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Abstract 35 

TMEM106B is a lysosomal/late endosome protein that is a potent genetic modifier of multiple 36 
neurodegenerative diseases as well as general aging. Recently, TMEM106B was shown to form insoluble 37 
aggregates in postmortem human brain tissue, drawing attention to TMEM106B pathology and the potential 38 
role of TMEM106B aggregation in disease. In the context of neurodegenerative diseases, TMEM106B has 39 
been studied in vivo using animal models of neurodegeneration, but these studies rely on overexpression 40 
or knockdown approaches. To date, endogenous TMEM106B pathology and its relationship to known 41 
canonical pathology in animal models has not been reported. Here, we analyze histological patterns of 42 
TMEM106B in murine models of C9ORF72-related amyotrophic lateral sclerosis and frontotemporal 43 
dementia (C9-ALS/FTD), SOD1-related ALS, and tauopathy and compare these to postmortem human 44 
tissue from patients with C9-ALS/FTD, Alzheimer’s disease (AD), and AD with limbic-predominant age-45 
related TDP-43 encephalopathy (AD/LATE). We show that there are significant differences between 46 
TMEM106B pathology in mouse models and human patient tissue. Importantly, we also identified 47 
convergent evidence from both murine models and human patients that links TMEM106B pathology to 48 
TDP-43 nuclear clearance specifically in C9-ALS. Similarly, we find a relationship at the cellular level 49 
between TMEM106B pathology and phosphorylated Tau burden in Alzheimer’s disease. By characterizing 50 
endogenous TMEM106B pathology in both mice and human postmortem tissue, our work reveals 51 
considerations that must be taken into account when analyzing data from in vivo mouse studies and 52 
elucidates new insights supporting the involvement of TMEM106B in the pathogenesis and progression of 53 
multiple neurodegenerative diseases.  54 

 55 

 56 

Introduction 57 

Neurodegenerative diseases are a notoriously enigmatic class of disorders, with varied clinical and cellular 58 
presentation. One common pathological feature of neurodegenerative disorders, however, is the misfolding 59 
and aggregation of proteins such as TAR DNA-binding protein 43 (TDP-43), amyloid-β, tau, or α-synuclein 60 
[31, 70]. These misfolded proteins are thought to be toxic to cells, and have been shown to elicit 61 
neurodegeneration in vitro and in animal models [70]. As such, protein aggregates are frequently studied 62 
as potential biomarkers of disease [44] or as therapeutic targets [83]. Unfortunately, although protein 63 
aggregation is observed across neurodegenerative diseases, the identity of the specific aggregated 64 
protein(s) varies, complicating efforts toward pharmacological intervention [70]. Recently, Transmembrane 65 
protein 106B (TMEM106B) aggregates were described in the postmortem brain tissues of patients with a 66 
wide range of neurodegenerative diseases, including Alzheimer’s Disease (AD) [75], Parkinson’s Disease 67 
(PD) [19, 75], frontotemporal lobar degeneration (FTLD) [38, 75], amyotrophic lateral sclerosis (ALS) [9, 68 
75], as well as other neurodegenerative diseases and normal aging [9, 75]. 69 

TMEM106B was originally identified as the most significant risk factor for FTLD with TDP-43 inclusions 70 
(FTLD-TDP) [60, 90]. Since then, several single nucleotide polymorphisms (SNPs) of TMEM106B have 71 
been identified as modifiers of disease phenotypes in frontotemporal dementia (FTD) [26, 30, 87]. In one 72 
case study, homozygosity of the TMEM106B protective allele (rs3173615) completely shielded autosomal 73 
dominant progranulin (GRN) mutation carriers from developing FTD [63]. This result suggests that 74 
TMEM106B is involved in affecting disease penetrance.  75 

In addition to being a disease modifier for FTD, several genome-wide association studies (GWAS) have 76 
uncovered TMEM106B variants that are relevant to other neurodegenerative diseases. For instance, one 77 
risk variant (rs1990622) is implicated in the pathologic presentation of AD [10, 47, 72, 90], and genetic 78 
editing of the risk allele to a protective allele of TMEM106B rescued cognitive decline and 79 
neurodegeneration in an animal model of tauopathy [18]. Furthermore, TMEM106B variants are 80 
significantly correlated with the transcriptional signature of biological aging [69], cognition [92], brain volume 81 
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[1], and levels of neuronal markers and neuronal proportion [67] specifically in aged cohorts without clinical 82 
diagnosis of dementia.  83 

