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Abstract: Recent breakthroughs in immune checkpoint inhibitors (ICIs) have shown promise in
triple-negative breast cancer (TNBC). Due to the intrinsic heterogeneity among TNBC, clinical
response to ICIs varies greatly among individuals. Thus, discovering rational biomarkers to select
susceptible patients for ICIs treatment is warranted. A total of 422 TNBC patients derived from The
Cancer Genome Atlas (TCGA) database and Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) dataset were included in this study. High immunogenic gene modules
were identified using weighted gene co-expression network analysis (WGCNA). Immune-related
genes (IRGs) expression patterns were generated by consensus clustering. We developed a three-gene
signature named immune-related gene panel (IRGP) by Cox regression method. Afterward, the
associations of IRGP with survival outcomes, infiltration of immune cells, drug sensitivity, and the
response to ICIs therapy were further explored. We found five high immunogenic gene modules. Two
distinct IRGclusters and IRG-related genomic clusters were identified. The IRGP was constructed
based on TAPBPL, FBP1, and GPRC5C genes. TNBC patients were then subdivided into high- and
low-IRGriskscore subgroups. TNBC patients with low IRGriskscore had a better survival outcome,
higher infiltration of immune cells, lower TP53 mutation rate, and more benefit from ICIs treatment
than high IRGriskscore patients. These findings offer novel insights into molecular subtype of TNBC
and provided potential indicators for guiding ICIs treatment.

Keywords: triple-negative breast cancer; immune-related genes; molecular subtypes; prognosis;
immunotherapy

1. Introduction

According to estimates, female breast cancer (BC) has now displaced lung cancer
as the leading cause of global cancer incidence, with an estimated 2.3 million new cases
and 685,000 deaths in 2020 [1]. Among the subtypes of BC, triple-negative breast cancer
(TNBC) is the most aggressive subtype that accounts for approximately 15–20% of all
BC patients [2,3]. Due to the absence of ideal treatment target, TNBC is not sensitive to
endocrine therapy or molecular targeted therapy [4]. Chemotherapy is one of the primary
systemic treatments of TNBC, but the efficacy of conventional chemoradiotherapy differs
widely and has considerable heterogeneity for different individuals. As high-throughput
sequencing technologies have developed, more intrinsic subtypes of TNBC have been
discovered and different subtypes have obviously different treatment guidelines and tumor
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biology [5]. Therefore, developments of new treatment strategies and applicable molecular
subtypes of TNBC have become an urgent challenge.

In recent years, immunotherapy has emerged as an attractive and effective pillar in
cancer treatment, and increasing evidence supports a key role of the immune system in
determining the response to standard therapy and long-term survival in BC patients [6,7].
Recent studies suggested that TNBC was thought to be the most immunogenic BC subtype
characterized by the presence of tumor neoantigens and high levels of lymphocytic infil-
tration [8]. According to the results of KEYNOTE-522 and IMpassion130, pembrolizumab
and atezolizumab were approved by the US Food and Drug Administration (FDA) for
early-stage or metastatic TNBC [9,10]. However, TNBC patients that benefit from immune
checkpoint inhibitors (ICIs) remain very limited. Furthermore, other immunotherapy strate-
gies such as adoptive T-cell transfer, vaccination, or virotherapy have not yet demonstrated
meaningful clinical activity [11]. Presently, biomarkers for predicting efficacy of immune
therapy have gained increased attention. Remarkably, PD-L1 expression, tumor mutation
burden, and infiltrating lymphocytes (TILs) have long been proposed as reliable indicators
for immune checkpoint inhibitors (ICIs) treatment [12]. As the factors that influence the effi-
cacy of ICIs are multifaceted, many key questions remain unanswered. Therefore, exploring
the expression patterns of immune-related pathways not only enhances our understanding
of immune dysregulation but also provides potential opportunities for antitumor immunity
in TNBC.

In this study, we aimed to investigate the aberrant immune network and explore a
prognostic marker for predicting the immune microenvironment status in TNBC. Here, we
comprehensively analyzed the immune network and identified immune-related subtypes
based on the expression profiles of 422 TNBC patients. A gene panel to quantify the
immune responses status for individual patients was established. Additionally, we linked
our immune signature with immune cell-infiltrating characteristics and response to ICIs.
Overall, our study systematically explored the immune-related subtypes and identified a
robust indicator for predicting the prognosis of TNBC.

2. Materials and Methods
2.1. TNBC Patients and Public Datasets

RNA sequencing data of 123 TNBC patients and 113 normal samples, somatic mu-
tation data, and corresponding clinicopathological information were obtained from The
Cancer Genome Atlas (TCGA) database (www.portal.gdc.cancer.gov/projects, accessed on
2 February 2022). The mRNA expression data of Molecular Taxonomy of Breast Cancer
International Consortium (METABRIC) dataset on TNBC containing 299 samples and clini-
cal information were accessed via cBioPortal (http://www.cbioportal.org/, accessed on
10 February 2022) [13]. Next, we extracted immune-related genes (IRGs) from ImmPort
database [14] (www.immport.org/shared/home, accessed on 15 February 2022), InnateDB
database [15] (www.innateDBdb.com/, accessed on 15 February 2022) and GSEA database
(http://www.gsea-msigdb.org/gsea/index.jsp, accessed on 20 February 2022). After re-
moval of duplicate genes, 4327 immune-related genes were acquired for further analysis.
Patients without the required clinical data were excluded from all analyses. Batch effects of
individual datasets were adjusted using ComBat.

