
ll
OPEN ACCESS
iScience

Article
Cell size distribution of lineage data: analytic
results and parameter inference
single-cell lineage data
of cell sizes

experimental
cell size distribution

matching distributions
to estimate parameters

theory

theoretical
cell size distribution

Chen Jia,

Abhyudai Singh,

Ramon Grima

ramon.grima@ed.ac.uk

HIGHLIGHTS
Analytical expression is

derived for the cell size

distribution of lineage

measurements

Theory explains the

uncommon shape of the

cell size distribution in

E. coli

Multimodal size

distribution is predicted

for asymmetric division

with random tracking

Size distribution matching

gives accurate inference

of size control strategy

Jia et al., iScience 24, 102220
March 19, 2021 ª 2021 The
Author(s).

https://doi.org/10.1016/

j.isci.2021.102220

mailto:ramon.grima@ed.ac.uk
https://doi.org/10.1016/j.isci.2021.102220
https://doi.org/10.1016/j.isci.2021.102220
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2021.102220&domain=pdf


ll
OPEN ACCESS
iScience
Article
Cell size distribution of lineage data:
analytic results and parameter inference

Chen Jia,1 Abhyudai Singh,2 and Ramon Grima3,4,*
1Applied and Computational
Mathematics Division, Beijing
Computational Science
Research Center, Beijing
100193, China

2Department of Electrical and
Computer Engineering,
University of Delaware,
Newark, DE 19716, USA

3School of Biological
Sciences, University of
Edinburgh, EH9 3JH, UK

4Lead contact

*Correspondence:
ramon.grima@ed.ac.uk

https://doi.org/10.1016/j.isci.
2021.102220
SUMMARY

Recent advances in single-cell technologies have enabled time-resolved measure-
ments of the cell size over several cell cycles. These data encode information on
how cells correct size aberrations so that they do not grow abnormally large or
small. Here, we formulate a piecewise deterministic Markov model describing
the evolution of the cell size over many generations, for all three cell size homeo-
stasis strategies (timer, sizer, and adder). The model is solved to obtain an analyt-
ical expression for the non-Gaussian cell size distribution in a cell lineage; the
theory is used to understand how the shape of the distribution is influenced by
the parameters controlling the dynamics of the cell cycle and by the choice of
cell tracking protocol. The theoretical cell size distribution is found to provide
an excellent match to the experimental cell size distribution of E. coli lineage
data collected under various growth conditions.

INTRODUCTION

Cell size plays an important role in cellular processes; e.g. changes in cell volume or surface area have pro-

found effects on metabolic flux and nutrient exchange Marshall et al. (2012), and therefore, it stands to

reason that cell size should be actively maintained. In order for cells to achieve and maintain some charac-

teristic size (size homeostasis), the amount of growth produced during the cell cycle must be controlled

such that, on average, large cells at birth grow less than small ones.

There are three popular phenomenological models of cell size control leading to size homeostasis Vargas-

Garcia et al. (2018): (i) the timer strategy which implies a constant time between successive divisions, (ii) the

sizer strategy which implies cell division upon attainment of a critical size, and (iii) the adder strategy which

implies a constant size addition between consecutive generations. The timer strategy is not viable for expo-

nentially growing cells; in this case, size fluctuations diverge as the square root of the number of consec-

utive cell divisions implying that the timer strategy cannot maintain stable size distributions Jun and

Taheri-Araghi (2015). In contrast, if cells grow linearly, a timer strategy is viable as a means to maintain

size homeostasis Conlon and Raff (2003). Several studies have proposed that the sizer and adder strategies

can explain experimental data in bacteria, yeast, and mammalian cells Campos et al. (2014); Taheri-Araghi

et al. (2015); Tanouchi et al. (2015); Soifer et al. (2016); Chandler-Brown et al. (2017); Cadart et al. (2018). Cell

size control mechanisms likely vary depending on growth conditions, strains, and species; for instance, in

Escherichia coli (E. coli), evidence suggests a sizer mechanism in slow growth conditions and an adder in

fast growth conditions Wallden et al. (2016).

Cell size statistics can be computed using data from cell lineages or population snapshots. To observe a

single cell lineage, at each cell division event, one keeps track of only one of the newborn cells (daughter

cells); thus, at an arbitrary time point, only a single cell is observed. To observe population snapshots, one

tracks both daughters of each mother cell in the population and thus the evolution of the whole population

over time. Recently, mathematical models have shown that cell size statistics calculated using lineage data,

e.g. collected using mother machines, can vary considerably from those obtained from population snap-

shot data, e.g. collected using flow cytometry Thomas (2018); Garcı́a-Garcı́a et al. (2019); Totis et al.

(2020a). In fact, differences between these two types of measurements are also observable in protein

and mRNA count statistics Thomas (2017); Beentjes et al. (2020).

Modeling has elucidated various other interesting insights into cell size statistics; however, to our knowl-

edge, no study thus far has attempted to explain the complex shapes of cell size distributions computed
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Figure 1. Cell size dynamics and a stochastic model describing it

(A) Single-cell time course data of cell length along a typical cell lineage measured in E. coli at 37�C (upper) and the

histogram of cell sizes along all cell lineages (lower). The data shown are published in Tanouchi et al. (2015). When plotting

the histogram, we use the data of all cell lineages at that temperature (160 lineages), each of which is recorded every

minute over 70 generations. The cell size distribution computed from cell lineagemeasurements has an uncommon shape

that is characterized by three features: a fast increase in the size count for small cells, followed by a slow decay for

moderately large cells and a fast decay for large cells.

(B) Schematic illustrating a detailed model of cell size dynamics describing cell growth, multiple effective cell cycle stages,

cell size control, and symmetric or asymmetric partitioning at cell division (see inset graph). Each cell can exist in N

effective cell cycle stages. The transition rate from one stage to the next at a particular time t is proportional to the ath

power of the cell size V(t) with a > 0 being the strength of cell size control and a>0 being the proportionality constant. This

guarantees that larger cells at birth divide faster than smaller ones to achieve size homeostasis. At stage N, a mother cell

divides into two daughters that are typically different in size via asymmetric cell division. Symmetric division is the special

case where daughters are equisized.
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from many generations of cell lineage measurements. This is because such high throughput data have

become available only recently Tanouchi et al. (2017) and also since the majority of modeling approaches

have analytically derived expressions for the first few moments of cell size statistics—these are not enough

to characterize the highly non-Gaussian distribution of cell size computed from a cell lineage (see Figure 1A

for a typical distribution for an E. coli lineage). These histograms are characterized by three features: a fast

increase in the size count for small cells, a slow decay in the size count for moderately large cells, and a fast

decay in the size count for large cells. We note that these distributions contain much more information than

birth size distributions previously derived Amir (2014) since they reflect the full cell cycle dynamics.

Here, we develop a complete analytical theory of the cell size distribution in cell lineages.We formulate and

solve a piecewise deterministic Markov model describing the evolution of the cell size over many genera-

tions, for all three size homeostasis strategies (timer, sizer, and adder). The model takes into account the

major features responsible for the underlying dynamics: cell birth following division (including the asym-

metric case and partitioning noise), exponential cell growth (including the case of noisy growth rates), vari-

ability in the duration of the cell cycle, and the user-defined choice of single-cell tracking protocols when

division occurs, e.g., tracking always the smaller daughters, tracking always the larger daughters, or

randomly picking one of the two daughters. The analytical solutions for the cell size distribution enable

us to understand how the highly non-Gaussian shape of the distribution emerges from the underlying bio-

physical processes. Finally, by matching the analytical to the experimental cell size and doubling time dis-

tributions, we infer the values of various model parameters in E. coli for three different growth conditions.
RESULTS

Model specification

Here, we consider a detailed model of cell size dynamics across the cell cycle which is similar to the model

proposed in Nieto et al. (2020a) but has more complicated cell division mechanisms such as asymmetric

and stochastic partitioning (see Figure 1B for an illustration). The model is based on a number of
2 iScience 24, 102220, March 19, 2021



Table 1. Model parameters and their meaning

Parameters Meaning

g Exponential growth rate of cell size

N Number of effective cell cycle stages

a Proportionality constant for the transition rate between stages

a Strength of cell size control

A Mean generalized added size in each generation

p Mean partition ratio of cell size at division
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assumptions that are closely tied to experimental data. The assumptions are as follows, and the specific

meaning of all model parameters is listed in Table 1.

1) The size of each cell grows exponentially in each generation with growth rate g. This assumption is

supported by experiments in many cell types Godin et al. (2010).

2) Each cell can exist in N effective cell cycle stages, denoted by 1,2,.,N. The transition rate from one

stage to the next at a particular time is proportional to the ath power of the cell size at that time, with

a>0 being the proportionality constant Nieto et al. (2020a). In other words, the transition rate be-

tween stages at time t is equal to aV(t)a, where a > 0 is the strength of cell size control and V(t) is

the cell size at that time. Under this assumption, larger cells at birth have larger transition rates be-

tween stages and thus, on average, have shorter cell cycle duration and lesser volume change than

smaller ones; in the way size homeostasis is achieved.

Examples of possible biophysical mechanisms that can explain the power law form of the transition rate

have been discussed in Nieto et al. (2020a). For instance, recent studies have suggested the accumulation

of certain proteins up to a critical threshold as a possible mechanism in bacterial and fission yeast cell di-

vision Ghusinga et al. (2016); Sekar et al. (2018); Si et al. (2019); Patterson et al. (2019). Suppose that the con-

centration c of this ‘‘division protein’’ remains constant as the cell grows Weart and Levin (2003). Then, the

number of molecules n of this protein is proportional to the cell volume V, i.e., n = cV. If this division protein

makes polymers of a subunits, then the production rate of polymers will be proportional to na, which is pro-

portional to Va. Biologically, the multiple cell cycle stages considered here may be interpreted as different

levels of the division protein polymer and cell division occurs when a certain number of polymers is

reached. Under this mechanism, the rate of moving from one stage to the next is proportional to Va. We

emphasize that while this power law is compatible with certain biophysical mechanisms, it could also simply

be understood as a phenomenological means to model size homeostasis.

Let Vb and Vd denote the cell sizes at birth and at division in a particular generation, respectively. Then, the

increment in the ath power of the cell size across the cell cycle, D = Va
d � Va

b , has an Erlang distribution with

shape parameterN and mean A =Nag/a (see Section 1 in transparent methods for the proof). The quantity

Dwill be referred to as the generalized added size in what follows. In ourmodel, the noise in the generalized

added size, characterized by the coefficient of variation squared, is equal to 1/N. AsN increases, the gener-

alized added size, as well as Vb and Vd themselves, has smaller fluctuations. Since the cell cycle duration is

given by T=(1/g)log(Vd/Vb), an increasing N also results in lesser fluctuations in the doubling time. Hence,

our model allows the investigation of the influence of cell cycle duration variability on cell size dynamics.

