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Abstract

To date, the coronavirus disease 2019 (COVID‐19) has a worldwide distribution.

Risk factors for mortality in critically ill patients, especially detailed self‐evaluation
indicators and laboratory‐examination indicators, have not been well described. In

this paper, a total of 192 critically ill patients (142 were discharged and 50 died in

the hospital) with COVID‐19 were included. Self‐evaluation indicators including

demographics, baseline characteristics, and symptoms and detailed lab‐examination

indicators were extracted. Data were first compared between survivors and non-

survivors. Multivariate pattern analysis (MVPA) was performed to identify possible

risk factors for mortality of COVID‐19 patients. MVPA achieved a relatively high

classification accuracy of 93% when using both self‐evaluation indicators and

laboratory‐examination indicators. Several self‐evaluation factors related to

COVID‐19 were highly associated with mortality, including age, duration (time from

illness onset to admission), and the Barthel index (BI) score. When the duration, age

increased by 1 day, 1 year, BI decreased by 1 point, the mortality increased by 3.6%,

2.4%, and 0.9% respectively. Laboratory‐examination indicators including C‐reactive
protein, white blood cell count, platelet count, fibrin degradation products, oxyge-

nation index, lymphocyte count, and D‐dimer were also risk factors. Among them,

duration was the strongest predictor of all‐cause mortality. Several self‐evaluation
indicators that can simply be obtained by questionnaires and without clinical ex-

amination were the risk factors of all‐cause mortality in critically ill COVID‐19
patients. The prediction model can be used by individuals to improve health

awareness, and by clinicians to identify high‐risk individuals.
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1 | INTRODUCTION

Coronavirus disease 2019 (COVID‐19) has been reported in the

Wuhan area of China's Hubei Province since the end of December

2019. Huanggang was the second city in China to be locked down only

next to Wuhan. As of April 10, more than 1.5 million confirmed cases

of COVID‐19, including more than 92,000 deaths, had been reported

to the World Health Organization (WHO).1 COVID‐19 not only causes

pneumonia, but can also damage other organs such as the heart, liver,

kidney, blood system, and immune system. Patients eventually die of

multiple organ failure (MOF), shock, acute respiratory distress syn-

drome (ARDS), heart failure, arrhythmia, or renal failure.2–4 With the

increasing number of deaths, clinicians are most concerned about the

following questions: (1) What are the differences in the clinical char-

acteristics between surviving and nonsurviving critically ill patients?

(2) What are the risk factors for mortality in critically ill COVID‐19
patients? (3) Is there a quick and feasible way for COVID‐19 patients

to perform risk self‐assessments?

To date, there have been many studies on the clinical courses,

outcomes, mortality of and risk factors for critically ill patients, but

those studies were retrospective observational studies or cohort

studies using descriptive analyses. As reported by Huang et al.,5 older

patients and those with chronic underlying conditions may have worse

outcomes. Patients with severe illness may develop dyspnea and hy-

poxemia within 1 week after disease onset, which may quickly pro-

gress to ARDS or MOF. Yang reported that compared with survivors,

nonsurvivors were older, more likely to develop ARDS, and more likely

to receive mechanical ventilation.6 Zhou proposed three clinical fea-

tures of COVID‐19 nonsurvivors: older age, higher sequential organ

failure assessment (SOFA) score, and high D‐dimer levels.7 Although

these studies indicated the clinical courses of and risk factors for

severe patients, they did not provide a quantitative ranking of the

importance of risk factors, so for a given severe patient, it was

impossible to predict the probability of mortality.

Multivariate pattern analysis (MVPA), based on machine learning,

decodes different patterns by learning a discrimination rule from a

dataset and can subsequently categorize new samples. Compared with

the univariate approach, MVPA considers multiple variables together

to take better advantage of the inherent multivariate nature of high‐
dimensional data, and it can identify the features that contribute the

most to the classifier.8,9 Among many MVPA methods, support vector

machine (SVM) method is widely used for its excellent classification

performance and its ability to handle very high‐dimensional data.