2.2. Differential Expression and Enrichment Analysis

The limma algorithm [16] was used to select the differentially expressed genes (DEGs)
and differentially expressed immune-related genes (DEIGs) between TNBC sample and
normal tissues in TCGA-TNBC cohort. The screening threshold was log2 fold change > 1
and false discovery rate (FDR) < 0.05. Enrichment analysis for Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was performed using the
R package ClusterProfiler [17]. According to the p value, the TOP 8 significant biological
terms were visualized as a Circos plot.

www.portal.gdc.cancer.gov/projects
http://www.cbioportal.org/
www.immport.org/shared/home
www.innateDBdb.com/
http://www.gsea-msigdb.org/gsea/index.jsp
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2.3. Identification of High Immunogenicity Modules by WGCNA

We used the weighted gene co-expression network analysis (WGCNA) to identify
high immunogenicity modules in TNBC [18]. Firstly, similarity matrix was constructed
by calculating the Pearson correlation coefficient between gene pairs based on the DEIGs
expression data. Then, we used soft threshold of β = 8 to convert the similarity matrix
into an adjacency matrix, which was able to maintain the scale-free topology and sufficient
node connectivity. A topological overlap matrix (TOM) was created from the adjacency
matrix to describe the degree of association between genes. The dynamic pruning tree
was designated to identify the modules using 1-TOM as the distance measure. Finally,
we identified 7 modules by setting the merging threshold function at 0.25. The modules
with significantly higher IRGs expression patterns in TNBC tumor tissues were selected for
subsequent analysis. The expression of IRGs in these high immunogenicity modules was
also extracted for further analysis.

2.4. Consensus Molecular Clustering of IRGs and Gene Set Variation Analysis (GSVA)

According to the expression of IRGs, unsupervised clustering analysis was used to
identify diverse IRGs expression patterns. We categorized TNBC patients into differ-
ent molecular subtypes for subsequent analysis. The optimal number of clusters was
established using the cophenetic coefficient, dispersion, and silhouette. All subtypes identi-
fication was conducted by utilizing the R package “ConsensusClusterPlus” with 1000 times
repetitions [19]. In order to understand the biological processes involved in different IRGs
patterns, we performed GSVA enrichment analysis using the R package “GSVA” [20].
The gene set of “c2.cp.kegg.v7.2.symbols” and “h.all.v7.4.symbols” were obtained from
the MsigDB database (http://www.gsea-msigdb.org/gsea/downloads.jsp, accessed on
17 March 2022). A list of the top 20 enriched pathways was selected with adjusted
p < 0:05. To estimate the abundance of 23 immune cell infiltrations in TNBC, the single-
sample gene-set enrichment analysis (ssGSEA) algorithm was performed as described be-
fore [21]. Gene sets for each immune cell type that we used were reported, previously [22].
The enrichment scores were limited to the range of 0 to 1.

2.5. Generation of IRGs Gene Signature and Functional Enrichment Analysis

To screen the IRG-related DEGs among different IRGs clusters, we utilized the “limma”
method with the filtering criteria of adjusted p < 0.05. The univariate Cox regression model
was applied to assess the prognostic value of IRG-related DEGs. Then, the IRGs gene
clusters were also achieved with consensus clustering algorithm. To identify functional
enrichment of IRG-related DEGs, annotation analysis of GO and KEGG pathway was
carried out with R package “ggplot2”, “clusterProfiler”, “org.Hs.eg.db”, and “enrichplot”.
The top 30 biological terms were used with p < 0.05.

2.6. Construction and Validation of the Immune-Related Gene Panel (IRGP)

We combined TCGA-TNBC cohort and METABRIC-TNBC cohort to create a final meta-
cohort. To establish a prognostic gene panel, we used the least absolute shrinkage and selection
operator (LASSO) method to evaluate the associations between IRGs expressions and overall
survival (OS) [23]. In this way, each TNBC sample could be calculated with a risk score by
the following formula: (coef 1 × expression of gene 1) + (coef 2 × expression of gene 2)+.
+(coef n×expression of gene n). According to the median of risk score, patients with TNBC
were divided into high- and low-risk subgroups for subsequent study. Survival analysis in
high- and low-risk subgroups was conducted by the R “survival” and “survminer” packages.
R package “survivalROC” was used to produce receiver operating characteristic (ROC) curves.
Analyses of dimensionality reduction were performed using principal component analysis
(PCA) and t-distributed stochastic neighbor embedding (t-SNE).