TMEM106B is a type 2 lysosomal/late endosomal membrane protein that is highly expressed in the brain, 84 
particularly in neurons and oligodendrocytes [21, 22, 97]. Several studies have found that TMEM106B plays 85 
an important role in regulating lysosome size [5, 10, 80], axonal transport of lysosome [50, 76, 80], 86 
lysosomal acidification [10, 22, 45, 97], lysosomal protein homeostasis [22, 42, 50], and autophagy [22, 50]. 87 
In agreement with these observations, a recent study found that loss of TMEM106B in an animal model of 88 
tauopathy results in increased cytoskeletal disruption, impaired autophagy, errors in lysosomal trafficking 89 
along the axon, and enhanced gliosis [20]. 90 

To date, studies investigating TMEM106B in animal models have introduced genetic modulation of the 91 
TMEM106B gene to generate knockdown/out or overexpression models, all of which could produce non-92 
physiological artifacts. However, studying TMEM106B at endogenous levels in existing mouse models for 93 
neurodegeneration has not yet been performed. Mouse models are a valuable resource in the field of 94 
neurodegeneration, as in vivo studies allow for relatively facile temporal and cellular genetic manipulation 95 
in complex organisms. Moreover, the murine proteome shares high sequence similarity with humans, 96 
allowing for novel insights into human biology [15]. Thus, understanding how mouse models relate to human 97 
pathology may be important for interpreting mouse studies. Here we characterize TMEM106B phenotypes 98 
in three different models of neurodegeneration and compare these results to disease-matched human 99 
postmortem tissue. Indeed, we find that there are important differences between what is observed in human 100 
tissue and mouse tissue. Importantly, we also find convergent phenotypes that reveal potentially novel 101 
biological contributions of TMEM106B to TDP-43 nuclear clearance in C9-ALS and tau pathology in 102 
Alzheimer’s disease. Taken together, these results further suggest an important role of TMEM106B in 103 
neurodegenerative diseases and provide new insights into the cellular processes associated with the 104 
aberrant TMEM106B pathology in both murine models and human diseases.  105 

 106 

Results 107 

TMEM106B Forms Cytoplasmic Inclusions in an AAV-based Mouse Model of C9-ALS 108 

The GGGGCC (G4C2) hexanucleotide expansion in intron 1 of the C9ORF72 gene is the most common 109 
genetic cause of ALS (C9-ALS) [68]. The presence of the G4C2 intron expansion is thought to lead to three, 110 
non-mutually exclusive, pathological events: (1) haploinsufficiency of the C9orf72 protein, (2), the 111 
expression and accumulation of toxic repeat RNA species, and (3), the accumulation of toxic dipeptide 112 
repeat (DPR) proteins produced via repeat-associated non-AUG (RAN) translation [56, 68]. Many groups 113 
have established mouse models to study C9-ALS in vivo, including both adeno-associated virus (AAV)-114 
based and bacterial artificial chromosome (BAC)-based expression. The number of disease-associated 115 
repeats being expressed in these models ranges from 66 [13] to over 400 [37, 48], as compared to humans, 116 
in which the pathological number of repeats identified in C9-ALS patients ranges from ~30 to over 4,000 117 
[27]. 118 

Previous studies have identified TMEM106B as a genetic modifier of disease penetrance of C9ORF72 119 
expansion carriers [26, 89]. To investigate endogenous TMEM106B in an in vivo model of C9-ALS, we 120 
employed an AAV-based approach utilizing an AAV vector harboring either 2 or 149 G4C2 repeats [11]. For 121 
these experiments, mice are given an intracerebroventricular injection of AAV vector containing (G4C2)149, 122 
or (G4C2)2 at P0. Previous reports with these animals found that by 6 months, the expression of (G4C2)149 123 
leads to behavioral defects, neuronal loss, increased gliotic GFAP reactivity, and the accumulation of RNA 124 
foci, phosphorylated TDP-43 inclusions, and DPR aggregates in the motor cortex [11]. At 12 months, 125 
animals expressing (G4C2)149, but not (G4C2)2, also show inclusions of several stress granule-related 126 
proteins, which colocalize with DPRs and phosphorylated TDP-43 [11]. Thus, this model recapitulates many 127 
of the hallmark features of C9-ALS pathology. 128 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.16.618765doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.16.618765
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

For 9-month-old animals that had been injected with either (G4C2)149, or (G4C2)2, we first stained mouse 129 
brain sections using a commercially available antibody (TMEM-Sigma) that was previously shown to detect 130 
TMEM106B aggregates in human postmortem brain tissue [53, 64], and recognizes sequences 131 
homologous with the murine TMEM106B gene. By both DAB (Figure 1A, B) and immunofluorescence 132 
staining (Figure 1C-E) we observed a distinct pattern of TMEM106B perinuclear inclusions that were 133 
specifically enriched in animals injected with AAV-(G4C2)149, and not in the control AAV-(G4C2)2 animals.  134 