In this paper, the SVM method is performed to establish a

mortality prediction model for critically ill patients with COVID‐19.
The main aims were to: (1) assess the differences in the clinical

characteristics between survivors and nonsurvivors based on sys-

tematic comparison of predictors; (2) detect the possible risk factors

associated with mortality in critically ill COVID‐19 patients and (3)

identify risk factors that were consistently good discriminators for

mortality. The identified characteristics or risk factors can help

clinicians to identify high‐risk patients quickly and patients to do self‐
monitoring through risk assessment.

2 | METHODS

2.1 | Study design and participants

This single‐center study was performed at Dabie Mountain Regional

Medical Center (Huanggang, Hubei Province), which is a designated

hospital for the treatment of patients with COVID‐19. We screened

all adult patients who had been diagnosed with COVID‐19, according
to WHO interim guidance, and those who were critically ill, who died

or who were discharged between January 28, 2020 (when the first

patients were admitted) and March 13, 2020, were included in our

study. Identification of critically ill patients was achieved by re-

viewing and analyzing admission logs and histories from all available

electronic medical records and patient care resources.

A total of 1500 adult COVID‐19 patients were discharged or

died in the Dabie Mountain Regional Medical Center before March

13, 2020. After excluding 1272 patients who were not critically ill or

who were still hospitalized, six patients who died within 24 h after

admission, and seven inpatients without available key information in

their medical records, we included the maximum number of patients

who met the inclusion criteria. In total, 215 inpatients were included

in the following analysis. Of them, 51 patients died during hospita-

lization and 164 were discharged (Figure 1A). Two kinds of indicators

were collected on admission: self‐assessment indicators and

laboratory‐examination indicators. Self‐assessment indicators in-

cluded information on demographics, baseline characteristics, and

symptoms. Laboratory‐examination indicators included results of

routine tests such as routine blood indicators, and so forth.

2.2 | Data preprocessing

Because not all patients had undergone all the laboratory‐
examinations, we needed to preprocess the raw data. First, subjects

for whom more than 15% of information was missing and those for

whom more than 15% of variable values were missing were excluded.

Accordingly, 192 patients (50 nonsurvivors vs. 142 survivors) and

47 indicators (17 self‐assessment indicators and 30 laboratory‐
examination indicators) were finally included in the following ana-

lysis, see Table S1 for abbreviations of the laboratory‐examination

indicators.

Imputation of the rest missing values was then conducted

utilizing multivariate imputation by chained equations (MICE)

implemented in the R package “mice,” The method is based on fully

conditional specification, where each incomplete variable is im-

puted by a separate model.10 The MICE algorithm can impute

mixes of continuous, binary categorical data. MICE is a robust

method for imputation compared with other methods such as

mean imputation or complete case analysis which can bias results.

We imputed missing data for C‐reactive protein (CRP; 2.11%),

procalcitonin (PCT; 2.11%), erythrocyte sedimentation rate (ESR;

4.74%), and so forth (See Table S2). Furthermore, the outliers

were reset as the boundaries of the data. Specifically, the quantile
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of 1% and 99% of each continuous variable was calculated, re-

placing the data less than 1% quantile and more than 99% quantile,

respectively.

2.3 | SVM modeling

SVM is a popular classifier among many machine learning technol-

ogies because of its ability to handle small samples with high‐

dimensional features. To alleviate the risk of overfitting and facilitate

follow‐up characterization of contributing features, we chose linear‐
SVM as the classifier.11

Our dataset contained unbalanced sample sizes (50 non-

survivors vs. 142 survivors), which could cause serious bias in our

classification model if we trained the model with the unbalanced

data. To overcome this challenge, we used the random under‐
sampling algorithm for the majority class group (i.e., the survival

group). Specifically, for each repetition, we randomly selected the

F IGURE 1 The study flow diagram of the
participants (A) and the SVM analysis (B).
SVM, support vector machine
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under‐sampling dataset from the survival group with the same

sample size (50 subjects) as the nonsurvival group. We repeated

the under‐sampling procedure 10 times to obtain the final result.