http://www.gsea-msigdb.org/gsea/downloads.jsp
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2.7. Comprehensive Analysis of Immune Characteristics and ICIs Therapy in Different
IRGP Subgroups

To identify immune properties of TNBC samples, mRNA expression data were cal-
culated by the CIBERSORT algorithm to estimate the abundance of 22 types of immune
cells [24]. The associations between the abundance of 22 types of immune cells and clinico-
pathological factors were presented as a landscape map. To clarify the immune function
in high- and low-risk subgroups, we identified the IRGP signatures enrichment level as
ssGSEA score. For the effects of IRGP signature on gene mutation, a mutation profile was
visualized using the R/Bioconductor ‘maftools’ package in two IRGP subgroups [25]. In
calculating the correlations between IRGP score and PD-1, PD-L1 and CTLA-4 expression,
Spearman’s correlation analysis was performed. To predict chemotherapeutic response, the
“pRophetic” R package was implemented to analyze the expression data of each patient [26].
All drug response data were collected from the Genomics of Drug Sensitivity in Cancer
(GDPS) database (https://www.cancerrxgene.org/, accessed on 25 March 2022) [27]. Im-
munophenoscore (IPS) data were retrieved from online database (https://tcia.at/, accessed
on 25 March 2022) for TCGA-TNBC [22]. Analysis of IPS between low and high IRGs
riskscore was performed according to the status of CTLA-4 and PD-1 expression.

2.8. Detection of the Expression of IRGP by qRT-PCR and Human Protein Atlas (HPA) Database

MCF-10A human mammary epithelial cells were cultured in mammary epithelial
basal medium supplemented with mammary epithelial cell growth kit. MDA-MB-231,
BT549 and SKBR-3 were cultured with DMEM (GIBCO) media supplemented with 10%
FBS. MCF-7 was grown in RPMI-1640 media (GIBCO) supplemented with 10% FBS. To-
tal RNA was extracted and reverse transcribed using Thermo Scientific RevertAid MM
(Thermo Fisher Scientific, Waltham, MA, USA). Quantitative RT-PCR was conducted with
Roche LightCycler 96 using Universal SYBR Green Fast qPCR Mix (Abclonal, Woburn,
MA, USA). The normalization reference gene was GAPDH. The sequences of primers in
this study were as follows: Human FBP1 forward, CGCGCACCTCTATGGCATT; Human
FBP1 reverse, TTCTTCTGACACGAGAACACAC; Human TAPBPL forward, CTGCCTG-
GCTCTATCTGGAG; Human TAPBPL reverse, CCTTGGAAATCGGTGAAGTCC; Human
GPRC5C forward, CCTGTACTACAACCTGTGTGAC; Human GPRC5C reverse, TGAGCA-
CAAACGTGGTGACA. The protein level of FBP1, TAPBPL, and GPRC5C was detected by
using the Human Protein Atlas (HPA) database (https://www.proteinatlas.org/, accessed
on 25 March 2022).

2.9. Statistical Analysis

In this study, all statistical analyses were performed using R-4.1.1(Vienna, Austria).
Continuous variables were compared between the two groups by using the independent
t-test. The Chi-square test was used to test categorical data. A Kaplan–Meier survival
analysis based on univariate log-rank test was performed. Statistical significance was
defined as a p value below 0.05.

3. Results
3.1. Identification of High Immunogenicity Modules in TNBC by WGCNA

Schematic summary of the proposed model is presented as Figure 1. First, we per-
formed differential mRNAs expression analysis between 123 TNBC tumors and 113 normal
controls in the TCGA database. As a result, 6927 differentially expressed mRNAs were
screened, of which 3584 genes were upregulated and 3343 genes were downregulated in
the TNBC samples compared with normal samples (Supplementary Figure S1). Taking the
intersection of DEGs with IRGs, 1139 differentially expressed IRGs were obtained, of which
690 genes were upregulated and 449 were downregulated in TNBC samples (Figure 2A).
Functional annotation and pathway analysis revealed that these genes were involved in the
process of T cell activation, negative regulation of immune system, and chemokine signal-
ing pathway (Figure 2B,C). The top 20 terms of KEGG pathways and GO annotation were

https://www.cancerrxgene.org/
https://tcia.at/
https://www.proteinatlas.org/
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shown in Supplementary Tables S1 and S2. To obtain the high immunogenicity modules in
TNBC, WGCNA analysis was performed based on the expression of DEIGs. The outliers’
sample was removed by sample clustering (Supplementary Figure S2). The optimal soft-
thresholding power of 8 was selected determined by the scale-free network (Supplementary
Figure S3). A hierarchical cluster analysis was applied to detect co-expression clusters
and 7 co-expression modules were found using dynamic tree-cutting methods (Figure 2D).
Among the 7 co-expression modules, DEIGs in 5 modules (magenta, green, pink, turquoise,
gray) showed higher expression in TNBC tumors than normal (Figure 2E). Since these IRGs
from the 5 modules were more enrichment in TNBC samples, indicating TNBC patients
might show a higher expression of these IRGs. Finally, the expression of IRGs in the 5 high
immunogenicity modules was extracted for further analysis.