Next, we stained the AAV-injected mouse tissues with a separate published antibody (antibody TMEM239) 135 
that has been shown to recognize TMEM106B C-terminal aggregates [3, 75] and whose epitope has exact 136 
sequence homology with the murine TMEM106B gene. Unlike the large perinuclear inclusions seen using 137 
the TMEM-Sigma antibody, TMEM239 immunoreactivity revealed a morphology which was more punctate 138 
(Figure S1A). Notably, animals injected with AAV-(G4C2)149 developed a significantly greater number of 139 
intracellular TMEM239-positive puncta compared to the (G4C2)2 control animals (Figure S1B, C).  140 

To further characterize the TMEM106B inclusions observed by TMEM-Sigma antibody staining, we next 141 
co-stained TMEM106B with markers for autophagy (p62), stress granules (eukaryotic initiation factor 3η, 142 
eIF3η), and lysosomes (cathepsin D, CthD). Interestingly, TMEM106B does not colocalize strongly with 143 
any of these markers (Figure S1D, E), suggesting that these TMEM-Sigma-positive structures do not reflect 144 
the canonical function of TMEM106B and may be linked to other pathological changes related to (G4C2)149 145 
expression. 146 

Genetic variants of TMEM106B[53, 90] and the deposition of TMEM106B C-terminal fragments[53] were 147 
each previously shown to be associated with pathological TDP-43 inclusions. However, given that 148 
TMEM106B aggregation occurs in multiple neurodegenerative diseases as well as in general aging[9, 75], 149 
whether TMEM106B C-terminal aggregates correlate with TDP-43 pathology specifically in ALS is unclear. 150 
Thus, to investigate the relationship between the TMEM106B inclusions observed in C9 animals and 151 
changes in TDP-43 at the cellular level, we co-stained tissues for TMEM106B and TDP-43 (Figure 1C, D).  152 

Studies have shown that TDP-43 pathology in ALS is defined by its nuclear clearance, rather than TDP-43 153 
aggregation which only occurs in a small portion of neurons [17, 71, 94]. Therefore, we measured the TDP-154 
43 nuclear-to-cytoplasmic (N/C) ratio in the motor cortices of AAV-injected mice. On average, the TDP-43 155 
N/C ratio is not significantly different in AAV-(G4C2)149 mice compared to AAV-(G4C2)2 mice (Figure 1F). 156 
However, we found that the specific sub-group of neurons with TMEM106B perinuclear inclusions has a 157 
significantly lower TDP-43 N/C ratio compared to neighboring neurons without TMEM106B inclusions 158 
(Figure 1G, H) suggesting a relationship between abnormal TMEM106B inclusion formation and altered 159 
TDP-43 cellular distribution. Overall, these results reveal a previously unreported TMEM106B pathology 160 
characterized by a perinuclear inclusion. In addition, the enrichment of TMEM106B inclusions in (G4C2)149 161 
animals and its correlation with TDP-43 nuclear clearance in vivo could suggest that TMEM106B may 162 
relate, in as yet an undefined mechanism, to disease pathogenesis in C9-ALS.  163 
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 164 
Figure 1: TMEM106B forms neuronal perinuclear inclusions that are associated with decreased 165 
nuclear TDP-43 in (G4C2)149 repeat expressing mice. (A) Representative images of cortex with DAB 166 
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staining against TMEM106B in mice injected with either (G4C2)2 or (G4C2)149. Arrows indicate observed 167 
TMEM106B positive perinuclear inclusions. Scale bar = 10 µm. (B) Quantification of TMEM106B inclusions 168 
in the cortex ((G4C2)2 n = 6 and (G4C2)149 n = 6). Dots represent individual animals, bars represent means 169 
± SEM. Student’s unpaired t-test, p = 0.001. (C) Immunofluorescence co-staining of TMEM106B, TDP-43 170 
and NeuN (a neuronal marker) in the motor cortex from AAV-(G4C2)2 (upper panel) or AAV-(G4C2)149 (lower 171 
panel) injected mice. Arrowheads indicate TMEM106B perinuclear inclusions that are enriched in (G4C2)149 172 
mice. Enlarged images of representative cells are outlined and shown in panel D. Scale bar = 20 µm. (D) 173 
Zoomed in images of individual cells showing an example neuron with a TMEM106B perinuclear inclusion 174 
(cell iii) which has a disrupted TDP-43 nuclear-to-cytoplasmic (N/C) ratio. Scale bar = 5 µm. (E) 175 
Quantification of percentage of neurons with TMEM106B perinuclear inclusions in (G4C2)2 (n = 8) and 176 
(G4C2)149 (n = 9) mice. Mann-Whitney test, p = 0.0012. (F) Quantification of averaged TDP-43 N/C ratio in 177 
(G4C2)2 (n = 8) and (G4C2)149 (n = 9) mice. Dots represent individual animals, bars represent means ± SEM. 178 
Students t-test was used to compare groups. (G) Quantification of TDP-43 N/C ratio in neurons with 179 
TMEM106B perinuclear inclusion (TMEM106B+, n = 140) and neighboring neurons in the same tissues 180 
that do not have an inclusion (TMEM106B-, n = 232) across all (G4C2)2 (n = 8) and (G4C2)149 (n = 9) mice. 181 
Mann-Whitney test, p<0.0001. Dots represent cells, bars represent means ± SEM. (H) Quantifying the TDP-182 
43 N/C ratio for either (G4C2)2 or (G4C2)149 mice and comparing the average TDP-43 N/C ratio per animal 183 
by TMEM106B phenotype shows that there is a decreased N/C ratio in cells with TMEM106B cytoplasmic 184 
inclusions. Dots represent averages for each phenotype for each animal. Bars represent means ± SEM. 185 
Two-way ANOVA with multiple comparisons; p = 0.0419 for TMEM106B- vs TMEM106B+ in the (G4C2)2 186 
group; p = 0.0329 for TMEM106B- vs TMEM106B+ in the (G4C2)149 group; ns, p>0.05.  187 