We applied a nested 10‐fold cross‐validation (CV), with the outer

10‐fold CV loop estimating the generalizability of the model and

the inner 10‐fold CV loop determining the optimal parameter set C

for the linear‐SVM model. The outer 10‐fold CV served as the

primary mechanism to prevent overfitting, with the inner 10‐fold
CV for model selection. We applied the R package e1071 to

implement the SVM in the present study.

In the outer 10‐fold CV, all subjects were randomly divided into

10 subsets according to their group labels. Each feature was line-

arly scaled to zero mean and unit variance across the training da-

taset; and the scaling parameters were also used for later

predictions. The training and testing procedures were repeated

10 times, with each subset used once as the testing set. For all the

testing subjects for each fold, the accuracy sensitivity, specificity,

precision, recall, and F1 were computed to quantify the perfor-

mance of the classifier.

Within each loop of the outer 10‐fold CV, we applied an inner

10‐fold CV to determine the optimal cost C. Specifically, the

training set for each loop of the outer 10‐fold CV was further

partitioned into 10 subsets according to group labels. Nine subsets

were selected to train the model under a given parameter set of C

values (C = [0.01, 0.1, 1, 10, 100]) and the remaining subset was

used to test the model. For each C value, accuracies were measured

for each inner 10‐fold CV loop, and a mean value for all the 10‐fold
inner loops was then obtained to indicate the inner prediction ac-

curacy. The C with the highest inner prediction accuracy among the

5 inner 10‐fold CVs was chosen as the optimal parameter. Finally,

all data of the inner 10‐fold CV were trained with the best para-

meter C, and the testing subjects of the outer 10‐fold CV were

predicted.

Accordingly, for each under‐sampling repetition, each loop of the

outer 10‐fold CV resulted in a specific optimal parameter C, and a

corresponding SVM model. After establishing a 10‐fold outer CV,

10 SVM models were generated, and the performance of each SVM

model was evaluated. The final performance measures were aver-

aged across the 10‐fold performances to produce the under‐sampling

performance metrics.

2.4 | Contributing indices

A crucial aspect of linear SVM is displaying and analyzing the

features that drive the multivariate classifier. Here, we

calculated the feature weights ω (i.e., the coefficient for each

indicator) for each SVM model, and the sum of the feature

weights of all 10 SVM models was defined as the final feature

weight for each data set. Then, the feature weights were linearly

scaled to (0, 1). The indices with the highest weights were

deemed the contributing indices for the nonsurvival and survival

predictions. The flow diagram of the SVM analysis is shown in

Figure 1B.

3 | RESULTS

3.1 | Statistical analysis

We expressed descriptive data as means (SDs) for continuous vari-

ables and numbers (%) for categorical variables. Of the 192 critically

ill patients with COVID‐19, the mean age was 59.57 ± 16.82

(mean ± SD), and 124 were male (64.6%). The most common clinical

symptoms were fever (155 patients, 80.7%), cough (134 patients,

69.8%), and chest pain (77 patients, 40.1%). A total of 134 (69.8%)

patients had at least one basic disease. Among the nonsurvivors, 14

(28%) patients died of respiratory failure, 3 (6%) patients died of

circulatory failure, 35 (70%) patients died of MOF, and 5 (10%) patients

died of other causes, such as carcinoma, and severe immunological

disorders secondary to rheumatic diseases.

We assessed the differences between survivors and non-

survivors using a two‐sample t test for continuous variables and a

test of independence in a contingency table for categorical variables.