We next focus on three crucial special cases. When a/0, the transition rate between stages is a constant

and thus the doubling time has an Erlang distribution that is independent of the birth size; this corresponds

to the timer strategy. When a = 1, the added size Vd�Vb has an Erlang distribution that is independent of

the birth size; this corresponds to the adder strategy. When a/N, the ath power of the cell size at division,

Va
d , has an Erlang distribution that is independent of the birth size; this corresponds to the sizer strategy.

Intermediate strategies are naturally obtained for intermediate values of a; timer-like control is obtained

when 0 < a < 1 and sizer-like control is obtained when 1<a<N Nieto et al. (2020a).

3) Cell division occurs when the cell transitions from effective stage N to the next stage 1. At division,

most previous papers assume that the mother cell divides into two daughters that are exactly
iScience 24, 102220, March 19, 2021 3
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the same in size via symmetric partitioning Amir (2014); Vargas-Garcı́a and Singh (2018); Nieto-

Acuna et al. (2019); Totis et al. (2020b); Nieto et al. (2020b); however, asymmetric cell division is

common in biology. For instance, Saccharomyces cerevisiae divides asymmetrically into two

daughters with different sizes. Escherichia coli may also undergo asymmetric division with old

daughters receiving fewer gene products than new daughters Shi et al. (2020). Here, we follow

the methodology that we devised in Jia and Grima (2020) and extend previous models by consid-

ering asymmetric partitioning at cell division: the mother cell divides into two daughters with

different sizes.

If the partitioning of the cell size is symmetric, we track one of the two daughters randomly after division

Brenner et al. (2015); Robert et al. (2018); if the partitioning is asymmetric, we either track the smaller

daughter or track the larger daughter after division Zopf et al. (2013); Crane et al. (2014). Hence, our model

corresponds to cell lineage measurements performed using a mother machine. Let Vd and Vb
0 denote the

cell sizes at division and just after division, respectively. If the partitioning is deterministic, then we have

Vb
0 = pVd , where 0 < p < 1 is a constant with p = 1/2 corresponding to the case of symmetric division,

p < 1/2 corresponding to smaller daughter tracking, and p > 1/2 corresponding to larger daughter

tracking. However, in naturally occurring systems, the partitioning is appreciably stochastic. In this case,

we assume that the partition ratio Vb
0=Vd has a beta distribution with mean p Nieto-Acuña et al. (2020),

whose probability density function is given as follows:

f ðzÞ = 1

B
�
pn;qn

�zpn�1ð1� zÞqn�1
; 0<z<1; (Equation 1)

where B is the beta function, q = 1�p, and n > 0 is referred to as the sample size parameter. The reason

behind this assumption is that the partition ratio Vb
0=Vd should be a random number between 0 and 1,

which is an important property of the beta distribution Nieto-Acuña et al. (2020). Then, the change in

the logarithm of the cell size at division, logVd � logVb
0 = logðVd =Vb

0Þ, has the probability density function

m(w) = e�wf(e�w), which can be written more explicitly as follows:

mðwÞ = 1

B
�
pn;qn

�e�pnwð1� e�wÞqn�1
; w>0: (Equation 2)

When n/N, the variance of the beta distribution tends to zero and thus stochastic partitioning reduces to

deterministic partitioning, i.e., f(z) = d(z�p) and m(w) = d(w + log p).

We next describe our stochastic model of cell size dynamics across the cell cycle. The microstate of the cell

can be represented by an ordered pair (k,y), where k is the cell cycle stage which is a discrete variable and y

is the cell size which is a continuous variable. Let ~pkðyÞ denote the probability density function of the cell

size when the cell is in stage k. Note that the cell undergoes deterministic exponential growth in each stage

and the system can hop between successive stages stochastically. Hence, the evolution of the cell size dy-

namics can be described by a piecewise deterministic Markov process whose Kolmogorov forward equa-

tion is given as follows:

vt ~pk = � vy

�
gy ~pk

�
+ aya ~pk�1 � aya ~pk ; 2%k%N;

vt ~p1 = � vy

�
gy ~p1

�
+

Z 1

0

a

z

�y
z

�a

~pN

�y
z

�
f ðzÞdz � aya ~p1;

(Equation 3)

where f(z) is the function defined in Equation (1). Similar hybrid models have, for example, been used to

describe demographic noise in ecosystems Realpe-Gomez et al. (2012) and single-cell stochastic gene expres-

sion Lin and Buchler (2018); Jia et al. (2019). In the first equation above, the first term on the right-hand side

represents the exponential growth of the cell size with growth rateg, and the second and third terms represent

the transition between stages whose transition rate is proportional to the a th power of the cell size y. In the

second equation, the second term corresponds to the partitioning of the cell size at division.

To solve Equation (3), the key step is to consider the dynamics of the logarithmic cell size, x = log y, rather

than the original cell size y. This is because the dynamic equation for the former is easier to solve. Let pk(x)

denote the probability density function of the logarithmic cell size when the cell is in stage k. Since the

probability density functions of the original and logarithmic cell sizes are related by pkðxÞ = y ~pkðyÞ, it
4 iScience 24, 102220, March 19, 2021
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follows from Equation (3) that the evolution of the logarithmic cell size is governed by the following master

equation:

vtpk = � gvxpk + aeaxpk�1 � aeaxpk ; 2%k%N;

vtp1 = � gvxp1 +

Z N

0

aeaðx +wÞpNðx +wÞmðwÞdw � aeaxp1;
(Equation 4)

where m(w) is the function defined in Equation (2).

Analytical distribution of the cell size along a cell lineage under deterministic partitioning

Recall that any probability distribution is fully determined by its characteristic function. Let pðxÞ=PN
k = 1pkðxÞ

denote the probability density function of the logarithmic cell size. To obtain the analytical distribution of

the cell size along a cell lineage, we introduce the characteristic function GðlÞ = RN
�N pðxÞeilxdx, which is

nothing but the inverse Fourier transform of p(x). For simplicity, we first focus on deterministic partitioning

at cell division, i.e., n/N. Despite the biological complexity described by our model, the characteristic func-

tion can still be solved exactly in steady-state conditions (see Section 2 in transparent methods for the proof):

GðlÞ= K
XN�1

k = 0

Xk

l = 0

Ck;l

�
A

N

�l + 1

G

�
1� il

a

��1 Z N

0

ul�il
a

YN
n= 0

aN
�
panu

�
du;

(Equation 5)

where Ck,l = k!/l!(k-l)! is the combinatorial number, aN(u) = (1 + Au/N)�N is a function of u, and

K =

"Z N

0

1

u

�
aNðuÞ�1 � 1

�YN
n= 0

aN
�
panu

�
du

#�1

is a normalization constant. Since the Fourier transform and the inverse Fourier transform are inverses of

each other, taking the Fourier transform of the characteristic function gives the steady-state probability

density function p(x) of the logarithmic cell size. Finally, the probability density function of the original

cell size y = ex along a cell lineage is given as follows:

~pðyÞ = 1

y
pðlog yÞ: (Equation 6)

The analytical solution is ideal since it allows a fast exploration of large swathes of parameter space without

performing stochastic simulations.

To gain deeper insights into the cell size distribution, we next consider the limiting case of N/N. In this

case, the generalized added sizeD, as well as the cell cycle duration T, becomes deterministic, and thus, the

system does not involve any stochasticity. AsN/N, we have an(u) = e�Au, and thus, the characteristic func-

tion can be simplified to a large extent as follows (see Section 2 in transparent methods for the proof):

GðlÞ = V
il

d � V
il

b�
logVd � logVb

�
il
; (Equation 7)

where

Vb = p

�
A

1� pa

�1
a

; Vd =

�
A

1� pa

�1
a

;

are two constants. Taking the Fourier transform of G(l) shows that the logarithmic cell size has the uniform

distribution

pðxÞ = 1

logVd � logVb

Ih
logVb ;logVd

iðxÞ; (Equation 8)

and thus the original cell size y = ex has the following distribution:

~pðyÞ = 1

y
pðlog yÞ= 1�

logVd � logVb

�
y
Ih

Vb ;Vd

iðyÞ; (Equation 9)
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Figure 2. Influence of model parameters on the cell size distribution

(A) Cell size distribution as N increases. The red curve shows the analytical distribution given in Equation (6), and the red circles show the distribution

obtained using the stochastic simulation algorithm proposed in Nieto et al. (2020b). The parameters are chosen as a = 2, p = 0.5.

(B) Cell size distribution as a varies. The parameters are chosen as N = 20, p = 0.5.

(C) Cell size distribution as p varies. The parameters are chosen as N = 20, a = 2.

(D) Comparison of the cell size distributions for the model with stochastic partitioning (blue curve and red circles) and the model with deterministic

partitioning (solid gray region). The blue curve shows the approximate distribution given in Equation (20), and the red circles show the distribution obtained

from simulations.

(E) Comparison of the cell size distributions for the model with stochastic growth rate (blue curve and red circles) and the model with deterministic growth

rate (solid gray region). In (D) and (E), the parameters are chosen asN = 30, a = 3, p = 0.5. In (A)-(E), the growth rate is chosen as g = 0.02 and the parameters A

and a are chosen so that CV D= 3 for themodel with deterministic growth rate and deterministic partitioning. In (D), the standard deviation of the partition ratio

is 10% of the mean; here, we assume that the partition ratios for different generations are i.i.d. normally distributed random variables. In (E), the standard

deviation of the growth rate is 10% (red circles) or 50% (blue curve) of the mean; here, we assume that the growth rates for different generations are i.i.d.

normally distributed random variables.
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where IB(x) is the indicator function which takes the value of 1 when x˛B and the value of 0 otherwise. Thi-

s indicates that when cell cycle duration variability is small, the cell size has a distribution that is concen-

trated on the finite interval ½Vb; Vd �, where Vb and Vd are the typical cell sizes at birth and at division,

respectively.