 188 

 189 

 190 

Cytoplasmic TMEM106B Puncta Coincide with Reduced Nuclear TDP-43 in Human C9-ALS and C9-191 
ALS/FTD Tissue  192 

To investigate whether our observations in mouse tissue were representative of human disease, we next 193 
performed immunohistochemistry on human motor and occipital cortex from either healthy control or C9-194 
ALS and C9-ALS/FTD patients (Table 3). Using the TMEM-Sigma antibody, we did not detect perinuclear 195 
inclusions in human tissue (Figure 2A, B, S2A, B). We also did not observe global differences in the TDP-196 
43 N/C ratio by disease status (Figure 2C, S2C). However, we did observe intracellular puncta in the motor 197 
cortex that resemble what has been reported before in FTLD-TDP tissues (Figure 2A, D) [53, 64]. 198 

To investigate whether there was a relationship between the presence of TMEM106B puncta and TDP-43 199 
distribution as we observed in mice, we next quantified the N/C ratio of TDP-43 based on TMEM106B 200 
phenotype (Figure 2E, F). Indeed, in human motor cortex, neurons that contain cytoplasmic TMEM106B 201 
puncta displayed a significantly reduced TDP-43 N/C ratio (Figure 2E). Interestingly, subcategorization of 202 
neurons into healthy and diseased groups reveals that the overall reduction of nuclear TDP-43 in the 203 
TMEM106B puncta-positive cells is specific to the disease group (Figure 2F). That is, patients with C9-204 
ALS/FTD show a TMEM106B-related decrease in nuclear TDP-43. In addition, we found that the presence 205 
of neuronal TMEM106B puncta is rare in the occipital cortices for both healthy and C9 patients (Figure 206 
S2A, B), suggesting that the TMEM106B:TDP-43 correlation is specific to the affected brain region in C9-207 
ALS and C9-ALS/FTD. In line with previous studies on the association between TMEM106B genetic 208 
variants and TDP-43 aggregation pathology [53, 90], our data provide new evidence that TMEM106B could 209 
be related to the nuclear clearance of TDP-43 specifically in C9-ALS and C9-ALS/FTD at the cellular level.  210 