The obtained test statistics and corresponding two‐sided p values are

listed in Tables 1 and 2. Table 1 demonstrates the statistical analysis

results of all self‐evaluation indicators. Compared with survivors,

nonsurvivors were older (t = −4.65, p = 5.73 × 10−6), had a long time

from illness onset to admission (t = −13.2, p = 1.2 × 10−28) and had a

lower Barthel index (BI) score (t = 7.75, p = 2.1 × 10−13). There were

significant differences between survivors and non‐survivors in the

distribution of age (χ2 = 33.8, p = 2.5 × 10−6; Figure S1). Patients with

chronic underlying conditions had worse outcomes, such as digestive

disease (χ2 = 6.93, p = .0085), cardiovascular disease (χ2 = 6.66,

p = .01), cerebrovascular disease (χ2 = 15.3, p = 8.9 × 10−5) and

chronic obstructive pulmonary disease (χ2 = 5.6, p = .018) than those

without underlying conditions. The nonsurvivors were more likely to

have dyspnea (χ2 = 7.82, p = 5.1 × 10−4) than the survivors among all

critically ill patients with COVID‐19.
Table 2 demonstrates the statistical analysis results of all

laboratory‐examination indicators. As summarized in Table 2, the

levels of inflammation or infection‐related indices (CRP, WBC, PCT)

and hypercoagulability‐related indicators (D‐dimer, fibrin degrada-

tion products [FDP]) were significantly higher in the nonsurvivors

than in the survivors. More prominent thrombocytopenia was found

in nonsurvivors. Blood gas analysis and respiratory parameters re-

vealed higher rates of hypoxia (lower PO2, SO2) and acidosis (lower

pH values); higher CO2 levels; and greater lactate accumulation

(higher PCO2, lat.) and respiratory impairment (lower oxygenation

index [OI]values) in the nonsurvivors than in the survivors. The levels

of albumin and calcium ions and lymphocyte counts (LYMPH) were

significantly lower, and aspartate aminotransferase, the international

normalized ratio, blood sugar, and sodium ions were higher in the

survivors than in the nonsurvivors. There were no significant dif-

ferences in alanine aminotransferase (ALT), total bilirubin (TBIL),

creatinine, blood urea nitrogen (BUN), or markers of hepatic or renal

function between the survivors and nonsurvivors. There were no

differences in the hemoglobin level, ESR, prothrombin time, activated

partial thromboplastin time, fibrinogen level, or potassium ions between

the two groups.
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3.2 | Classification performance and risk factors
for mortality

To predict the prognosis of critically ill patients with COVID‐19 ac-

cording to indicators at admission, we constructed an SVM model

with all the self‐evaluation indicators and laboratory‐examination

indicators as input features. Over the 10 undersampling iterations,

the classifiers achieved a mean test accuracy of 93 ± 2% between

survivors and non‐survivors from 10‐fold CV, as shown in Figure 2A

(inner plot). Permutation testing showed that the accuracies re-

ported by real‐label samples were significantly different from those

reported by random‐label samples (p = .019, Table S3).

Figure 2A (outer plot) is the plot of all indicators sorted by weight.

The greater the weight, the more likely the indicator was to be a risk

factor for mortality. Duration (time from illness onset to admission)

had the highest weight of 1, which meant it was the strongest pre-

dictor of all‐cause mortality. The weights (ω) of 11 indicators were

greater than 0.3, including three self‐evaluation indicators: duration

(ω = 1 ± 0), the BI score (ω = 0.45 ± 0.11), and age (ω = 0.33 ± 0.12). For

the nonsurvivors, the median time from illness onset to admission was

22.5 (interquartile range [IQR]: 15–28) days, and the median age was

71 (IQR: 61–78) years, the median BI score was 45 (IQR: 10–70).

When the duration, age, and the BI score increased by 1 day, 1 year,

and 1 point, the mortality increased by 3.6%, 2.4%, and 0.9%

respectively, as shown in black dashed lines in Figure 2B.