Figure 1. The flowchart of study design of current study.
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Figure 2. Identification of differentially expressed immune-related genes (DEIGs) and high immuno-
genicity modules in TNBC. (A) Heatmap of differentially expressed immune-related genes between
TNBC tumor samples (red) and normal samples (blue) using the “limma” method. (B) Circos graph
for GO enrichment of DEIGs. (C) Circos graph for KEGG pathways analysis of DEIGs. (D) Clustering
dendrogram of DEIGs. Each short vertical line corresponds to a gene. The branches are modules
of highly interconnected groups of gene expression. Seven modules were identified, and the lower
panel shows colors designated for each module. (E) The module–trait relationships between the
identified modules and clinical status (normal and tumor). Rows are module eigengene (ME) regards
to each module, and the columns indicate traits. Red represents high adjacency and blue represents
low adjacency. The upper number in each cell indicates the correlation coefficient of each module in
the trait, and the lower number is the corresponding p-value.
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3.2. Construction of Distinct IRGs Expression Patterns in TNBC

We combined the TCGA-TNBC and METABRIC-TNBC cohorts to generate a final meta-
cohort. Consensus clustering analysis was applied to classify TNBC samples into differ-
ent IRGs patterns and two IRGs clusters were identified (Figure 3A and Supplementary
Figure S4). We termed it as IRGcluster A or B and survival analysis showed that TNBC
patients with IRGcluster B had a better overall survival (OS) than IRGcluster A (Figure 3B).
ssGSEA scores were calculated to quantify the abundances of 23 immune-infiltrating cells in
different IRGs clusters. IRGcluster B subtype presented a higher abundance of activated CD8 T
cell, activated dendritic cell, natural killer cells, and so on (Figure 3C). Heatmap demonstrated
that the expression of IRGs was higher in IRGcluster B subtype compared to IRGcluster A
(Figure 3D). GSVA was conducted to explore the biological process in two IRGs clusters. As
shown in Figure 3E, IRGcluster-B was enriched in KRAS signaling, TNFA signaling, and inter-
feron gamma response. Furthermore, immune-related pathways including natural killer cell
mediated cytotoxicity, T cell receptor signaling, and antigen processing and presentation were
highly enriched in IRGcluster-B subgroup (Figure 3F). Together these results demonstrated
that ICGcluster B was a high immunogenicity TNBC subtype characterized by abundant
immune cells infiltration and activated immune-related pathways.

3.3. Generation of IRGs Gene Signatures and Construction of the Immune-Related Gene
Panel (IRGP)

We further screened the DEGs between two IRGclusters. In total, 530 DEGs were rec-
ognized, and functional enrichment analysis demonstrated that these genes were involved
in leukocyte mediate immunity, major histocompatibility complex (MHC) protein complex,
and various immune processes (Supplementary Figure S5). Then, we performed univariate
cox regression analysis and 266 prognostic IRGs were associated with OS in TNBC (Supple-
mentary Table S3). Unsupervised consensus clustering further classified TNBC into two
IRG gene clusters (Figure 4A). The Kaplan–Meier curve illustrated that IRG-genecluster B
was correlated with better OS compared with IRG-genecluster A (Figure 4B). To construct
an immune-related gene panel (IRGP) for predicting the OS of TNBC patients, we applied
LASSO regression based on the expression of 266 prognostic IRGs and a three-gene sig-
nature was identified (Figure 4C,D). The risk score was calculated by the formula IRGP =
expression level of TAPBPL × (−0.41) + expression level of FBP1 × (−0.22) + expression
level of GPRC5C × (0.26). Interestingly, a lower risk score was observed in IRGcluster B
and IRG-genecluster B (Figure 4E,F). The alluvial diagram illustrated that IRGcluster B had
a high overlap with the IRG-genecluster B subtype, which showed a lower IRGriskscore
with a favorable survival prognosis (Figure 4G).

