate much longer? Currently, both
Arg9 and Tat are stuck in the hydrophobic core. They can stay in the hydrophobic core for
a long time even if we simulate much longer. They can move up and down a little, but it is
not likely to move in either direction, moving back or forward. A visual inspection shows
that they are trapped inside the hydrophobic core. The lipids make a small cage around
CPPs so that CPPs cannot move easily. It seems that a single CPP cannot cause further
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deformation of the membrane at the current stage, and thus it is difficult to move. There is
a possibility that the free energy barriers along the downward direction are much higher
than those along the upward direction. In that case, it is easier for CPPs to go back to the
hydrophilic region where they started. It will be interesting to try the WE simulations from
the current positions of both Arg9 and Tat to the hydrophilic area outside, i.e., the positive
z-direction. Then, we will obtain another free energy profiles for both Arg9 and Tat, and
these profiles will give us a clue.

There are still some limitations in our WE simulations. First, a time scale of each
trajectory shown in Figure 1 is less than 10 ns. Please note that the total simulation time for
each CPP simulation is about 5∼10 µs, which includes all the walkers (child simulations)
in each bin and all the iterations. This time scale of a single trajectory might be too short
to observe a water pore mentioned in the previous results [8,13,27,30]. Second, our PMF
profiles are incomplete because we do not find any translocation of CPPs and PMF profiles
spanned only from the top to the middle of the model membranes. It has been known
that free energy barriers between CPPs and membranes are changed in the presence of a
water pore. For example, Huang et al. [27] reported that the free energy becomes lower
in the presence of a water pore. This confirms the previous results from MD simulations
and a continuum modeling which calculate the free energy of a single arginine residue
for translocating across a membrane [31–34]. We need more WE simulation data points to
complete the free energy profiles, which include translocation of CPP across the membranes
and the effect of the water pore. Third, we have not attached any cargo to Arg9 (or Tat) in
the current study. We expect that the conformational changes both in CPP and the model
membranes depend on a type of cargo. CPPs are commonly used with attaching negatively
charged molecules and thus the total charge of the system decreases or becomes closer to
neutral. It is not clear whether the overall charge of the whole system or only the charge of
CPP is essential for the internalization. Most electronic neutral CPPs are usually far less
powerful than cationic or amphiphilic CPPs. However, the electronic neutral cyclic peptide
cyclosporin A (CsA) can have stronger (5-fold or 19-fold) penetrating capacity than other
neutral peptides and its penetrating capacity was as strong as Tat [35]. On the other hand,
in the case of oligoarginine (Rn: n = 4, 8, 12, 16) R12 and R16 showed more efficient uptake
than R4 and R8 [36]. If only the charge of CPP is essential during the translocation, we can
compare the free energy barriers of these oligoarginine within the WE method and identify
their penetration efficiency.

It has been known that it is difficult for a single CPP to make a pore and to make
a translocation across the membrane [8]. One of the key factors which makes the water
pore is a concentration of CPPs. In our WE simulations, the P(protein)-L(lipids) ratio was
0.042 or 0.05, and these concentrations maybe not be enough to observe the translocation
across the membrane. Another critical factor for translocating CPPs is pH dependence.
Experimental results showed the uptake of CPPs depends on pH values [37,38], and the
uptake of CPPs is enhanced at low pH. It is worth trying MD simulations at low pH to
see if any changes in conformational changes both in CPPs and in the model membranes.
There has been significant progress in the development of constant pH molecular dynamics
(pHMD) techniques [39,40] and this approach with the WE method would be good to
reveal the pH dependence in interactions between CPPs and the model membranes.

Our simulations show characteristics of both the carpet-like model [41] and the mem-
brane thinning model [42]. It is interesting to note that an orientation (a direction from the
N-terminal to the C-terminal) of CPPs (Arg9 or Tat) in our simulations is almost parallel
to the membrane, and its orientation is changed a little during the entire simulation. This
could be one of the reasons that it is difficult for a single CPP to make a water pore. In
this work, the progress coordinate was set for a single CPP, and it was difficult to observe
aggregation of CPPs in a local area. To make a water pore, a collective behavior between
CPPs seems to be essential, and a high concentration of CPPs would be needed. It is worth
using an increased concentration of CPPs and implementing a progress coordinate as a
distance between the center of mass of the phosphorus atoms of the upper leaflet and that
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of more than a single CPP (e.g., two Arg9 or two Tat). However, the penetration of two
CPPs seems much slower than using a single CPP.
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