Eight laboratory‐examination indicators with weights greater than

0.3, including CRP (ω=0.54 ±0.08), WBC (ω=0.5 ± 0.09), Ca+

(ω=0.40± 0.07), PLT (ω=0.39 ±0.08), FDP (ω=0.33 ± 0.05), OI

(ω=0.33± 0.12), LYMPH (ω=0.31 ±0.08), and D‐dimer (ω=0.30 ±0.06),

were considered to be important risk factors. The detailed weights are

listed in Table S4.

3.3 | Predictive ability of self‐evaluation
indicators and laboratory‐examination indicators

To estimate the predictive ability of the self‐evaluation indicators and

laboratory‐examination indicators in predicting a poor prognosis, we

TABLE 1 Demographics, baseline characteristics, and symptoms of patients with critically ill COVID‐19 patients

Survivors (n = 142) Nonsurvivors (n = 50) Statistics/p value

Demographics

Age, years (SD) 56.4 (17.2) 68.45 (11.7) t = −4.65,

p = 5.73 × 10−6

Sex (female/male) 52/90 16/34 χ2 = 0.34, p = .56

Duration (SD) 7.9 (5.3) 21.1 (7.8) t = −13.2,

p = 1.2 × 10−28

Barthel index (SD) 80.3 (27.6) 44 (30.8) t = 7.75, p = 2.1 × 10−13

Baseline characteristics: n (%)

Digestive disease 5 (3.5%) 7 (14%) χ2 = 6.93, p = .0085

Cardiovascular disease 58 (40.8%) 31 (62%) χ2 = 6.66, p = .01

Cerebrovascular disease 16 (11.3%) 18 (36%) χ2 = 15.3, p = 8.9 × 10−5

COPD 21 (14.8%) 15 (30%) χ2 = 5.6, p = .018

Chronic kidney disease 29 (20.4%) 7 (14%) χ2 = 0.98, p = .31

Diabetes 29 (20.4%) 6 (12%) χ2 = 1.76 p = .18

Other 26 (18.3%) 8 (16%) χ2 = 0.13, p = .71

Symptoms: n (%)

Fever 113 (79.6%) 42 (84%) χ2 = 0.46, p = .49

Cough 96 (67.6%) 38 (76%) χ2 = 1.24, p = .27

Myalgia 38 (26.7%) 9 (18%) χ2 = 1.54, p = .22

Diarrhea 6 (4.2%) 5 (10%) χ2 = 2.28, p = .13

Chest pain 51 (35.9%) 26 (52%) χ2 = 3.98, p = .046

Dyspnea 22 (15.5%) 17 (34%) χ2 = 7.82, p = 5.1 × 10−4

Note: Results for continuous variables are reported as mean (SD). Results for categorical variables are reported as n (%). Duration: time from illness onset

to admission.

Abbreviations: COPD: Chronic obstructive pulmonary disease; COVID‐19, coronavirus disease 2019.
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constructed an SVM model with the self‐evaluation indicators and

laboratory‐examination indicators as individual input features. Over the

10 under‐sampling iterations, the classifiers achieved a mean test accu-

racy of 87.8 ± 1.8% between survivors and nonsurvivors from 10‐fold CV

when using the self‐evaluation indicators and 85.6 ± 2.5% when using the

laboratory‐examination indicators. Duration (ω=1±0), the BI score

(ω=0.57± 0.14), and age (ω=0.37 ± 0.11) were still the most important

risk factors when considering the self‐evaluation indicators, as shown in

Figure 3A. WBC (ω=0.96 ± 0.08), CRP (ω=0.91 ±0.1), LYMPH

(ω=0.65± 0.1), Ca+ (ω=0.59± 0.15), FDP (ω=0.56 ± 0.08), D‐dimer

(ω=0.56± 0.12), and PLT (ω=0.55± 0.18) were risk factors when con-

sidering the laboratory‐examination indicators, as shown in Figure 3B.