 211 

 212 
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 213 

 214 

 215 
Figure 2: Cytoplasmic TMEM106B punctate is associated with decreased nuclear TDP-43 in the 216 
motor cortices of human C9-ALS and ALS/FTD cases. (A) Human motor cortex co-stained with TMEM-217 
Sigma antibody, TDP-43 and NeuN. One neurologically healthy control, one C9-ALS patient (#1) with 218 
severe TDP-43 nuclear clearance, and one C9-ALS patient (#2) with relatively intact TDP-43 localization 219 
are shown. Enlarged images of representative cells are outlined and shown in Figure (D). Scale bar = 20 220 
µm. (B) Quantification of the percentage of neurons with intracellular TMEM106B puncta from healthy 221 
control (n = 3), and C9-ALS and ALS/FTD (n = 7) patients. Dots represent individual people, bars represent 222 
means ± SEM. Mann-Whitney test, p = 0.9333. (C) Quantification of averaged TDP-43 nuclear to 223 
cytoplasmic (N/C) ratio from healthy control (n = 3), and C9-ALS and ALS/FTD (n = 7) patients. Dots 224 
represent individual people, bars represent means ± SEM. Unpaired t-test, p = 0.9. (D) Zoomed in images 225 
of individual cells showing an example neuron with TMEM106B cytoplasmic puncta (cell iii) with severe 226 
TDP-43 nuclear clearance. Scale bar = 5 µm. (E) Quantification of TDP-43 N/C ratio in neurons with 227 
TMEM106B cytoplasmic puncta (TMEM106B+, n = 40) and those without (TMEM106B-, n = 280) across 228 
healthy control (n = 3) and C9-ALS and ALS/FTD (n = 7) patients. Dots represent individual cells, bars 229 
represent means ± SEM. Mann-Whitney test, p<0.0001. (F) Quantification of the TDP-43 N/C ratio of 230 
individual neurons with or without TMEM106B cytoplasmic puncta from healthy controls or C9-ALS and 231 
ALS/FTD patients grouped by both patient diagnosis and TMEM106B phenotype. For the C9-ALS and 232 
ALS/FTD bars, closed dots represent C9-ALS, and open diamonds represent C9-ALS/FTD. Data points 233 
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represent individual cells, bars represent means ± SEM. A two-way ANOVA with multiple comparisons test 234 
was performed; *, p = 0.024; ****, p<0.0001.  235 

 236 

TMEM106B Does Not Form Inclusions in a SOD1 ALS Model 237 

We next sought to characterize another genetic model of ALS to see if our findings in the C9-ALS mouse 238 
model generalize to other forms of ALS. Thus, we chose the SOD1 G93A mouse model, which has long 239 
been used to study ALS in vivo [29, 88]. In this model, mice transgenically express mutant hSOD1G93A, 240 
resulting in neurofilament aggregation, loss of motor neurons, and astrocytosis by 3 months of age, followed 241 
by progressive paralysis and premature death [29, 88]. Although no studies have yet described TMEM106B 242 
aggregation in SOD1-ALS specifically, pathological misfolded SOD1 impacts autophagic processes [40, 243 
57, 84, 96], which could affect or be affected by TMEM106B aggregation. Additionally, TDP-43 cytoplasmic 244 
inclusions are largely absent in SOD1-ALS patients [51, 61, 86], indicating a pathologically distinct 245 
mechanism of neurodegeneration.  246 

First, we established SOD1 pathology in this model by staining for SOD1 in the motor cortex, hippocampus, 247 
midbrain, and hindbrain of 3-month-old animals (Figure 3A, S3A). As expected, we saw that SOD1 is highly 248 
expressed in transgenic animals, and not in control animals. Moreover, C4F6, a well-characterized antibody 249 
for misfolded SOD1 that detects an exon 4 epitope (Table 1), shows positive staining in the motor cortex 250 
and hippocampus of transgenic animals (Figure S3A), in line with reports in both human and mouse tissue 251 
[23, 41, 62, 65, 66]. We also saw Iba1+ staining in the midbrain and hindbrain, indicative of microgliosis 252 
(Figure 3B). Although SOD1 staining was present throughout the brain, we mainly observed vacuolization 253 
in the midbrain and hindbrain (Figure 3A, C), consistent with previous reports of vacuolar degeneration in 254 
models of SOD1 ALS [28, 33, 73, 93]. Indeed, by both DAB staining (Figure 3A) and immunofluorescence 255 
staining (Figure 3C), we observed robust vacuolization in the midbrain and hindbrain specifically in 256 
transgenic animals. Thus, these animals display the pathological features expected of the SOD1 ALS 257 
mouse model. 258 

After demonstrating SOD1-relevant pathology, we next examined TMEM106B localization in the midbrain 259 
and hindbrain, medulla, and ventral horn. By DAB staining, we observed punctate-like TMEM106B staining 260 
in both non-transgenic and transgenic mice (Figure 3D). Similarly, using immunofluorescence, we did not 261 
observe any notable difference between TMEM106B staining in the midbrain of non-transgenic and 262 
transgenic mice (Figure 3E). Moreover, we did not observe the large cytoplasmic inclusions found in the 263 
AAV-C9-ALS model using either DAB staining (Figure 3D) or immunofluorescence staining (Figure 3E).  264 

Because one key pathological feature of the SOD1 mice is vacuolization [28, 33, 73, 93], and because 265 
TMEM106B is a membrane-bound protein, we wondered whether TMEM106B localizes to the vacuolar 266 
structures formed in the midbrain and hindbrain. Thus, we examined high-resolution images of cells with 267 
large vacuoles. However, we did not observe an increase in TMEM106B staining around the vacuole 268 
perimeter (Figure S3B). We also did not observe any changes to TMEM106B localization in the motor 269 
cortex, despite the positive staining for misfolded SOD1 (Figure S3A, C). Overall, these results indicate 270 
TMEM106B pathology is not a prevalent histological feature of SOD1-ALS and suggest that TMEM106B 271 
may play a role in the pathogenesis of specific forms of ALS, such as those caused by C9orf72 repeat 272 
expansion.  273 