3.4. Validation of the Capacity of IRGP

Based on the median IRGriskscore, TNBC cohort was divided into low-risk and high-
risk subgroup. TNBC patients were randomly classified as two datasets: the training
cohort (N = 211) and testing cohort (N = 210). Kaplan–Meier survival curves showed
that TNBC patients with lower IRGriskscore had a longer survival time than those with
higher IRGriskscore in both the training and testing cohort (Figure 5A,B). ROC curves with
AUC at 1 year, 3 years, and 5 years also demonstrated the moderate accuracy of our IRGP
(Figure 5C,D). Distribution of risk scores between high risk and low risk groups was shown
in Figure 5E,F. The scatter plots demonstrated that an increase of deaths was accompanied
by increasing risk score in both the training cohort and testing cohort (Figure 5G,H). As
shown in Figure 5I,J, the expression of TAPBPL and FBP1 was lower in high-risk group,
while a higher expression of GPRC5C was observed in high-risk group.
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Figure 3. Identification of distinct IRGs subtypes in TNBC. (A) Consensus clustering matrix for k = 2
based on IRGs expression. (B) Kaplan–Meier curves of OS for two TNBC subtypes. The numbers
of patients in IRGcluster-A and IRGcluster-B are 196 and 225, respectively. (C) The abundance of
infiltrating immune cells in two IRGs subtypes. The lines in the boxes were the median value. The
top and bottom ends of the boxes indicated interquartile range of values (* p < 0.05; *** p < 0.001).
(D) Unsupervised clustering of IRGs expression to divide TNBC patients into two IRGs subtypes.
The IRG clusters, projects, age, stage, tumor size, and node status were used as patient annotations.
(E,F) Heat map showed the GSVA score of hallmark signature and KEGG pathways in different
IRGcluster. Red means activated pathways and blue means inhibited pathways.
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Figure 4. Construction of IRGs geneCluster and the immune-related gene panel (IRGP). (A) The
identification of IRG-geneCluster by consensus clustering matrix for k = 2. (B) Survival curves of
the IRG-geneCluster were plotted by the Kaplan–Meier plotter. The numbers of patients in IRG-
geneCluster A and IRG-geneCluster B subtypes are 213 and 208. (C) Elucidation for LASSO coefficient
profiles of prognostic IRGs. (D) The least absolute shrinkage was performed and construction of
selection operator (LASSO) regression model. (E) The correlation between IRGs risk score and IRGs
subtypes. (F) The correlation between IRGs risk score and IRG-geneCluster. (G) Alluvial diagram of
IRGs clusters in groups with different IRG-geneCluster, IRGs risk score, and OS.
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Figure 5. Validation of the efficiency of IRGP. (A,B) Kaplan–Meier curves for OS of TNBC patients
according to the risk stratification in the training cohort and testing cohort. (C,D) ROC analysis for OS
prediction at 1 year, 3 years, and 5 years in TNBC patients in the training cohort and testing cohort.
(E,F) Distribution of risk score for the training group and testing group. (G,H) Distribution of survival
time of patients in the training and testing groups. (I,J) Heatmap depicting the expression of TAPBPL,
FBP1, and GPRC5C between high-risk group and the low–risk group in training and testing groups.
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3.5. The mRNA and Protein Level of IRGP in BC

We next detected the mRNA level of FBP1, TAPBPL, and GPRC5C by RT-qPCR. As
Figure 6A shows, FBP1 was significantly overexpression in MDA-MB-231, MCF7 and SKBR-
3 cells. TAPBPL was significantly upregulated in BT549 and SKBR-3 cells (Figure 6B). High
expression of GPRC5C was found in MDA-MB-231 and SKBR-3 cells compared to MCF-10A
cells (Figure 6C). We also evaluated the protein expression and subcellular location using
HPA database. The expression of FBP1 and TAPBPL was significantly high in BC tissues,
and moderate expression of GPRC5C was found both in breast normal tissue and cancer
tissue (Figure 6D–I). These proteins are largely localized to the cytosol and the membrane.

Figure 6. The mRNA and Protein level of IRGP in BC. (A–C) The mRNA levels of three immune-
related genes in BC cell lines MDA-MB-231, BT549, MCF-7, and SKBR-3 cells compared with normal
breast epithelial cells MCF-10A cells by qRT-PCR. * p < 0.05, ** p < 0.01, *** p < 0.001. (D–I) Represen-
tative immunohistochemistry (IHC) staining of FBP1, TAPBPL, and GPRC5C in breast carcinoma and
normal breast tissues.
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3.6. Prognostic Value and Genomic Features in Different IRGP Subgroups

PCA and t-SNE analysis showed that IRGP subgroups presented obvious segregation
in training cohort (Figure 7A,B). A similar result was also observed in the testing cohort
(Figure 7C,D). To investigate whether the effect of IRGP on OS was an independent fac-
tor for TNBC patients, univariate and multivariate Cox analyses for variables including
age, tumor stage, tumor size, node status, and IRGriskscore were performed. Univari-
able Cox regression analysis revealed that IRGriskscore was a high-risk factor for TNBC
(HR = 2.188, 95% CI (1.360, 3.522), p < 0.001, Figure 7E). Multivariate Cox analysis indicated
that IRGP could serve as an independent prognostic factor (HR = 2.216, 95% CI (1.384, 3.548),
p < 0.001, Figure 7F). Then, we explored the genomic features in different IRGP subgroups of
TCGA-TNBC cohort. The waterfall plot revealed that the low IRGriskscore group presented
a decreased mutation burden compared with the high IRGriskscore group (Figure 7G,H).
Among the top 20 most significant mutated gene, TP53 (84% vs. 75%) had higher mutation
rates in the high IRGriskscore group.