TABLE 2 Differences in clinical medical records between survivors and non‐survivors of critically ill COVID‐19 patients

Survivors (n = 142) Nonsurvivors (n = 50) t Statistics/p value

WBC (4–10 × 109/L) 6.3 (2.8) 12.2 (8.09) t = −8, p = 6.1 × 10−14

Hb (120–160 g/L) 117.1 (22.1) 122.6 (23.6) t = −1.54, p = .12

PLT (100–400 × 109/L) 202.7 (102.4) 161.6 (92) t = 2.56, p = .011

LYMPH (0.8–4 × 109/L) 1.23 (0.67) 0.73 (0.79) t = 4.43, p = 1.5 × 10−5

Alb (35–55 g/L) 35.8 (6.5) 31.7 (5.4) t = 4.07, p = 1.5 × 10−5

ALT (0–50U/L) 29.1 (34.1) 32.3 (41.5) t = −0.55, p = .58

AST (0–50U/L) 25.4 (25.8) 37.2 (19.9) t = −2.99, p = .0031

TBIL (0–20 µmol/L) 15.9 (13.2) 19.6 (12.4) t = −1.74, p = .083

Bun (1.7–8.2 mmol/L) 8.98 (10.4) 11.2 (9.2) t = −1.37, p = .17

Crea (38–120 µmol/L) 223.6 (417.2) 124.9 (123.4) t = 1.66, p = .098

UA (204–428 µmol/L) 228 (131.9) 310.3 (163.9) t = −0.99, p = .32

CRP (0–10mg/L) 29.9 (29.3) 73.4 (42.3) t = −7.7, p = 8.1 × 10−13

PCT (0–0.1 ng/ml) 0.47 (1.4) 3.4 (6.7) t = −4.5, p = 1.4 × 10−5

ESR (0–25mm/h) 39.6 (28.2) 48.4 (26.7) t = −1.87, p = .06

PT (8.6–12 s) 12.6 (10.1) 13.2 (1.66) t = −0.4, p = .68

INR (0.8–1.1) 1.1 (0.16) 1.2 (0.16) t = −4.3, p = 3.2 × 10−5

APTT (26–42 s) 31.7 (8.3) 31.5 (8.2) t = 0.1, p = .91

D‐Dimer (0–243 ng/ml) 605.4 (2162) 4341.8 (7338) t = −5.5, p = 1.7 × 10−7

FDP (0–5 µg/ml) 4.5 (12.8) 39.4 (70.9) t = −5.8, p = 2.6 × 10−8

Fib (1.9–4.6 g/L) 3.98 (1.1) 4.3 (1.7) t = −1.6, p = .11

PH 7.4 (0.08) 7.3 (0.17) t = 3.06, p = .0025

PCO2 (mmHg) 38.6 (5.4) 47.1 (23.9) t = −3.96, p = .0001

PO2 (mmHg) 76.4 (27.6) 59.9 (27.3) t = 3.55, p = .0005

SO2 (%) 93.4 (8.3) 85.1 (15.2) t = 4.7, p = 4.9 × 10−6

Lat (0.18–3mmol/L) 2.7 (1.3) 3.7 (3.2) t = −4.5, p = 1.4 × 10−5

K+ (3.8–5.4 mmol/L) 4.03 (0.7) 4.2 (1.4) t = −1.37, p = .17

Na+ (135–148mmol/L) 138.6 (5.4) 142.2 (8.7) t = −3.38, p = .0009

Ca+ (2.25–3mmol/L) 2.01 (0.29) 1.8 (0.44) t = 3.7, p = .0003

BG (3.9–11.1mmol/L) 9.3 (3.4) 10.5 (4.15) t = −1.99, p = .05

OI (400–500mmHg) 327.2 (134.8) 255.8 (66.8) t = 3.63, p = .0004

Note: Brackets represent the range of reference values.