 274 

 275 

 276 

 277 

 278 
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 279 
Figure 3: TMEM106B does not have altered distribution in mice expressing ALS-mutant G93A SOD1. 280 
(A) Midbrain/hindbrain region in non-transgenic (nTg) animals and animals expressing G93A SOD1 with 281 
DAB staining against SOD1. Vacuolization is apparent in transgenic animals. Scale bar = 25 µm. (B) 282 
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Representative images of midbrain/hindbrain region in nTg and G93A SOD1 animals with DAB staining 283 
against Iba1 showing increased Iba1 reactivity in transgenic animals, as well as vacuolization. Scale bar = 284 
25 µm. (C) Performing immunofluorescence confocal microscopy on the midbrain of either non-transgenic 285 
or SOD1 G93A transgenic animals shows clear overexpression of SOD1 in the transgenic animals and 286 
vacuolization. Images are representative of n = 8 nTg and 7 transgenic animals. Scale bar = 50 µm. (D) 287 
Representative images of midbrain/hindbrain, medulla and ventral horn region with DAB staining against 288 
TMEM106B. Scale bar = 25 µm. A punctate like staining pattern as shown by arrows in both nTg and 289 
transgenic animals. (E) Immunofluorescence confocal microscopy for TMEM106B does not reveal any overt 290 
differences in TMEM106B staining between non-transgenic and transgenic animals. Images are 291 
representative of n = 8 nTg and 7 transgenic animals. Scale bar = 50 µm.  292 

 293 

TMEM106B Immunoreactivity Correlates with Accumulation of Phosphorylated Tau at the Early 294 
Stages of the PS19 Mouse Model of Tauopathy  295 

TMEM106B is not only a genetic risk factor for ALS and FTD [52, 90] but is also implicated in other 296 
neurodegenerative diseases such as Alzheimer’s disease [24, 34, 35]. Additionally, genetic manipulation 297 
of TMEM106B expression in murine models of tauopathy have revealed a potentially significant role of 298 
TMEM106B in tau-related neurodegenerative diseases [18, 20]. However, a rigorous analysis of the 299 
histological pattern of endogenous TMEM106B in early- and late-stage murine models of tauopathy has 300 
not yet been conducted. Thus, we next looked at the PS19 mouse model, a well-characterized in vivo 301 
system for studying tauopathy [95].  302 

PS19 mice transgenically express the FTD with parkinsonism linked to chromosome 17 (FTDP-17)-303 
associated P301S mutant of tau[95]. By 3 months of age, PS19 mice begin to display a motor phenotype, 304 
leading to paralysis by 7-10 months, with a median survival of 9 months [95]. Further characterization of 305 
these animals has established that PS19 mice accumulate insoluble tau and phosphorylated tau (pTau) 306 
[95]. This pathology is accompanied by neuronal loss in the hippocampus and brain atrophy [95]. Only 307 
~20% of PS19 animals survive to 12 months of age, at which point there is significant loss of brain volume 308 
[95]. Thus, 12-month-old PS19 animals represent late-stage tauopathy. 309 

Consistent with the established phenotype of the PS19 model, we observe robust accumulation of pTau in 310 
the hippocampus and motor cortex of 12-month-old PS19 animals (Figure S4A) by DAB staining with the 311 
Ser202/Thr205 phosphorylation-dependent tau antibody, AT8 (Table 1). Using immunofluorescence to 312 
quantify pTau in hippocampal neurons of the dentate gyrus, we find both significant loss of NeuN+ neurons 313 
and a significant increase in pTau in PS19 animals relative to non-transgenic controls (Figure S4B).  314 

Next, we performed DAB staining of TMEM106B in the hippocampus and did not find any obvious 315 
differences in TMEM106B staining between non-transgenic mice and PS19 animals (Figure S4C). 316 
Similarly, we did not observe a significant difference in immunofluorescence reactivity for TMEM106B, 317 
although there was a slight increase in TMEM106B signal for PS19 animals (Figure S4D, E). This is 318 
intriguing, as previous reports indicate that the TMEM106B rs1990622-A variant that is associated with 319 
increased risk for Alzheimer’s disease is also correlated with higher levels of the TMEM106B protein in the 320 
hippocampus [25, 47, 59]. 321 