Figures 2A–2C illustrate the distribution of the original cell size as a function of the parameters N, a, and

p. It can be seen that as cell cycle duration variability become smaller (N increases), the analytical distri-

bution given in Equation (6) converges to the limit distribution given in Equation (9). The cell size distri-

bution has a regular shape for small N. As N increases, the shape of the distribution becomes more

complicated. In particular, the distribution has three apparent sections: an exponential increase for small

sizes, a power law decay for moderate sizes, and an exponential decay for large sizes. As N/N, the dy-

namics becomes deterministic and the distribution has a compact support, characterized by infinite

slopes of the two shoulders. In addition, we find that the influence of a on the cell size distribution is

similar to the influence of N. Finally, increasing p gives rise to a distribution that is more symmetric

and more concentrated.
Moments, noise, and skewness of the cell size distribution

Our analytic results can also be used to derive explicit expressions for several other quantities of interest.

Recall that the probability density function p(x) for the logarithmic cell size and the probability density func-

tion ~pðyÞ for the original cell size are related by Equation (6). For any real number l, the lth moment of the

original cell size is given as follows:

CV lD =
Z N

0

yl ~pðyÞdy =
Z N

�N

elxpðxÞdx = FðlÞ;
6 iScience 24, 102220, March 19, 2021
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Figure 3. Noise and skewness of the cell size distribution

(A) Heatmap of the noise h versus a and N.

(B) Heatmap of the noise h versus a and p.

(C) Heatmap of the skewness g versus a and N.

(D) Heatmap of the skewness g versus a and p. The parameters are chosen as p = 0.5 in (A) and (C) andN= 20 in (B) and (D).

In (A)-(D), the parameter A is chosen so that the mean cell size CV D = 3.
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where F(l) is themoment generating function of p(x). This shows that the lth moment of the original cell size

is exactly the moment generating function of the logarithmic cell size taken value at l. Since the moment

generating function F(l) and the characteristic function G(l) are related by G(l) = F(il), replacing the vari-

able il in Equation (5) by l yields the moment generating function. Hence, the lth moment of the original

cell size is given as follows:

CV lD= FðlÞ= K
XN�1

k = 0

Xk

l = 0

Ck;l

�
A

N

�l + 1

G
�
1� l

a

��1
Z N

0

ul�l
a

YN
n= 0

aN
�
panu

�
du:

(Equation 10)

In single-cell experiments, the noise in the cell size, characterized by the coefficient of variation squared, is

given as follows:

h =
s2

m2
=
Fð2Þ
Fð1Þ2 � 1; (Equation 11)

where m is the mean and s2 is the variance. Figures 3A and 3B illustrate the noise h as a function ofN, a, and

p. Clearly, the fluctuations in the cell size become smaller with the increase of all the three parameters (see

also Figure 2). This implies that small cell cycle duration variability and sizer-like strategy can lead to a more

accurate control of the cell size.

A special case occurs when the cell cycle duration variability is very small, i.e.,N[1. In this case, replacing

the variable il in the characteristic function Equation (7) by l yields the following equation:

CV lD = FðlÞ= 1� pl

�l log p

�
A

1� pa

�l
a

: (Equation 12)

Thus, the noise in the cell size is given as follows:

h = �
�
1+p

�
log p

2
�
1� p

� � 1;
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which is a decreasing function of p. Note that whenN is small, the noise h is a function of both a and p (Fig-

ure 3B). However, whenN is large, the noise only depends on p. It is easy to see that the noise in the cell size

tends to infinity as p/0 and tends to zero as p/1. For the case of symmetric division (p = 0.5), the noise in

the cell size is given by h z 0.04, which shows that the standard deviation of the cell size is roughly 20% of

the mean.

Recall that the skewness of the cell size distribution is defined as follows:

g = C

�
V � m

s

�3

D=
Fð3Þ � 3Fð1ÞFð2Þ+ 2Fð1Þ3�

Fð2Þ � Fð1Þ2	3=2 ; (Equation 13)

Figures 3C and 3D illustrate the skewness g as a function of N, a, and p, from which we can see that the

skewness increases with the decrease of all the three parameters. This implies that large cell cycle duration

variability, timer-like division strategy, and tracking the smaller daughter at division lead to larger skewness

of the cell size distribution. Moreover, we find that the skewness is always positive, whichmeans that the cell

size distribution is always right skewed. When N[1, it follows from Equation (12) that the skewness only

depends on p and is given as follows:

g =
2
�
1� p3

��
log p

�2
+ 9

�
1� p

��
1� p2

�
log p + 12

�
1� p

�3
6
�� �

1� p2
�
log p � �

1� p
�2	3=2 ;

which is also a decreasing function of p.
Analytical distribution of the cell cycle duration

In our model, the distribution of the doubling time can also be derived analytically in steady-state condi-

tions. Actually, given that the birth size Vb is known, the conditional probability density of the cell cycle

duration T has been obtained in Nieto et al. (2020a) as follows:

P
�
T = t



Va
b = x

�
=

agNN

ANðN� 1Þ!x
Nðeagt � 1ÞN�1

eagt�N
A xðeagt�1Þ:

Here, we compute the unconditional distribution of the cell cycle duration. To this end, we find that the

Laplace transform of Va
b is given by the following equation (see Section 3 in transparent methods for the

proof):

Ce�lVa
b D =

YN
n= 1

�
1+

Apanl

N

��N

=
YN
n=1

aN
�
panu

�
: (Equation 14)

Taking the inverse Laplace transform gives the probability density function of Va
b . Finally, the distribution of

the cell cycle duration T is given as follows:

PðT = tÞ =
Z N

0

P
�
T = t



Va
b = x

�
P
�
Va
b = x

�
dx: (Equation 15)

A special case occurs when a is large (strong cell size control) or when p is small (smaller daughter tracking).

Under the large a or small p approximation, the term pan is negligible for nR 2 and it suffices to keep only

the first term in the infinite product given in Equation (14). In this case, the inverse Laplace transform has an

explicit expression and the birth size distribution is given as follows:

PðVb = xÞ = NNxaN�1e� N
Apax

a

ðN� 1Þ!ANpaN
: (Equation 16)

Inserting this equation into Equation (15) yields the doubling time distribution:

PðT = tÞ = agð2N� 1Þ!
paN½ðN� 1Þ!�2,

eagtðeagt � 1ÞN�1�
p�a + eagt � 1

�2N: (Equation 17)

We emphasize that in the special case ofN = 1 and p = 0.5, our model reduces to the model in Osella et al.

(2014) and the above two equations coincide with the results in that paper.
8 iScience 24, 102220, March 19, 2021
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Figure 4. Distribution of the cell cycle duration and its approximation by the gamma distribution

We use the information of the sample mean and sample variance of the true distribution to determine the two parameters

involved in the gamma approximation.

(A) Large cell cycle duration variability and small size control strength.

(B) Small cell cycle duration variability and small size control strength.

(C) Large cell cycle duration variability and large size control strength.

(D) Small cell cycle duration variability and large size control strength. In (A)-(D), the blue curve represents the analytical

distribution given in Equation (15), the red circles represent the distribution obtained from simulations, and the gray

region represents the gamma approximation. The parameters are chosen as p = 0.5, g = 0.02 and A and a are determined

so that CV D = 3.
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Recent experiments Golubev (2016); Yates et al. (2017); Chao et al. (2019); Perez-Carrasco et al. (2020); Gav-

agnin et al. (2020) have shown that the cell cycle durations in various cell types are all well fitted by a gamma

distribution. Therefore, it is natural to ask whether the doubling time in our model shares the same prop-

erty. To see this, we illustrate the doubling time distribution and its approximation by the gamma distribu-

tion asN and a vary (Figure 4). It can be seen that the true distribution is in good agreement with its gamma

approximation when a is small (Figures 4A and 4B). This is because a small a implies a timer-like size control,

which leads to an approximately Erlang distributed doubling time due to the effect of multiple cell cycle

stages and constant transition rates between them. When a is large, there are some slight differences be-

tween them for smallN (Figure 4C); compared with the gamma approximation, the true distribution is more

symmetric around its mean. However, whenN is large, they are very close to each other and both well fitted

by a normal distribution (any gamma distribution converges to the normal distribution as the shape param-

eter tends to infinity, see Figure 4D).
Correlation between sizes at birth and sizes at division

The birth size distribution derived above can be applied to study the correlation between birth and division

sizes. Let Vb and Vd be the birth and division sizes in a particular generation, respectively, and let Vb
0 and Vd

0

be the birth and division sizes in the next generation, respectively. Since the generalized added size D=

Va
d � Va

b is Erlang distributed and Vb
0 = pVd , it is easy to obtain from Equation (14) that (see Section 4 in

transparent methods for the proof)

r
�
Va
b ;V

a
d

�
= r

�
Va
b ;Vb0a

�
= r

�
Va
d ;Vd 0a

�
=pa; (Equation 18)

where r(X,Y) denotes Pearson’s correlation coefficient between random variables X and Y. This character-

izes the correlation between sizes at birth and sizes at division, as well as the correlation between the birth/
iScience 24, 102220, March 19, 2021 9
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division sizes for mother and daughter cells. In particular, for the adder strategy (a = 1), we have the

following:

rðVb;VdÞ = rðVb;Vb
0Þ= rðVd ;Vd

0Þ=p:

This implies that the size correlation for the adder only depends on p and is independent of other param-

eters. For the case of symmetric division (p = 0.5), this is consistent with the result obtained in Amir (2014),

where the correlation coefficient between birth and division sizes is found to be approximately 0.5. In the

presence of noise in partitioning, the formula for the correlation coefficient should be modified as follows

(see Section 4 in transparent methods for the proof):

r
�
Va
b ;V

a
d

�
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
�ð2K1 + 1ÞK2 � K2

1

	
+K2

N
�ð2K1 + 1ÞK2 � K2

1

	
+K2 + 1

vuut ; (Equation 19)

where

K1 =
B
�
a+pn;qn

�
B
�
pn;qn

�� B
�
a+pn;qn

�; K2 =
B
�
2a+pn;qn

�
B
�
pn;qn

�� B
�
2a+pn;qn

�:
In this case, rðVa

b ;Vb0aÞ and rðVa
d ;Vd 0aÞ are generally lower than rðVa

b ;V
a
d Þ due to fluctuations in partitioning.