3.7. Immune Characteristics of Different IRGP Subgroups

Immune checkpoints gene expression was often considered as indicators for ICIs
treatment. Firstly, the expression of PD-1, PD-L1, and CTLA-4 was significantly higher in
low IRGriskscore group compared to high IRGriskscore group (Figure 8A–C). IRGriskscore
also had a significant negative correlation with the expression of PD-1, PD-L1, and CTLA-4
(Figure 8D–F). Immune cells landscape suggested that the proportion of CD8 T cells, B
naïve cell, plasma cells, M1 macrophages, and T helper cells were more abundant in the
low IRGriskscore subgroup, while M2 macrophages were more abundant in the high IR-
Griskscore subgroup (Figure 8G). Correlation analysis further suggested that IRGriskscore
presented a positive correlation with M0 macrophages, M2 macrophages and T regulatory
cells (Figure 8H–J). However, a negative correlation was found between IRGriskscore and
activated NK cells, CD4 memory T cells, CD8 cells, and M1 macrophages (Figure 8K–N).
We also found TNBC patients with high IRGriskscore tended to have a higher level of
tumor mutation burden (Supplementary Figure S6), but this difference was not statistically
significant. All in all, TNBC patients with low IRGriskscore had a higher abundance with
tumor-infiltrating immune cells.

3.8. Relationship of IRGP Subgroups with Immune Subtypes and IPS

As for the correlation between IRGP and clinicopathological parameters, we found
from Figure 9A that our IRGriskscore was significantly correlated with patients’ tumor size.
Thorsson et al. reported the immune landscape of pan-cancer of TCGA database and defined
six immune subtypes [28]. As shown in Figure 9B, TNBC patients mainly belonged to the
subtype of C1 (Wound Healing) and C2 (IFN-γ Dominant). More C2 subtypes were enriched
in low IRGriskscore group (p = 0.001, chi-square test). Our IRGP signature contains three
immune genes: FBP1, GPRC5C, and TAPBPL. As in Figure 9C, FBP1 had a strong correlation
with infiltration of resting dendritic cell, resting mast cells and T helper cells. The expression
of GPRC5C was strongly associated with the infiltration of M2 macrophages, resting mast
cells and activated CD4 memory T cells. Furthermore, a strong positive correlation was seen
between the expression of TAPBPL and M1 macrophages, activated NK cells, activated CD4
memory T cells, and CD8 T cells. We then used IPS to assess the potential clinical efficacy of
ICIs in different IRGP groups. The higher IPS prediction score indicated a better response to
ICIs therapy. There was no significant difference for PD-1 and CTLA-4 negative expression
patients (Figure 9D). However, low IRGriskscore might be a robust indicator for ICIs therapy
in TCGA-TNBC cohort for patients with PD-1 or CTLA-4 positive expression (Figure 9E–G).
Although TNBC patients with high IRGriskscore might not be the most appropriate population
for ICIs therapy, our drug sensitivity analysis demonstrated that high IRGriskscore subgroup
was less sensitivity to PARP inhibitors (ABT.888 and AZD.2281), doxorubicin, gemcitabine,
and methotrexate (Supplementary Figure S7).
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Figure 7. Prognostic value and genomic features in different IRGP subgroups. (A,B) PCA analysis
and t-SNE analysis of TNBC patients in different IRGP subgroups for the training cohort. (C,D) PCA
analysis and t-SNE analysis of TNBC patients based on IRGP model for the testing cohort. (E) Forest
plot for IRGP model score and clinical features in TNBC patients by univariate analyses. (F) The
multivariate Cox forest plot of IRGP model score and clinical characteristics. (G,H) The waterfall plot
showing the somatic mutation rate in low IRGP riskscore and high IRGP riskscore. Each column
indicates an individual sample. The upper bar plot is the tumor mutation burden for an individual
sample. The right histogram generalizes the percentage of each variant type. The number on the
right indicates the mutation frequency for each gene.
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Figure 8. The immune characteristics of different IRGP subgroups. (A–C) The expression of PD–1,
PD-L1, and CTLA–4 in high– and low–riskscore TNBC groups. (D–F) IRGP signature negatively related
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to the expression of PD–1, PD–L1, and CTLA–4. (G) The abundance of each infiltrating immune cells
in different IRGP subgroups. The lines in the boxes were the median value. The top and bottom
ends of the boxes showed interquartile range of values (* p < 0.05; ** p < 0.01). (H–J) IRGP signa-
ture positively related to infiltrating of M0 macrophages, M2 macrophages, and T regulatory cells.
(K–N) IRGP signature negatively correlated with infiltrating of activated NK cells, CD4 memory T
cells, CD8 cells and M1 macrophages.

Figure 9. Predictive value of IRGP model in immune subtypes and IPS. (A) Heatmap showing
the relationship between IRGP model and clinicopathological parameter, ** p < 0.01. (B) Heatmap
showing the relationship between IRGP model and immune subtypes. (C) Heatmap showing the
correlation of FBP1, GPRC5C and TAPBPLwith the infiltrating of 22 immune cells. (D–G) The
relative distribution of IPS identified by the status of CTLA-4 or PD-1 was compared between high
IRGriskscore versus low IRGriskscore in TCGA-TNBC cohort.