Although clearly distinct from the inclusions formed in the AAV-C9 tissue, we did observe some areas of 322 
high TMEM106B reactivity in the PS19 tissue. When we co-stained these tissues with TMEM106B and 323 
AT8, we found that there was no significant correlation between AT8 and TMEM106B staining intensities 324 
in the 12-month-old animals (Figure S4F). Indeed, closer examination of hippocampal neurons with pTau 325 
inclusions and TMEM106B reactivity showed that there was no co-localization between the two structures, 326 
consistent with previous work showing that TMEM106B-positive species do not co-localize with Tau [64] 327 
(Figure S4G). 328 

 329 
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 330 
Figure 4: Correlation of TMEM106B and phosphorylated tau is observed in 9-month-old PS19 mice. 331 
(A) Representative immunofluorescence images of the hippocampal dentate gyrus region of non-transgenic 332 
(nTg) and PS19 mice stained for NeuN, TMEM106B, and phosphorylated Tau (AT8). Quantification of 333 
NeuN (B), TMEM106B (C), and AT8 (D) staining in 9-month-old mice show that there is a significant 334 
difference in the signal intensity between transgenic and nTg mice. The signal for TMEM106B and AT8 335 
was normalized to the signal of its corresponding NeuN channel. Each data point represents an individual 336 
image from n = 5 each of nTg and PS19 animals. Bars represent means ± SEM. A student’s t-test was 337 
used to compare nTg and transgenic animals; *, p<0.03; ****, p<0.0001. (E) Linear regression and 338 
correlation analysis between TMEM106B and AT8 signals. 339 

We next wondered whether there was any distinct pathological presentation in the PS19 model at 9 months 340 
of age, when neuronal loss is not as severe [95]. Indeed, immunofluorescence staining of NeuN in the 341 
hippocampus at 9 months of age reveals that the loss of NeuN+ cells in the dentate gyrus is only modestly 342 
significant in PS19 animals relative to non-transgenic controls (Figure 4A, B). However, 9-month-old PS19 343 
animals are still robust models of tauopathy, as pTau staining is significantly elevated compared to control 344 
(Figure 4C). Surprisingly, whereas there was a slight but not significant increase in TMEM106B 345 
immunoreactivity at 12 months for the PS19 cohort, in the 9-month-old animals this increase is significant 346 
(Figure 4D). Moreover, there is a significant positive correlation between the intensity of AT8 staining and 347 
TMEM106B immunoreactivity (Figure 4E). Thus, at earlier time points, when neurons have not yet died, 348 
TMEM106B and pTau both show increased immunoreactivity, which may reflect underlying pathological 349 
changes.  350 

 351 
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TMEM106B Punctate-Like Structures in AD Human Tissue Correlate but not Colocalize with 352 
Phosphorylated Tau 353 

Our results in the PS19 model suggest that there may be co-pathology between TMEM106B and the 354 
accumulation of phosphorylated tau. Thus, we next investigated TMEM106B phenotypes in human 355 
tauopathy using two different disease cohorts: AD and AD with limbic-predominant age-related TDP-43 356 
encephalopathy (AD/LATE). AD/LATE can be associated with a higher tau burden [85], thereby providing 357 
additional insight into the relationship between tau and TMEM106B in disease.  358 

We first analyzed TMEM106B deposition in postmortem tissue from control and AD patients using DAB 359 
(Table 4). We focused on the cornu ammonis (CA) region of the hippocampus, as this area is known to be 360 
heavily affected in AD [4]. In control samples, TMEM106B is diffused throughout the cell, with both 361 
cytoplasmic and nuclear staining by DAB (Figure S5A). In AD tissue, by contrast, TMEM106B forms 362 
aggregated puncta (Figure S5B). This agrees with previous studies which have shown that TMEM106B 363 
forms neuronal aggregates patients with AD and other tauopathies [64].  364 

Next, we performed co-staining of TMEM106B and pTau in postmortem tissue from patients with AD and 365 
AD/LATE (Figure 5A, Table 4). As compared to control samples, histologically defined AD and AD/LATE 366 
patient tissues had significantly higher levels of NeuN-normalized AT8 staining in the hippocampus, 367 
indicative of the accumulation of pTau (Figure 5B). Quantification of TMEM106B immunoreactivity showed 368 
that the levels of TMEM106B are not increased in AD tissue but are increased in AD/LATE patients (Figure 369 
5C). Previous reports have shown that the risk allele rs1990622 is associated with higher levels of 370 
TMEM106B mRNA and protein [10, 47, 90], however as the genomic information of the patients is not 371 
available to us, it is unknown whether the patients characterized here are carriers of this risk variant. 372 
Interestingly, we identified a subpopulation of cells in AD/LATE patients that had higher TMEM106B staining 373 
(Figure 5C). Thus, to determine whether TMEM106B levels were related to pTau burden in human disease, 374 
we calculated the correlation between TMEM106B and AT8 intensities for control and disease cohorts 375 
(Figure 5D). We find that there is a slight but significant correlation between TMEM106B and pTau levels 376 
in AD and AD/LATE tissues, with AD/LATE patients showing the strongest correlation. 377 