Abbreviations: ALT, alanine aminotransferase; CRP, C‐reactive protein; ESR, erythrocyte sedimentation rate; FDP, fibrin degradation products;

Hb, hemoglobin; LYMPH, lymphocyte counts; OI, oxygenation index; PCT, procalcitonin; PT, prothrombin time; TBIL, total bilirubin.
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4 | DISCUSSION

In this study, MVPA was used to identify risk factors for mortality

in critically ill COVID‐19 patients. Relatively high classification

accuracy of 93% was achieved when using both self‐evaluation
indicators and laboratory‐examination indicators. Self‐evaluation
indicators, such as time from illness onset to hospital, age, and the

BI score were risk indicators that can simply be obtained by

questionnaires and they helped preliminarily and conveniently

assess disease severity, even by the patients themselves.

Laboratory‐examination indicators, such as CRP, WBC, Ca+ , PLT,

FDP, OI, LYMPH, and D‐dimer, were risk factors as well; these

factors may help us stratify patients based on possible require-

ments for the level of care to improve outcomes and find potential

targets for therapeutic interventions.

Many studies have noted that age is a risk factor for COVID‐19
severity, but for the first time, our results showed that the time from

symptom onset to admission and the BI score were risk factors.3,12,13

F IGURE 2 (A) Performance of support vector machine results. Mean accuracy, sensitivity, and specificity were shown in the inner plot for all
10 repetitions. The risk factors were shown in the outer plot in order of weight. (B) Kaplan–Meier plot was drawn for the duration, age,
and Barthel index. Red dashed lines representing 95% confidence intervals. When the duration (time from illness onset to hospital), age, and the
Barthel index score increased by 1 day, 1 year, and 1 point, the mortality increased by 3.6%, 2.4%, and 0.9%, respectively, as shown in
black dashed lines in (B)
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The longer time from symptom onset to admission in the non-

survivors than in the survivors suggests that these patients tend to

wait longer before admission, voluntary or involuntary, and might

miss the best treatment opportunity. In Italy, nearly 10% of infected

patients required intensive care management, which placed con-

siderable strain on the health care system.14–16 Some critically ill

patients could not get prompt and effective treatments due to lim-

ited resources.17 This may be one of the reasons for the high mor-

tality (12.6%) in patients in Italy. The situation is worse in Iran

because of the large epidemic scale of COVID‐19, and greatly re-

duced access to medical care, which is partly influenced by US pu-

nitive policies.18 All these data suggest that early and effective

access to medical care is vital for improving the chance of survival,

especially for high‐risk or critically ill patients. However, there are, of

course, other factors that might contribute to the mortality differ-

ences, such as medical conditions and treatment methods which

deserve further exploration. The BI was a 10‐item ordinal scale

(range: 0–100) which was widely used for evaluating patients' in-

dependence in activities of daily living.19 We found that BI was a

strong predictor of mortality in critically ill patients with COVID19

and might be applied to risk stratification, therapy optimization, and

patients' self‐assessment.

High PCT levels (p = 1.4 × 10−5) combined with increased WBC

counts (p = 6.1 × 10−14), which were strongly suggestive of bacterial

coinfection, were observed in the nonsurvivors and correlated with a

high mortality rate. This was consistent with our clinical observations

and some reports on other viral diseases. Among critically ill patients

with Middle East respiratory syndrome, 18% had bacterial coinfections.20

As mentioned in previous studies, nearly 100% of COVID‐19 patients

died in the intensive care unit (ICU) had sepsis.7 The nonsurvivors tended

to suffer from severe coinfection, partly because of the need for invasive

treatments such as tracheal intubation, tracheotomy, mechanical

ventilation, central venous catheterization. Though the treatment

of COVID‐19 with glucocorticoids is controversial,2,13,21 it is still

used to suppress cytokine storms in critically ill patients based on

existing therapeutic strategies for community‐acquired pneumonia,

ARDS, and other viral infections.22–25 However, these patients are

at a high risk of glucocorticoid‐related secondary infection. Empiric

antimicrobial treatment is recommended on the basis that super-

infection is reasonably common in this population, as in pandemic

influenza.26–28 However, the high rates (100%), long courses (19.2

days), and combined use (94.3%) of broad‐spectrum antibiotics

might lead to the emergence of drug‐resistant bacteria that render

combating bacterial infections increasingly difficult. The positive

F IGURE 3 Performance of support vector machine results when using self‐evaluation indicators (A) and laboratory‐examination indicators
(B) as input features individually
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rate on etiological examinations was extremely low (5.6%) in our