4. Discussion

Although women with TNBC make up 12–17% of all breast cancer cases, it is clini-
cally recognized as having the worst outcomes among all BC subtypes [29]. With rapid
growth in a multi-omics approach, many newly discovered types of TNBC have been iden-
tified [30,31]. Genomically, TNBC is heterogeneous and characterized by distinct molecular
subtypes that lead to different biological behavior and treatment responses [32]. Recent
advances in antitumor immunotherapy by targeting the PD-1/PD-L1 checkpoint have led
to significant clinical improvements in TNBC and HER2 positive breast cancers [33]. The
clinical efficacy of cancer immunotherapy is associated with individual tumor immune
microenvironment and “hot” tumor tend to have a better ICIs response than “cold” one [34].
Thus, identification of TNBC subtypes with highly immunogenic will facilitate a ratio-
nal design of anti-tumor immunotherapy. Recently, the involvement of gene signatures
has been described in several studies based on multi-omics data. Yan et al. developed
a risk autophagy-related prediction model that can predict the survival status of TNBC
patients [35]. Yang et al. constructed a risk scoring system to predict the immune activity
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and potential therapeutic response of TNBC [36]. Our previous work revealed an eight
immune-related panel in the immunomodulatory subtype of TNBC [37]. In the previ-
ous study, we screened an eight immune-related and prognostic gene signature based
on WGCNA. However, our current study combined the WGCNA algorithm with TNBC
molecular typing analysis in two TNBC cohorts. We identified two distinct IRGclusters
and developed a three genes panel to predict the prognosis of TNBC. This study aimed
to explore the role of immune-related genes network in a systems biology manner and
investigated the immunotherapeutic value of the immune-related signature in TNBC.

Various molecular subtypes of TNBC have been identified, including basal-like 1
(BL1), basal-like 2 (BL2), immunomodulatory (IM), mesenchymal (M), mesenchymal stem-
like (MSL), and luminal androgen receptor (LAR) [38]. The IM subtype manifests high
levels of immune signal transduction pathways and immune-related genes [39]. The
expression levels of PD-L1, PD-1, and CTLA4 were reported to be higher in IM subtype
than other subtypes [31]. The FUTURE trial showed that anti PD-1 strategy could be a
promising treatment for refractory metastatic TNBCs with IM subtype [40]. To find the high
immunogenic subtype, we first screened the differentially expressed immune-related genes.
Then, we identified the high expression ICGs modules by WGCNA and further categorized
TNBC into two subtypes based on the high immunogenicity TNBC modules. Further
analysis revealed that IRGcluster-B had a superior survival compared to IRGcluster-A.
Abundant immune cell infiltration was observed in IRGcluster-B patients with elevated
immune genes expression levels. Thus, TNBC patients with IRGcluster-B subtype might
belong to immune “hot” tumor and be more likely to benefit from immunotherapy.

To investigate the major difference at molecular level between these two subtypes, we
further constructed IRG-related genomic clusters and two gene clusters were identified. In-
terestingly, IRG-genecluster B has a better survival outcome than IRG-genecluster A, which
was similar to IRGs cluster patterns. To evaluate different IRGs expression for individual
patients, a quantification scoring model termed IRGriskscore was adopted by LASSO
algorithm. Previous studies have also attempted to construct an immune-related gene
prognostic index to distinguish the molecular and immune characteristics in various solid
tumors [41–43]. For the associations of IRGriskscore with IRGcluster and IRG-genecluster,
we found the IRGcluster-B and IRG-genecluster B subtype exhibited a lower IRGriskscore.
To verify the accuracy and efficacy of our proposed model, we then assessed the survival
outcomes, diagnostic value, risk curve, and univariate and multivariate analyses in training
and validation dataset. As a result, there was little variation in the training and validation
dataset, suggesting our model had certain universality, efficacy, and accuracy. Overall, the
TNBC patients with low IRGriskscore was associated with improved prognosis.