Distribution of the cell size along a cell lineage under stochastic partitioning and stochastic

growth rate

Thus far, the analytical distribution of the cell size is obtained when the partitioning at division is determin-

istic. In the presence of noise in partitioning, it is very difficult to obtain the explicit expression of the cell

size distribution. Fortunately, in naturally occurring systems, the stochasticity in partitioning is often very

small. For example, recent cell lineage data Tanouchi et al. (2015) suggested that the coefficient of variation

of the partition ratio z =Vb
0=Vd in E. coli is about 7%–9%. When noise in partitioning is small, we obtain an

approximate expression for the cell size distribution, whose moment generating function is given by the

following equation (see Section 5 in transparent methods for the proof):

FðlÞ= K
XN�1

k = 0

Xk

l =0

Ck;l

�
A

N

�l + 1

G
�
1� l

a

��1
Z N

0

ul�l
a

YN
n= 0

aN
�
pðlÞanu �du;

(Equation 20)

where K is a normalization constant and

pðlÞ =
�Z 1

0

f ðxÞxl�adx

� 1
l�a

:

To see the effect of stochastic partitioning, we illustrate the cell size distributions under deterministic and

stochastic partitioning in Figure 2D with the standard deviation of the partition ratio z being 10% of the

mean for the latter. Clearly, the approximate solution given in Equation (20) matches the simulation results

very well. In addition, it can be seen that noise in partitioning gives rise to larger fluctuations in the cell size,

characterized by the smaller slope of the left shoulder of the cell size distribution.

In addition to noise in partitioning, there is another important source of stochasticity, i.e., noise in the

growth rate g. In many biological systems, such noise is also very small. For example, recent cell lineage

data Tanouchi et al. (2015) suggested that the coefficient of variation of the growth rate g in E. coli is about

7%–8%. To see the influence of noise in the growth rate, we illustrate the cell size distributions under deter-

ministic and stochastic growth rates in Figure 2E with the standard deviation of g being 10% or 50% of the

mean for the latter (here we assume that the growth rates for different generations are i.i.d. normally

distributed random variables). Interestingly, we find that noise in the growth rate has almost no effect on

the cell size distribution, even when the noise is very large; this is in sharp contrast to noise in partitioning

which has an apparent effect on the cell size distribution.

Random tracking protocol can lead to complex multimodal cell size distributions

If cell division is asymmetric, the two daughters are different in size and thus far we have assumed that the

smaller/larger daughter (such as the bud/mother cell in budding yeast) is tracked after division Zopf et al.

(2013); Crane et al. (2014). We have seen that whether the smaller or the larger daughter is tracked, the cell
10 iScience 24, 102220, March 19, 2021
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Figure 5. Cell size distribution for asymmetric cell division under the random tracking protocol

After division, one of the two daughters is randomly tracked with probability 1/2.

(A) Typical stochastic trajectory of the cell size (upper) and the cell size distribution (lower) in the case of large cell cycle

duration variability (N = 2).

(B) Same as (A) but for moderate cell cycle duration variability (N = 20).

(C) Same as (A) but for small cell cycle duration variability (N = 200). In (A)-(C), the colored curve and the gray region show

the cell size distributions obtained from two independently repeated stochastic simulations. The parameters are chosen

as p = 0.3, a = 2, A = 25.
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size distribution along a cell lineage is always unimodal and right skewed and larger daughter tracking

yields lesser fluctuations in size than smaller daughter tracking. Next, we consider another tracking proto-

col, namely where we track one of the two daughters randomly with probability 1/2 after division Tanouchi

et al. (2015); Brenner et al. (2015); Robert et al. (2018). Clearly, the three types of tracking protocols (tracking

a random daughter, the smaller daughter, or the larger daughter) are exactly the same for symmetric cell

division; however, they are remarkably different for asymmetric cell division.

For the random tracking protocol, the probability density function of the partition ratio z =Vb
0=Vd is given

by the following equation (here the noise in partitioning is ignored):

f ðzÞ = 1

2
d
�
z�p

�
+
1

2
d
�
z�q

�
; (Equation 21)

where 0 < p% 1/2 is the ratio of the size of the smaller daughter to the size of the mother cell and q = 1�p.

Figure 5 illustrates the simulated cell size distribution under the random tracking protocol. Interestingly, we

find that the shape of the distribution undergoes two stochastic bifurcations as cell cycle duration variability

becomes smaller (N increases). WhenN is small, the cell size distribution is in general unimodal (Figure 5A),

as in the case of smaller/larger daughter tracking. WhenN is moderate, random tracking is capable of pro-

ducing a bimodal cell size distribution (Figure 5B), where the two peaks can be attributed intuitively to the

subpopulations of smaller and larger daughters, respectively. Surprisingly, when N is large, we find that

random tracking can give rise to a complex cell size distribution that displays multiple peaks (Figure 5B),

two major peaks and some minor peaks. Increasing cell cycle duration variability (decreasingN) smoothens

the cell size distribution, by first removing the smaller peaks and then merging the two major peaks into

one.

Parameter inference using synthetic data

Recent breakthroughs in microfluidic devices have made it possible to monitor the single-cell volume dy-

namics along a cell lineage over many generations. Given such cell lineage data, an important question is

whether all the parameters involved in our model can be inferred accurately. Parameter inference is crucial

since it provides insights on the strength of cell size control, as well as cell cycle duration variability in

various cell types.

The steps of our parameter estimation method are described as follows. First, the data of cell sizes at birth

and at division in each generation, Vb and Vd, can be easily extracted from the cell lineage data. Since D=

Va
d � Va

b is Erlang distributed with shape parameter N and mean A, once the parameter a is determined,
iScience 24, 102220, March 19, 2021 11
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both the parameters N and A can be determined by fitting the data of Va
d � Va

b to an Erlang distribution. In

addition, since rðVa
b ;V

a
d Þ=pa (assuming deterministic partitioning), once the parameter a is determined,

the parameter p can also be inferred from the correlation coefficient between Vb and Vd. For clarity, let

N(a), A(a), and p(a) denote the optimal estimates of N, A, and p given the value of a, respectively. They

can be inferred from the data of birth and division sizes as follows:

AðaÞ = CDD; NðaÞ = AðaÞ2
CD2D� CDD2

; (Equation 22)�
a a

�1=a

pðaÞ = r Vb ;Vd : (Equation 23)

If the partitioning at division is stochastic, then Equation (23) should be replaced by Equation (19). Next, the

parameter a is determined by an optimal fit of the experimental to the theoretical cell size distribution us-

ing the least square criterion. Specifically, we determine a by solving the following optimization problem:

min
a

XM
i = 1






p�xi;a;pðaÞ;NðaÞ;AðaÞ�� bpðxiÞj2; (Equation 24)

where p(x;a,p,N,A) is the theoretical cell size distribution given the parameters a,p,N,A, bpðxÞ is the sample

cell size distribution obtained from experiments, xi are some reference points, andM is the number of bins

chosen. Once a is estimated, the values of p, N, and A, are automatically determined. The reason why we

do not estimate p directly as the mean of the partition ratio Vb
0=Vd is that the cell size distribution is sen-

sitive to the value of p. A comparatively small error in p will result in a comparatively large change in the cell

size distribution.

Since the cell size distribution is a function of A =Nag/a, which depends on the ratio of g and a, it is impos-

sible to infer the growth rate g from the cell size distribution. Finally, the growth rate g is determined by an

optimal fit of the experimental to the theoretical/simulated doubling time distribution using the least

square criterion. Once g is inferred, the last parameter a can be determined from the estimated a, N,

and A as a = Nag/A.

To verify the effectiveness of our method, we use our model to generating synthetic data of cell size dy-

namics. To make the time course data better mimic real biological processes, we add some noise to

both the growth rate g and the partition ratio z. We then perform parameter inference by fitting the noisy

data to two models: the model with deterministic partitioning (model I) and the model with stochastic par-

titioning (model II). The parameters input to the synthetic data and the parameters estimated using the

above method are given in Table 2, where three sets of input parameters are chosen to cover large swathes

of parameter space and to include three types of control strategies (timer-like, adder, and sizer-like). It can

be seen that fitting the noisy data to both models leads to an accurate estimation of p and g and a relatively

accurate estimation of N. However, fitting the data to model I gives rise to a systematic underestimation of

a and A and an overestimation of a due to stochasticity in partitioning. Fitting the data to model II can

remarkably improve the accuracy of estimation of these three parameters.
Experimental validation of the theory

To test our theory, we apply it to study the single-cell time course data of the cell size collected for E. coli in

Tanouchi et al. (2017). In this data set, the time course data of the cell length were recorded every minute for

279 cell lineages over 70 generations using a mother machine microfluidic device under three different

growth conditions (25�C, 27�C, and 37�C). At the three temperatures, there are a total of 65, 54, and 160

cell lineages measured, respectively. Based on such data, it is possible to estimate all the parameters

involved in our model at each temperature by fitting the data to both model I and model II. The estimated

parameters and the estimation errors are listed in Table 3 and are depicted by the box plots in Figure 6D.

From the estimated parameters, it can be seen that both models lead to similar estimation of p, N, and g.

However, the introduction of partitioning noise into the model leads to higher estimation of a and A and

lower estimation of a; this is consistent with our observation for synthesis data. For model I, the strength of

cell size control, a, is estimated to be 0.7–0.9 for the three growth conditions, which are all lower than 1.

Incorporating partitioning noise into the model gives rise to a higher estimate of a; for model II, a is esti-

mated to be 0.8–1.2 for the three temperatures, implying that the size control strategy in E. coli is close to

the adder. Moreover, higher temperature leads to a higher strength a than lower temperature.
12 iScience 24, 102220, March 19, 2021



Table 2. Parameter inference using synthesis data

a p N A g a

Input parameters 0.5 0.4 30 0.79 0.01 0.191

Estimated parameters

using model I

0.44 G 0.02 0.40 G 0.0002 28.70 G 0.82 0.65 G 0.06 0.0100 G 0.0001 0.195 G 0.015

Estimated parameters

using model II

0.50 G 0.04 0.40 G 0.0003 28.10 G 1.52 0.79 G 0.11 0.0100 G 0.0002 0.179 G 0.016

a p N A g a

Input parameters 1 0.5 20 2.08 0.02 0.192

Estimated parameters

using model I

0.77 G 0.06 0.50 G 0.0003 21.15 G 0.88 1.26 G 0.18 0.0200 G 0.0002 0.263 G 0.026

Estimated parameters

using model II

0.99 G 0.08 0.50 G 0.0003 19.20 G 1.14 2.04 G 0.35 0.0200 G 0.0003 0.187 G 0.027

a p N A g a

Input parameters 2 0.6 10 9.39 0.03 0.064

Estimated parameters

using model I

1.29 G 0.04 0.60 G 0.0005 12.90 G 0.32 2.73 G 0.20 0.0301 G 0.0003 0.183 G 0.010

Estimated parameters

using model II

1.92 G 0.04 0.60 G 0.0004 10.40 G 0.52 8.29 G 0.57 0.0300 G 0.0004 0.072 G 0.004

The cell lineage data are generated from the model with stochastic partitioning, where some noise is added to the growth

rate g and the partition ratio z with the coefficients of variation of both parameters being chosen as 7% (here we assume that

the growth rate is constant in each generation and the growth rates/partition ratios across different generations are i.i.d. nor-

mally distributed random variables). For each set of model parameters, we generate synthetic data simulating 50 cell line-

ages. For each cell lineage, the model parameters are estimated by fitting the synthetic data to both the model with deter-

ministic partitioning at cell division (model I) and themodel with stochastic partitioning (model II). The value in each cell shows

the mean and standard deviation of the estimated parameter computed over 50 cell lineages.
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Previous papers Tanouchi et al. (2015); Modi et al. (2017); Thomas (2018) have proposed an alternative

approach to determining the regulation strength. This approach assumes that the birth size Vb and the di-

vision size Vd in each generation are related by the following:

Vd = bVb +g+ ε; (Equation 25)

where 0% b% 2 and gR 0 are two constants and ε is Gaussian white noise. Under this assumption, b char-

acterizes the strength of cell size control with b = 0, b = 1, and b = 2 corresponding to the sizer, adder, and

timer strategies, respectively. Using the data of birth and division sizes for different generations, the

parameter b can be easily determined as the slope of the regression line of Vd on Vb. Based on the lineage

data, b is estimated to be 1.08 for cells at 25�C, 1.02 for cells at 27�C, and 0.93 for cells at 37�C (Figure S1), all

of which are close to 1. This implies a size control strategy close to the adder, which is consistent with the

predictions of our model. Compared with this method, our distribution matching method seems to be

more reliable since the linear relationships between Vb and Vd are actually very weak with numerous outliers

and a low R2 around 0.3 (Figure S1).

Figures 6A and 6B illustrate the experimental cell size and cell cycle duration distributions using the mea-

surements of all cell lineages versus the theoretical distributions using the estimated parameters. Here, the

theoretical distributions are plotted based on model II, but both models give rise to similar distribution

shapes. Interestingly, both experimental distributions at all the three temperatures coincide perfectly

with our model, which implies that our model can indeed reproduce the cell size dynamics in E. coli very

well. In addition, it supports the main assumption of choosing the rate of moving from one effective cell

cycle stage to the next to be a power law of the cell size.

Based on the lineage data, the correlation coefficients between the birth and division sizes, Vb and Vd, for

the three temperatures are 0.533 G 0.099, 0.503 G 0.121, and 0.431 G 0.139, respectively, and the corre-

lation coefficients between mother and daughter birth sizes, Vb and Vb
0, are 0.475 G 0.107, 0.445 G 0.134,

and 0.399 G 0.146, respectively. Here, the errors represent the standard deviations computed over all cell
iScience 24, 102220, March 19, 2021 13



Table 3. Model parameters estimated using E. coli cell lineage data at three different temperatures

Model I 25�C 27�C 37�C

a 0.690 G 0.0332 0.751 G 0.0374 0.868 G 0.1037

p 0.442 G 0.0020 0.451 G 0.0016 0.448 G 0.0039

N 13.761 G 0.6831 33.147 G 1.3734 36.768 G 2.3979

A 1.1357 G 0.0971 1.1508 G 0.0995 1.7673 G 0.4553

g 0.0123 G 0.0001 0.0153 G 0.0001 0.0249 G 0.0002

a 0.1120 G 0.0176 0.3418 G 0.0223 0.4713 G 0.0449

Model II 25�C 27�C 37�C

a 0.833 G 0.0315 1.010 G 0.0402 1.151 G 0.0730

p 0.444 G 0.0022 0.450 G 0.0023 0.446 G 0.0034

N 15.222 G 0.6791 35.317 G 1.4840 38.222 G 1.6418

A 1.5820 G 0.1152 1.9551 G 0.1511 3.2246 G 0.4863

g 0.0124 G 0.0002 0.0153 G 0.0002 0.0251 G 0.0003

a 0.1074 G 0.0074 0.2883 G 0.0196 0.3561 G 0.0430

n 156.75 G 5.0945 206.97 G 7.4727 229.25 G 9.8141

The parameters p, a, N, A are determined by fitting the experimental to the theoretical cell size distribution. The parameters

g and a are determined by fitting the experimental to the theoretical doubling time distribution. Two theoretical models are

used: the model with deterministic partitioning (model I) and the model with stochastic partitioning (model II). For model II,

once the parameter p is estimated, the sample size parameter n in Equation (1) can be inferred by fitting the partition ratio

data to a beta distribution. The estimation error for each parameter was computed using bootstrap. Specifically, we per-

formed parameter inference 50 times; for each estimation, the theoretical model was fitted to the data of 30 randomly

selected cell lineages. The estimation error was then calculated as the standard deviation over 50 repeated samplings.

Here, the bootstrap technique is used because each cell lineage was only measured for 70 generations, and the data of a

single lineage are insufficient to estimate all the parameters accurately.

ll
OPEN ACCESS

iScience
Article
lineages at that temperature. Stochastic simulations based on model II with the parameters estimated in

Table 3 show that the correlation coefficients between Vb and Vd for the three growth conditions are

0.564, 0.546, and 0.495, respectively, and the correlation coefficients between Vb and Vb
0 are 0.506,

0.447, and 0.396, respectively. Clearly, our estimated parameters capture the size correlations between

mother and daughter cells very well.

To further evaluate the performance of our model, we also examine the doubling time correlations be-

tween mother and daughter cells. Experimentally, the correlation coefficients between two successive

cell cycle durations for the three growth conditions are �0.109 G 0.109, �0.117 G 0.114, and �0.152 G

0.111, respectively, whereas simulations based on model II with the estimated parameters predict the cor-

relation coefficients to be �0.185, �0.160, and �0.173, respectively. Both theory and experiments reveal a

negative correlation between successive doubling times, and their values do not differ too much. This

again verifies the effectiveness of our model and our parameter inference approach.

Typically, a mother cell divides into two daughters that are different in size due to stochasticity in partition-

ing and possible asymmetric cell division Nieto-Acuña et al. (2020). Note that the data of cell sizes just

before division and just after division, Vd and Vb
0, can be easily extracted from the cell lineage data and

thus the parameter p can be estimated as the mean partition ratio CVb
0=VdD. An interesting characteristic

implied by the E. coli data is that at cell division, the smaller daughter is always tracked with the mean parti-

tion ratio p being estimated to be about 0.46 for all the three growth conditions (0.459 G 0.040 for cells at

25�C, 0.461 G 0.039 for cells at 27�C, and 0.464 G 0.034 for cells at 37�C).

Recall that in our estimation procedure, we do not use the information of Vd and Vb
0 to determine the

parameter p; rather, we infer p by an optimal fit of the experimental to the theoretical cell size distribution.

The estimate of p in Table 3 is 0.44–0.45 for the three temperatures, which is slightly lower than the value of

0.46 estimated using Vd and Vb
0. The reason of this discrepancy is that after cell division, over 60% gener-

ations have a small but sharp decline in the cell size (see Figure 6C for the cell size dynamics of five typical
14 iScience 24, 102220, March 19, 2021
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Figure 6. Fitting the experimental cell size and doubling time distributions to theory

(A) Experimental cell size distributions (blue bars) at the three temperatures and their optimal fitting to model II (red curve) where partitioning is stochastic.

Here, the theoretical distribution is computed using Equation (20).

(B) Experimental doubling time distributions (blue bars) at the three temperatures and their optimal fitting to model II (red curve), where the theoretical

distribution is computed using stochastic simulations.

(C) Five typical trajectories of cell size dynamics for cells at 37�C. The red dots show the cell sizes just after division, and the green dots show the minimal cell

sizes in each generation. For over 60% generations, there is a small abrupt decline in the cell size after division, shown as the sharp drop from a red dot to a

green dot.

(D) Means and standard deviations of all model parameters estimated by fitting the data to model II. The parameter values can be found in Table 3.
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cell lineages with the red dots being the cell sizes just after division and the green dots being the minimal

cell sizes in each generation; the small sharp drop in the cell size after division is shown as the transition

from a red dot to a green dot). Therefore, the realistic effective partition ratio should be computed using

the green dots rather than the red dots. This explains why the parameter p estimated in Table 3 is lower

than the mean partition ratio CVb
0=VdD.

A possible explanation of these abrupt declines is that the green dots are actually the true beginning of a new

cell cycle and the red dots correspond to an intermediate time point during cell division. In our model, division

ismodeled as an instantaneous transition from stageN to stage 1. However, cell division is never instantaneous

in real systems. This finite division time effect may cause the abrupt drops observed in the lineage data. To

verify the estimate of p, we compute the ratio of the size associated with a green dot to the division size in

the previous generation, which can be viewed as the realistic partition ratio. The mean of the realistic partition

ratio is estimated to be 0.44–0.45 for all the three temperatures (0.445G 0.038 for cells at 25�C, 0.442G 0.034

for cells at 27�C, and 0.450 G 0.032 for cells at 37�C), which are very close to the estimates of p in Table 3.

A natural question is whether the lineage data used here can be described by simpler models with fewer

parameters. In fact, the models in many previous papers can be viewed as special cases of our model. In

Osella et al. (2014); Nieto-Acuna et al. (2019); Totis et al. (2020a), the authors focus on the special case

of only one cell cycle stage (N = 1) and the majority of previous papers focus on the special case of
iScience 24, 102220, March 19, 2021 15
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symmetric division (p = 0.5) Kohram et al. (2021). Note that symmetric division mentioned here means that

the mean partition ratio equals 0.5 and we allow the partitioning to be stochastic. To see whether the data

studied here can be reproduced by simpler models, we fit the cell size distribution to the model with N = 1

as well as the model with p = 0.5 (Figure S2). Both models fail to capture the unusual shape of the cell cycle

distribution. This suggests that our model seems to be minimal in order to describe real lineage data.
DISCUSSION

In this work, we have analytically derived the cell size distribution of measurements obtained from a cell

lineage. We have solved two models. The first model assumes that (i) the birth size is a fixed (generation

independent) fraction of the division size in the last generation; (ii) the cell grows exponentially between

birth and division events where the growth rate is a generation independent constant; (iii) the length of

the cell cycle is stochastic; (iv) size homeostasis is enforced by timer-like, sizer-like, or adder strategies.

A second model was also solved which relaxes the assumption (i) above, namely it allows for a stochastic

ratio of the birth to division size.