center. This might be influenced by the prior use of antibiotics

before sample collection and relatively limited medical human

resources at the time of opening of the medical center. How to

optimize antibiotic usage in this population is still a challenge.

Timely etiological testing may be essential.

The D‐dimer (p = 1.7 × 10−7) and FDP (p = 2.6 × 10−8) levels in

nonsurvivors were dramatically elevated, reflecting the hypercoagul-

able and hyperfibrinolytic states of blood in vivo, which have been

previously reported by Zhou.7 A recent study reported that antic-

oagulant therapy appears to be associated with an improved prognosis

in severe COVID‐19 patients with markedly elevated D‐dimer levels.29

Furthermore, we found an increased rate of obvious thrombocyto-

penia in nonsurvivors (p = .011), which might result from consumption

by the thrombus, decreased production, and accelerated destruction.

Thrombocytopenia occurred in some patients with viral infections and

was identified as a risk factor for mortality,30,31 but this relationship

was not previously clear in COVID‐19 patients. Our study is the first

to report that thrombocytopenia can be used as a risk factor for

mortality in critically ill patients with COVID‐19.
MOF was observed in both groups (survivor 20.1% vs. non-

survivor 23.5%). Respiratory failure was often the earliest and most

severe form of organ dysfunction,2,6 followed by renal, cardiac, and

liver function impairment. The reported prevalence of MOF is highly

variable (from 3% to 35%).4,22 We infer that acute organ failure or

exacerbation of chronic dysfunction could partly result from pro-

longed hypoxia secondary to respiratory insufficiency. However, we

did not find any statistically significant differences in indicators of

renal, cardiac, and liver functions (BUN, creatinine, B‐type natriuretic

peptide, ALT, TBIL) between the two groups or myocardial injury

indicators (creatinine kinase); these results were unexpected. OI, a

marker of oxygenation, was significantly higher in survivors than in

nonsurvivors. Our data showed that respiratory function, not co-

morbidities, was the most important determinant of prognosis in

critically ill COVID‐19 patients. A recent study in Italy reported that

among 1591 patients, the majority were admitted to the ICU be-

cause of respiratory failure had a mortality rate of 26% at 5 weeks

after the first admission; and could eventually be higher.16 This study

has several limitations. First, only patients classified as having severe

COVID‐19 were included, and all the others were excluded from the

analyses. Second, this study was conducted at a single‐center hos-

pital with a limited sample size. As such, this study may have included

disproportionately more patients with poor outcomes. There may

also be selection bias when identifying factors that influence clinical

outcomes. A large‐cohort study of patients with COVID‐19 pneu-

monia from Wuhan, China, other cities in China, and other countries

would help to further define the clinical characteristics of and risk

factors for the disease. We collected and analyzed indexes most

relevant to the pathogenesis and therapy according to clinical ex-

perience, and missed some other ones, such as LDH which is iden-

tified as a key prognostic marker of lung injury.32

In conclusion, while there have been some studies on the risk

factors of COVID‐19, there are few studies that provide a

quantitative ranking of the importance of risk factors. We proposed a

predictive model and found that self‐evaluation indicators including

time from illness onset to hospital, age, and the BI score were risk

indicators and that laboratory‐examination indicators including CRP,

WBC, Ca+ , PLT, FDP, OI, LYMPH, and D‐dimer were risk factors as

well. We suggested that for those with abnormal values at these

indexes, close monitoring, and early intervention might be very

important and could help to reduce mortality.
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