Here, TAPBPL, FBP1, and GPRC5C were applied to build our IRGs signature. These
genes were identified as prognostic immune signatures in TNBC for the first time. Our
results of RT-qPCR and IHC demonstrated that TAPBPL, FBP1, and GPRC5C were high
expression in BC cell lines and tissues. TAP binding protein like (TAPBPL), as a novel T
cell co-inhibitory factor, was reported to localize on chromosome position 12p13.3 near an
MHC paralogous locus [44]. Study showed that TAPBPL was expressed on the surface of
antigen presenting cells (APCs) and played a critical role in negatively controlling T-cell
functions [45]. Targeting TAPBPL-mediated inhibitory pathway might be effective strategy
for the patients who were resistant to PD-1/PD-L1 or CTLA-4 antitumor therapy [45]. The
various immune microenvironment components contribute to maintaining the equilibrium
state of body [46]. As the immune cell infiltration increases, negative immune regulation
factors may be activated. Thus, these negative immune regulation factors including PD-L1
or TAPBPL are accompanied by higher level of immune cells infiltration. As a rate-limiting
enzyme in gluconeogenesis, fructose-1,6-bisphosphatase (FBP1) controls the rate of the
reaction and works as an important tumor suppressor in human malignancies [47]. Pre-
vious study demonstrated that overexpression of FBP1 conferred sensitivity to cisplatin
via modulating STAT3 in ovarian cancer [48]. Another study reported that FBP1 inhib-
ited tumorigenesis of cholangiocarcinoma partly via Wnt/β-catenin pathway [49]. The
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study by Cong et al. revealed that aberrant expression of FBP1 in NK cells resulted in
their dysfunction by inhibiting glycolysis and impairing viability [50]. FBP1 knockdown
decreased the migration and invasion of MDA-MB-231 cells and enhanced the sensitivity
of TNBC cells to cisplatin [51]. To date, the role of FBP1 in anti-tumor immune response is
not well-understood. GPRC5C belongs to the type 3G protein-coupled receptor family [52].
Knockdown experiments of GPRC5C potentially regulated the proliferation or migration of
MCF-7 cells [53]. It was reported that GPRC5C was found in inrenal proximal tubules and
participated in regulating renal acid-base homeostasis [54]. In pancreatic β-cells, downreg-
ulation of GPRC5C resulted in a decreased of glucose-stimulated insulin release and cAMP
content [55]. However, the function of GPRC5C in antitumor immunity remain unclear.

Recent evidence demonstrated that infiltrating lymphocytes (TILs) was observed in
HER2+ BC and TNBC patients [56]. Therefore, BC has ceased to be considered as an
immunological quiescent tumor type. Previous research indicated that abundance of TILs
in the tumor microenvironment was related to better response to ICI therapies [57,58]. In
the present study, patients with low IRGriskscore displayed a higher level of TILs compared
to high IRGriskscore subgroup. IRGriskscore was negatively associated with infiltrating
of activated NK, CD4, and CD8 cells, suggesting that our IRGriskscore might be a good
predictive marker for ICI therapies. Currently, atezolizumab and pembrolizumab were
approved in combination with chemotherapy among patients with unresectable locally
or metastatic TNBC expressing PD-L1 [59,60]. Our results showed that high level of PD1,
PD-L1 and CTLA4 was observed in TNBC patients with low IRGriskscore, which strongly
implicated that TNBC patients with low IRGriskscore might be suitable for anti-tumor
immunotherapy. For the effect of IRGP signature on gene mutation rate in TNBC, our
findings demonstrated that patients with low IRGriskscore had unusually low mutation
rates compared to high IRGriskscore group, specifically for TP53. Previous studies reported
that TP53 mutation status were associated with depressed immune signatures and the
efficiency of ICIs therapy in solid tumors [61–63]

The study by Thorsson et al. identified six immune subtypes based on the differences
in lymphocyte signatures across TCGA pan-cancer [28]. The subtype of C1 (wound healing)
had increased expression of angiogenic genes and C2 (IFN-γ dominant) subtype showed a
strong CD8 signal and the highest M1/M2 macrophage polarization [63]. In our analysis,
we found TCGA-TNBC cohort was primarily categorized as C1 and C2 subtype. Most low
IRGriskscore TNBC patients belong to C2 subtype, suggestive of high lymphocyte expres-
sion signature. Based on previous studies, IPS have been identified as useful biomarkers for
predicting patient response to immunotherapy [22]. IPS was able to quantify the determi-
nants of tumor immunogenicity and had predictive value in cancer patients treated with the
CTLA-4 and PD-1 blockers [22]. In this study, we also evaluated the predictive value of the
TNBC IRGriskscore using IPS. Low IRGriskscore had the potential to be a robust predictor
for PD-1 or CTLA-4 therapy and its predictive value depended on the PD-1 or CTLA-4
expression. Meanwhile, drug sensitivity analysis revealed that TNBC patients with high
IRGriskscore was associated with high IC50 of PARP inhibitors, doxorubicin, gemcitabine
and methotrexate, which will probably guide clinical practice for chemotherapeutic agents’
decision-making.

To our knowledge, we first identified immune-related subtypes of TNBC using
WGCNA combined with consensus clustering. There are several notable limitations to
our study. First, our immune signature was constructed based on TCGA and METABRIC
database. Thus, prospective cohort of TNBC patients receiving ICIs therapy are needed
to validate our findings. Second, the effect of our gene signature on immune infiltration
should be experimentally verification in the future. Thirdly, comparison of predictive value
between different models also should be conducted.

5. Conclusions

In conclusion, we identified the DEIGs in TNBC and found five high immunogenicity
modules by WGCNA. We developed two distinct IRGclusters, two IRG-related genomic
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clusters, and IRGriskscore to assess the characteristics of immune cells infiltration. The
three-gene panel was strongly correlated with patient’s prognosis, the abundances of im-
mune cell infiltration, immunophenotyping of TNBC, and chemotherapy and immunother-
apy sensitivity. Our study offered novel insights into the molecular subtype of TNBC and
provided potential indicators for guiding ICIs treatment.
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