The main features of the experimental cell size distribution in E. coli, namely a fast increase in the size count

for small cells, a slow decay for moderately large cells, and a fast decay for large cells, are reproduced by

the analytical solution of both models when the parameters N and a are large enough; this implies that

these features emerge when the variability in the cell cycle duration is not too large and when adder or

sizer-like mechanisms enforce size homeostasis. We also find that noise in partitioning at cell division (noise

in the ratio of the birth to division size) has a considerable influence on the shape of the cell size distribution,

whereas noise in the growth rate hardly exerts any influence; this is in agreement with an earlier moment-

based study Modi et al. (2017).

Our theory predicts that large cell cycle duration variability, timer-like division strategy, and tracking the

smaller daughter at division lead to larger skewness and coefficient of variation of the cell size distribution.

We have furthermore shown that (i) the distribution of cell cycle duration that emerges from our model is

well approximated by a gamma distribution that has been measured experimentally for many cell types

Golubev (2016); (ii) if cells divide asymmetrically, they are tracked randomly after division, and if cell cycle

duration variability is intermediate or low, then the cell size distribution is multimodal.

Lastly, we have shown that the theoretical distributions provide an excellent fit to the experimental E. coli

cell size and doubling time distributions reported in Tanouchi et al. (2017) for three different growth con-

ditions. This match provides support for the implicit assumption of our model that the speed of the cell cy-

cle (the transition rate between effective stages) monotonically increases with the cell volume and specif-

ically has a power law dependence on the cell volume. Note that while this law is compatible with certain

biophysical mechanisms (as discussed earlier in the model specification section), it can also be seen as

phenomenological means to model cell size homeostasis; in fact more generally and beyond the context

of our model, the usage of kinetic rates with power laws has found widespread applications in the effective

modeling of complex biochemical kinetics in cells Savageau and Voit (1987). Finally, based on thematching

of the experimental to the theoretical cell size and doubling time distributions, we have estimated all the

model parameters directly from E. coli cell lineage data and found that the regulation strength a exhibits a

weak increase with temperature. The estimated values of a (using model II, the most accurate model in this

paper) ranging between 0.8 and 1.2 confirm the previous results that some E. coli strains use the adder

strategy to achieve size homeostasis Tanouchi et al. (2015); Wallden et al. (2016). Simulations with the

inferred parameters using distribution matching also captured the size and doubling time correlations be-

tween mother and daughter cells—this provides further evidence of the accuracy of the deduced model.

In previous studies, simpler models of cell size regulation with fewer parameters have been proposed Amir

(2014); Osella et al. (2014); Vargas-Garcı́a and Singh (2018); Nieto-Acuna et al. (2019); Totis et al. (2020a); Nieto

et al. (2020a); Lin andAmir (2020). Here, we have shown that inference using the constraints of previousmodels

such asN = 1 or p = 0.5 do not reproduce the correct shape of the lineage cell size distribution (Figure S2). To

gainmore insights, we compare ourmodel with the classical model proposed in Amir (2014). In that paper, the

doubling time in a particular generation is assumed to be a function of the birth size. Under this assumption,

themodel is notMarkovian; this is because given an arbitrary time t, the evolution of the system after time t not

only depends on the cell size at that time but also depends on the cell sizes in the past (since the birth time is

generally smaller than time t). In our work, by assumingmultiple cell cycle stages and the coupling between the
16 iScience 24, 102220, March 19, 2021
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size and the rate of cell cycle progression, we are able to model cell size dynamics as a Markov process. By

using the powerful tool of Markov processes, we manage to compute the exact solution of the cell size distri-

bution of lineagemeasurements, which is difficult for a non-Markovianmodel like in Amir (2014). In addition, in

Amir (2014), (i) the partitioning at cell division is assumed to be symmetric (the mean partition ratio p is

assumed to be 0.5) and (ii) in one of the two models considered there, the doubling time distribution is

assumed to be Gaussian. In naturally occurring systems, the partitioning at cell division is often asymmetric

Shi et al. (2020). Here, we have shown that asymmetry and stochasticity in partitioning will greatly affect the

distribution shape and assuming symmetric division will lead to large errors in data fitting. Note also that

generally the doubling time distribution is not Gaussian (while it looks like being normal in Figure 6B for

E. coli, it is not for most organisms Golubev (2016); Yates et al. (2017); Chao et al. (2019); Perez-Carrasco

et al. (2020); Gavagnin et al. (2020)), rather it is right skewed and well approximated by a gamma or Erlang dis-

tribution which our model can capture but the method in Amir (2014) cannot.

Concluding, the major advance in our work is the analytic derivation of the cell size distribution of lineage

measurements, while previous studies focused more on population measurements Xia et al. (2020); Xia and

Chou (2021) or moments of lineage measurements. The advantages of the analytical distribution are (i) the

ease and speed with which one can explore the dependence of cell size statistics on parameters across

large swathes of parameter space (compared to stochastic simulations) and (ii) the reliable estimation of

parameters from data based on distribution matching which is generally much more robust than

moment-based estimation Munsky et al. (2018); Öcal et al. (2019). The present model presents a framework

onto which one can build further biological realism; current research work aims to extend the model to

include gene expression and its correlation to cell size resulting in concentration homeostasis of mRNAs

and proteins Padovan-Merhar et al. (2015); Shahrezaei and Marguerat (2015); Vargas-Garcia et al. (2018);

Bertaux et al. (2018); Lin and Amir (2018); Cao and Grima (2020).
Limitations of the study

Amajor assumption of our model is that cell growth is exponential. While this is a common assumption and

holds for various cell types, it is not universal. Hence, the present model cannot, for example, predict the

cell size distributions in Schizosaccharomyces pombe (fission yeast) where the increase of cell size with time

after birth is non-exponential Nobs and Maerkl (2014); Nakaoka and Wakamoto (2017).
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Figure S1. Scatter plot of birth sizes versus division sizes for the three growth conditions, related to Table 3
and Figure 6. The red line represents the regression line with its slope and the R2 value shown in the upper-right
corner.



cell length (μm)

25oC 27oC 37oC
pr

ob
ab

ilit
y 

de
ns

ity
A

cell length (μm) cell length (μm)

cell length (μm)

pr
ob

ab
ilit

y 
de

ns
ity

B

cell length (μm) cell length (μm)

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0 1 2 3 4 5 6 7

special case of
N = 1

special case of
p = 0.5

0

0.2

0.4

0.6

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0 1 2 3 4 5 6 7

Figure S2. Fitting the experimental cell size distribution to simpler models, related to Figure 6. (A) Simpler
model with only one cell cycle stage (N = 1). (B) Simpler model with symmetric division (p = 0.5). In (A),
we use the correlation coefficient between the birth and division sizes (see Eq. (23) in the main text) to infer the
parameter p. In (A),(B), we use the mean of the generalized added size to infer the parameter A (see Eq. (22) in the
main text).



Transparent methods

1 Distribution of the generalized added size

Let Vb and Vd denote the cell sizes at birth and at division in a particular generation, respectively. In
the main text, we have stated that the generalized added size V α

d − V α
b is Erlang distributed with shape

parameter N and mean A, where A = Nαg/a. To see this, note that when Vb is fixed, the cell size in
this generation is given by V (t) = Vbe

gt. Since the transition rate from one stage to the next at time t is
equal to aV (t)α, the distribution of the transition time T is given by

P(T > t) = e−
∫ t
0
aV (s)αds = e−

∫ t
0
aV αb e

αgsds = e−
aV α
b

αg
(eαgt−1). (1)

This shows that
P(V α

b (eαgT − 1) > t) = e−
at

αg .

Hence V α
b (eαgT − 1) is exponentially distributed with mean αg/a. Note that V α

b (eαgT − 1) is the
increment of the αth power of the cell size in a particular cell cycle stage. Therefore, the total increment
of the αth power of the cell size in each generation is the independent sum ofN exponentially distributed
random variables with mean αg/a. This shows that V α

d − V α
b has an Erlang distribution with shape

parameter N and mean Nαg/a = A.

2 Cell size distribution under deterministic partitioning

2.1 General case

Here we compute the analytical distribution of the cell size. For simplicity, we first focus on the
case of deterministic partitioning at cell division, i.e. µ(y) = δ(y + log p). In this case, Eq. (4) in the
main text reduces to

∂tpk =− g∂xpk + aeαxpk−1 − aeαxpk, 2 ≤ k ≤ N,

∂tp1 =− g∂xp1 + ap−αeαxpN (x− log p)− aeαxp1.
(2)

To proceed, for each cell cycle stage k, we introduce the moment generating function

Fk(λ) =

∫ ∞
−∞

pk(x)eλxdx, F (λ) =

∫ ∞
−∞

p(x)eλxdx,

where p(x) =
∑N

k=1 pk(x) is the probability density function of the logarithmic cell size. Then Eq. (2)
can be converted to the following differential equations:

∂tFk(λ) = gλFk(λ)− aFk(λ+ α) + aFk−1(λ+ α), 2 ≤ k ≤ N,

∂tF1(λ) = gλF1(λ)− aF1(λ+ α) + apλFN (λ+ α).

At the steady state, we have

gλFk(λ)− aFk(λ+ α) + aFk−1(λ+ α) = 0, 2 ≤ k ≤ N,

gλF1(λ)− aF1(λ+ α) + apλFN (λ+ α) = 0.
(3)



Note that the first row of Eq. (3) is recursive with respect to k, which indicates that Fk−1 can be
represented by Fk for each 2 ≤ k ≤ N . Hence Fk can be represented by FN as

Fk(λ) =

N−k∑
l=0

CN−k,l

(
− A

αN

)l
(λ− α) · · · (λ− lα)FN (λ− lα), 1 ≤ k ≤ N. (4)

Summing over k in the above equation yields

F (λ) =

N∑
k=1

Fk(λ) =

N−1∑
k=0

k∑
l=0

Ck,l

(
− A

αN

)l
(λ− α) · · · (λ− lα)FN (λ− lα). (5)

Inserting Eq. (4) into the second row of Eq. (3) shows that FN is the solution to the following functional
equation:

pλ−αFN (λ) =

N∑
l=0

CN,l

(
− A

αN

)l
(λ− α) · · · (λ− lα)FN (λ− lα). (6)

Complex computations show that the solution to this functional equation can be computed explicitly as
follows.

Theorem 1. The solution to Eq. (6) is given by

FN (λ) =
KA

N
Γ

(
1− λ

α

)−1 ∫ ∞
0

u−
λ

α

∞∏
n=0

aN (pαnu)du, (7)

where

aN (u) =

(
1 +

Au

N

)−N
is a function of u and

K =

[∫ ∞
0

1

u
(aN (u)−1 − 1)

∞∏
n=0

aN (pαnu)du

]−1

is a normalization constant.

Proof. The proof of this theorem is highly nontrivial and will be given in Section 6.

Inserting Eq. (7) into Eq. (5) gives the following explicit expression for the moment generating
function:

F (λ) = K

N−1∑
k=0

k∑
l=0

Ck,l

(
A

N

)l+1

Γ

(
1− λ

α

)−1 ∫ ∞
0

ul−
λ

α

∞∏
n=0

aN (pαnu)du. (8)

For convenience, we also introduction the characteristic function

G(λ) =

∫ ∞
−∞

p(x)eiλxdx,

which is nothing but the inverse Fourier transform of p(x). Clearly, the moment generating function and
the characteristic function are related by G(λ) = F (iλ). Thus we finally obtain the following explicit
expression of the characteristic function:

G(λ) = K

N−1∑
k=0

k∑
l=0

Ck,l

(
A

N

)l+1

Γ

(
1− iλ

α

)−1 ∫ ∞
0

ul−
iλ

α

∞∏
n=0

aN (pαnu)du. (9)



Since the Fourier transform and inverse Fourier transform are inverses of each other, taking the Fourier
transform of the characteristic function G(λ) yields the probability density p(x) of the logarithmic cell
size. Finally, the probability density of the original cell size y = ex is given by

p̃(y) =
1

y
p(log y).

2.2 Case of small cell cycle duration variability

We next focus on the special case where cell cycle duration variability is very small, i.e. N � 1.
In this limit, we have aN (u) = e−Au and thus we have

∞∏
n=0

aN (pαnu) =

∞∏
n=0

e−Ap
αnu = e−

Au

1−pα .

This implies that∫ ∞
0

ul−
λ

α

∞∏
n=0

aN (pαnu)du =

∫ ∞
0

ul−
λ

α e−
Au

1−pα du = Γ

(
l + 1− λ

α

)(
A

1− pα

) λ

α
−l−1

.

Inserting this equation into Eq. (8) yields

F (λ) = K

N−1∑
k=0

k∑
l=0

Ck,l

(
A

N

)l+1

Γ

(
1− λ

α

)−1

Γ

(
l + 1− λ

α

)(
A

1− pα

) λ

α
−l−1

.

By virtue of the fact that

Γ(l + x)

Γ(x)
= x(x+ 1) · · · (x+ l − 1) = (x)l,

we obtain

F (λ) = K

(
A

1− pα

) λ

α
N−1∑
k=0

k∑
l=0

Ck,l

(
1− pα

N

)l+1(
1− λ

α

)
l

,

where (x)l = x(x + 1) · · · (x + l − 1) is the Pochhammer symbol. Moreover, using the hockey-stick
identity

N−1∑
k=1

Ck,l = CN,l+1,

we obtain

F (λ) = K

(
A

1− pα

) λ

α
N−1∑
l=0

N−1∑
k=l

Ck,l

(
1− pα

N

)l+1(
1− λ

α

)
l

= K

(
A

1− pα

) λ

α
N−1∑
l=0

CN,l+1

(
1− pα

N

)l+1(
1− λ

α

)
l

=
K

N

(
A

1− pα

) λ

α
N−1∑
l=0

CN−1,l

l + 1

(
1− pα

N

)l+1(
1− λ

α

)
l

.

In the limit of N →∞, we have

N−1∑
l=0

CN−1,l

l + 1

(
1− pα

N

)l(
1− λ

α

)
l

=
α(1− pλ)

λ(1− pα)
,



This identity, together with the fact that F (0) = 1, finally shows that

F (λ) =
1− pλ

−λ log p

(
A

1− pα

) λ

α

. (10)

Direct computation shows that F (λ) can be rewritten as

F (λ) =
V̄ λ
d − V̄ λ

b

(log V̄d − log V̄b)λ
,

where

V̄b = p

(
A

1− pα

) 1

α

, V̄d =

(
A

1− pα

) 1

α

.

Replacing λ by iλ in the above equation gives the characteristic function

G(λ) =
V̄ iλ
d − V̄ iλ

b

(log V̄d − log V̄b)iλ
.

Taking the Fourier transform of the characteristic function shows that logarithmic cell size has the
uniform distribution

p(x) =
1

log V̄d − log V̄b
I[log V̄b,log V̄d](x),

and thus the original cell size y = ex has the following distribution:

p̃(y) =
1

y
p(log y) =

1

(log V̄d − log V̄b)y
I[V̄b,V̄d](y), (11)

where IA(x) is the indicator function which takes the value of 1 when x ∈ A and takes the value of 0

otherwise.

3 Cell cycle duration distribution

Let Vb and Vd denote the cell sizes at birth and at division in a particular generation, respectively,
and let T denote the corresponding cell cycle duration. Since the cell size growth exponentially, we
have

Vd = Vbe
gT .

This shows that
T =

1

g
log

(
Vd
Vb

)
. (12)

Recall that V α
d −V α

b has an Erlang distribution with shape parameter N and rate parameter N/A. Thus
given that V α

b = x, the probability density function of V α
d is given by

P(V α
d = y|V α

b = x) =
NN

AN (N − 1)!
(y − x)N−1e−

N

A
(y−x), y ≥ x.

Thus given that V α
b = x, it follows from Eq. (12) that the probability density function of the cell cycle

duration T is given by

P(T = t|V α
b = x) =

αgNN

AN (N − 1)!
xN (eαgt − 1)N−1eαgt−

N

A
x(eαgt−1).



We next compute the distribution of Vb. To this end, let Vb(k) and Vd(k) denote the cell sizes at birth
and at division in the kth generation, respectively. Under the assumption of deterministic partitioning,
we have Vb(k + 1) = pVd(k) and thus we obtain the recursive equation

V α
b (k + 1) = pα[V α

b (k) + ∆k], k ≥ 0,

where ∆k = V α
d (k) − V α

b (k) is the generalized added size in the kth generation, which has an Erlang
distribution with shape parameter N and rate parameter N/A. Using the recursive equation repeatedly,
we obtain

V α
b (k) = pkαVb(0)α + pkα∆0 + p(k−1)α∆1 + · · ·+ pα∆k−1. (13)

Since ∆0,∆1,∆2, · · · are i.i.d. Erlang distributed random variables with shape parameter N and rate
parameter N/A, the Laplace transform of ∆n is given by

Ee−λ∆n =

(
1 +

Aλ

N

)−N
= aN (λ).

It thus follows from (13) and the independence of Vb(0),∆0,∆1,∆2, · · · that

Ee−λV αb (k) = Ee−λpkαVb(0)α
k∏

n=1

aN (pnαλ). (14)

Since the distribution of Vb(k) converges to the steady-state distribution of the birth size as k → ∞,
taking k →∞ in Eq. (14) shows that the Laplace transform of V α

b is given by

Ee−λV αb =

∞∏
n=1

aN (pαnu) =

∞∏
n=1

(
1 +

Apαnλ

N

)−N
. (15)

Taking the inverse Laplace transform gives the probability density function of V α
b , from which is the

probability density function of Vb can be obtained. Finally, the distribution of the cell cycle duration T
is given by

P(T = t) =

∫ ∞
0

P(T = t|V α
b = x)P(V α

b = x)dx. (16)

A special case occurs when α is large (strong cell-size control) or when p is small (smaller daughter
tracking). Under the large α or small p approximation, the term pαn is negligible for n ≥ 2 and it
suffices to keep only the first term in the infinite product given in Eq. (15). In this case, the laplace
transform of V α

b reduces to

Ee−λV αb ≈
(

1 +
Apαλ

N

)−N
.

Taking the inverse Laplace transform gives the birth size distribution

P(Vb = x) =
NNxαN−1e−

N

Apα
xα

(N − 1)!ANpαN
.

Inserting this equation into Eq. (16) gives the doubling time distribution

P(T = t) =
αg(2N − 1)!

pαN [(N − 1)!]2
· e

αgt(eαgt − 1)N−1

(p−α + eαgt − 1)2N
.



4 Correlation between birth and division sizes

Let Vb and Vd denote the cell sizes at birth and at division in a particular generation, respectively,
and let V ′b and V ′d denote the the birth and division sizes in the next generation, respectively. We first
focus on the correlation between the birth size Vd and the division size Vd. Since the generalized added
size ∆ = V α

d − V α
b is independent of Vb, we have

Cov(V α
b , V

α
d ) = Cov(V α

b , V
α
b + ∆) = Var(V α

b ),

as well as
Var(V α

d ) = Var(V α
b + ∆) = Var(V α

b ) + Var(V ∆
b ),

where Cov(X,Y ) denotes the covariance between random variables X and Y and Var(X) denotes the
variance of X . This shows that

ρ(V α
b , V

α
d ) =

Cov(V α
b , V

α
d )√

Var(V α
b )Var(V α

d )
=

√
Var(V α

b )

Var(V α
b ) + Var(∆)

, (17)

where ρ(X,Y ) denotes the covariance between X and Y . Since ∆ is Erlang distributed with shape
parameter N and mean A, we have

Var(∆) =
A2

N
. (18)

Moreover, since we have obtained the Laplace transform of V α
b , it is easy to compute its variance. In

particular, it follows from Eq. (15) that V α
b has the same law as the independent sum of an infinite

number of random variables X1, X2, · · · , where Xn is Erlang distributed with shape parameter N and
mean N/Apαn. This shows that

Var(V α
b ) =

∞∑
n=1

A2p2αn

N
=

A2p2α

N(1− p2α)
.

Inserting the above two equations into Eq. (17) shows that

ρ(V α
b , V

α
d ) =

√
p2α = pα.

We next focus on the correlation between two successive birth sizes and the correlation between two
successive division sizes. Since V ′b = pVd, the correlation coefficient between V α

b and V ′αb is exactly
the same as that between V α

b and V α
d , i.e.

ρ(V α
b , V

′α
b ) = ρ(V α

b , V
α
d ) = pα.

Finally, since V ′b = pVd, the correlation coefficient between V α
d and V ′αd is exactly the same as that

between V ′αb and V ′αd , i.e.

ρ(V α
d , V

′α
d ) = ρ(V ′αb , V ′αd ) = ρ(V α

b , V
α
d ) = pα.

We next focus on the model with stochastic partitioning. In this case, Eqs. (17) and (18) still hold
and thus the key is to compute the variance of V α

b . Let R = V ′b/Vd be the partition ratio, which is
assumed to be beta distributed. Since V ′b = RVd, we have

V ′αb = Rα(V α
b + ∆).



This shows that Rα(V α
b + ∆) and V α

b have the same distribution. Thus we obtain

EV α
b = ERα(V α

b + ∆) = ERαE(V α
b + ∆), (19)

EV 2α
b = ER2α(V α

b + ∆)2 = ER2αE(V α
b + ∆)2, (20)

where we have used the fact that the partition ratio R is independent of the birth size Vb and generalized
added size ∆. Since R has a beta distribution with mean p and sample size parameter ν, we have

ERα =
1

B(pν, qν)

∫ ∞
0

zα+pν−1(1− z)qν−1dz =
B(α+ pν, qν)

B(pν, qν)
.

It then follows from Eq. (19) that

EV α
b =

AERα

1− ERα
= AK1, (21)

where
K1 =

ERα

1− ERα
=

B(α+ pν, qν)

B(pν, qν)−B(α+ pν, qν)
.

Similarly, it follows from Eq. (20) that

EV 2α
b = A2K2

(
2K1 + 1 +

1

N

)
, (22)

where

K2 =
ER2α

1− ER2α
=

B(2α+ pν, qν)

B(pν, qν)−B(2α+ pν, qν)
.

Combining Eqs. (21) and (22) shows that

Var(V α
b ) = EV 2α

b − (EV α
b )2 = A2K2

(
2K1 + 1 +

1

N

)
−A2K2

1 ,

Inserting this equation into Eq. (17) finally shows that

ρ(V α
b , V

α
d ) =

√
N
[
(2K1 + 1)K2 −K2

1

]
+K2

N
[
(2K1 + 1)K2 −K2

1

]
+K2 + 1

.

5 Cell size distribution under stochastic partitioning

We next focus on the case of stochastic partitioning at cell division. In this case, Eq. (4) in the
main text can be converted to the following differential equations satisfied by the moment generating
function:

∂tFk(λ) = gλFk(λ)− aFk(λ+ α) + aFk−1(λ+ α), 2 ≤ k ≤ N,

∂tF1(λ) = gλF1(λ)− aF1(λ+ α) + aµ̂(λ)FN (λ+ α),

where

µ̂(λ) =

∫ ∞
0

µ(y)e−λydy =

∫ 1

0
f(x)xλdx

is the Laplace transform of µ(y). At the steady state, in analogy to the derivation of Eq. (5), we obtain

F (λ) =

N−1∑
k=0

k∑
l=0

Ck,l

(
− A

αN

)l
(λ− α) · · · (λ− lα)FN (λ− lα), (23)



where FN is the solution to the following functional equation:

µ̂(λ− α)FN (λ) =

N∑
l=0

CN,l

(
− A

αN

)l
(λ− α) · · · (λ− lα)FN (λ− lα). (24)

To proceed, we defined a new function

p(λ) =

(∫ 1

0
f(x)xλ−αdx

) 1

λ−α

.

With this notation, Eq. (24) can be rewritten as

p(λ)λ−αFN (λ) =

N∑
l=0

CN,l

(
− A

αN

)l
(λ− α) · · · (λ− lα)FN (λ− lα). (25)

Comparing Eqs. (7) and (25), we can see that when the noise in partitioning is small, the solution to the
above functional equation is approximately given by

FN (λ) =
KA

N
Γ

(
1− λ

α

)−1 ∫ ∞
0

u−
λ

α

∞∏
n=0

aN (p(λ)αnu)du,

where the constant K is given by

K =

[∫ ∞
0

1

u
(aN (u)−1 − 1)

∞∏
n=0

aN (p(0)αnu)du

]−1

,

with p(0) being the limit of p(λ) as λ→ 0. Inserting this equation into Eq. (23) shows that the moment
generating function is given by

F (λ) = K

N−1∑
k=0

k∑
l=0

Ck,l

(
A

N

)l+1

Γ

(
1− λ

α

)−1 ∫ ∞
0

ul−
λ

α

∞∏
n=0

aN (p(λ)αnu)du.

Replacing the variable λ in the the moment generating function by iλ yields the characteristic function

G(λ) = K

N−1∑
k=0

k∑
l=0

Ck,l

(
A

N

)l+1

Γ

(
1− iλ

α

)−1 ∫ ∞
0

ul−
iλ

α

∞∏
n=0

aN (p(iλ)αnu)du.

Taking the Fourier transform of the characteristic function gives the the probability density p(x) of the
logarithmic cell size. Then the probability density of the original cell size y = ex is given by

p̃(y) =
1

y
p(log y).

6 Proof of Theorem 1

Here we shall give the detailed proof of Theorem 1 in Section 2. To this end, we must revisit the
cell size distribution for the adder strategy.



6.1 Cell size distribution for the adder strategy

For the adder strategy (α = 1), we can compute the cell size distribution in an alternative way. For
simplicity, we consider the case of deterministic partitioning, i.e. f(z) = δ(z − p). In this case, Eq. (3)
in the main text reduces to

∂tp̃k(y) = −∂y[gyp̃k(y)] + ayp̃k−1(y)− ayp̃k(y), 2 ≤ k ≤ N,

∂tp̃1(y) = −∂y[gyp̃1(y)] +
ay

p2
p̃N

(
y

p

)
− ayp̃1(y).

(26)

To proceed, for each cell cycle stage k, we introduce the Laplace transform

Hk(λ) =

∫ ∞
0

p̃k(y)e−λydy, H(λ) =

∫ ∞
0

p̃(y)e−λydy,

where p̃(y) =
∑N

k=1 p̃k(y) is the probability density function of the cell size. Then Eq. (26) can be
converted to the following differential equations:

∂tHk(λ) = (gλ+ a)∂λHk(λ)− a∂λHk−1(λ), 2 ≤ k ≤ N,

∂tH1(λ) = (gλ+ a)∂λH1(λ)− a∂λHN (pλ).

At the steady state, we have

(gλ+ a)H ′k(λ)− aH ′k−1(λ) = 0, 2 ≤ k ≤ N,

(gλ+ a)H ′1(λ)− aH ′N (pλ) = 0.
(27)

Note that the first row of Eq. (27) is recursive with respect to k, which indicates that H ′k−1 can be
represented by H ′k for each 2 ≤ k ≤ N . Hence H ′k can be represented by H ′N as

H ′k(λ) =

(
1 +

A′λ

N

)N−k
H ′N (λ), 1 ≤ k ≤ N, (28)

whereA′ = Ng/a. Inserting this equation into the second row of Eq. (27) shows thatH ′N is the solution
to the following functional equation:

H ′N (λ) =

(
1 +

A′λ

N

)−N
H ′N (pλ) = aN (λ)H ′N (pλ).

Using the above equation repeatedly yields

H ′N (λ) = H ′N (0)

∞∏
n=1

aN (pnλ). (29)

Inserting the above equation into Eq. (28) and summing over k, we obtain

H ′(λ) =

N∑
k=1

H ′k(λ) =
N

A′
H ′N (0)(aN (λ)−1 − 1)

∞∏
n=1

aN (pnλ).

Since H(0) = 1, integrating the above equation yields

H(λ) = 1 +
N

A′
H ′N (0)

∫ λ

0

1

u
(aN (u)−1 − 1)

∞∏
n=0

aN (pnu)du.



Finally, using the fact that H(∞) = 0, we obtain

H(λ) = 1−K
∫ λ

0

1

u
(aN (u)−1 − 1)

∞∏
n=0

aN (pnu)du,

where

K = −N
A′
H ′N (0) =

[∫ ∞
0

1

u
(aN (u)−1 − 1)

∞∏
n=0

aN (pnu)du

]−1

.

is a normalization constant. Taking the inverse Laplace transform gives the cell size distribution.

6.2 Detailed proof

We are now in a position to prove Theorem 1.

Proof. For simplicity, we first focus on the adder strategy (α = 1). Recall that the probability density
functions at a certain stage for the original cell size and the logarithmic cell size are related by

p̃k(y) =
1

y
pk(log y).

Using the change of variables formula, we obtain

FN (λ) =

∫ ∞
−∞

pk(x)eλxdx =

∫ ∞
0

p̃k(y)yλdy.

Straightforward computations shows that∫ ∞
0

xλ−1e−yxdx = Γ(λ)y−λ.

Combining the above two equations shows that

FN (−λ) =

∫ ∞
0

p̃k(y)y−λdy

= Γ(λ)−1

∫ ∞
0

p̃k(y)dy

∫ ∞
0

xλ−1e−yxdx

= Γ(λ)−1

∫ ∞
0

xλ−1dx

∫ ∞
0

p̃k(y)e−xydy

= Γ(λ)−1

∫ ∞
0

Hk(x)xλ−1dx.

It follows from Eq. (29) that

HN (x) =
KA′

N

∫ ∞
x

∞∏
n=0

aN (pnu)du.

Thus we obtain

FN (−λ) =
KA′

N
Γ(λ)−1

∫ ∞
0

xλ−1dx

∫ ∞
x

∞∏
n=0

aN (pnu)du

=
KA′

N
Γ(λ)−1

∫ ∞
0

∞∏
n=0

aN (pnu)du

∫ u

0
xλ−1dx

=
KA′

N
Γ(λ+ 1)−1

∫ ∞
0

uλ
∞∏
n=0

aN (pnu)du.



It follows from Eq. (6) that FN (λ) is the solution to the functional equation

pλ−1FN (λ) =

N∑
l=0

CN,l

(
−A

′

N

)l
(λ− 1) · · · (λ− l)FN (λ− l). (30)

Thus the solution to the above functional equation can be computed explicitly as

FN (λ) =
KA′

N
Γ(1− λ)−1

∫ ∞
0

u−λ
∞∏
n=0

aN (pnu)du. (31)

We next focus on the case of a general size control strategy (arbitrary α). In this case, it follows
from Eq. (6) that FN (λ) is the solution to the functional equation

pλ−αFN (λ) =

N∑
l=0

CN,l

(
− A

αN

)l
(λ− α) · · · (λ− α)FN (λ− α). (32)

Comparing the functional forms of Eqs. (30) and (32), it is easy to see that the solution to Eq. (32) can
be obtain from the function given in Eq. (31) by replacing λ by λ/α, replacing A′ by A = αA′, and
replacing p by pα. Thus we finally obtain

FN (λ) =
KA

N
Γ

(
1− λ

α

)−1 ∫ ∞
0

u−
λ

α

∞∏
n=0

aN (pαnu)du. (33)

This gives the desired result.
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