We then analyzed the degree of co-localization between AT8 and TMEM106B staining. We found that 378 
TMEM106B does not colocalize with AT8 in either AD or AD/LATE patient tissue (Figure 5E-G). Within 379 
individual cells from multiple patients, line scans do not show intensity trace patterns consistent with 380 
colocalization (Figure 5E, F). Moreover, taking an unbiased method for analyzing AT8 and TMEM106B 381 
signal colocalization, we find that TMEM106B is equally likely to be colocalized with NeuN as with AT8 for 382 
both AD and AD/LATE populations (Figure 5G, H). Similarly, the reciprocal measure for AT8 reveals that 383 
in AD and AD/LATE, AT8 does not colocalize with TMEM106B to a greater extent than it does with NeuN 384 
(Figure 5G, H).  385 

Taken together, these findings reaffirm prior studies describing TMEM106B aggregation in human 386 
tauopathies [64]. Additionally, our data showed that in both PS19 murine model and postmortem tissues 387 
from AD and AD/LATE patients, phosphorylated tau burden correlated positively with TMEM106B 388 
immunoreactivity, possibly suggesting a conserved role that TMEM106B plays in tauopathy.  389 
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Figure 5. TMEM106B pathology is positively correlated with tau pathology in Alzheimer’s disease 392 
(AD) and AD with limbic-predominant age-related TDP-43 encephalopathy (LATE). (A) Maximum 393 
projection images of human hippocampal tissue stained for DAPI, NeuN, phosphorylated Tau (pTau; AT8), 394 
and TMEM106B (Sigma). Scale bar = 20 µm. (B) Quantification of AT8 staining normalized to NeuN staining 395 
for control, AD, and AD/LATE patients. Each data point represents one cell, bars represent means ± SEM. 396 
At least 12 cells were counted per patient with at least 95 cells counted in total for each cohort, n = 5-6. An 397 
ordinary one-way ANOVA with Tukey’s multiple comparisons test was used to compare each group. *, 398 
p<0.03; ***, p<0.0007; ****, p<0.0001. (C) Quantification of TMEM106B staining normalized to NeuN 399 
staining for control, AD, and AD/LATE patients. Each data point represents one cell, bars represent means 400 
± SEM. At least 12 cells were counted per patient with at least 95 cells counted in total for each cohort, n = 401 
5-6. An ordinary one-way ANOVA with Tukey’s multiple comparisons test was used to compare each group. 402 
****, p<0.0001. (D) A simple linear regression (R2) and a Pearson correlation coefficient (r) of the intensity 403 
of AT8 and TMEM106B signal intensity for each cell counted. Each dot represents the AT8 and TMEM106B 404 
signal from one cell; dots are colored by patient condition. At least 12 cells were counted per patient with 405 
at least 95 cells counted in total for each cohort, n = 5-6. Line scans of intensity in patients with AD (E), or 406 
AD/LATE (F) indicate that the AT8 and TMEM106B signals are not colocalized. The highest signal for each 407 
channel was set to 1 and used to normalize all other values. Scans were performed over the white dashed 408 
line shown in the images for the individual channels. Heat maps showing the results of rank weighted 409 
correlation (RWC) analysis on AD tissues (G) and AD-LATE tissues (H). Each cell of the heatmap shows 410 
the average RWC coefficient for protein A colocalizing with protein B. A RWC coefficient of 1 indicates 411 
perfect colocalization. Four images were analyzed per patient for 5 patients.  412 

 413 

Discussion 414 

TMEM106B, a lysosomal/late endosomal protein originally described as a risk factor for FTD-TDP, has 415 
been linked to various neurodegenerative disorders [9, 19, 38, 75, 90]. To date, several in vivo models have 416 
been used to understand both the function of TMEM106B as well as its potential role as a disease modifier. 417 
For example, one recent study showed that TMEM106B knockdown is neuroprotective in both in vitro and 418 
in vivo Parkinson’s disease models, and another study found that loss of TMEM106B exacerbates tau 419 
pathology and neurodegeneration in an FTD model [20, 49]. However, these models rely on either 420 
overexpression or a knockdown/knockout approach, potentially leading to artificial phenotypes. In this 421 
study, we compare the phenotype of endogenous TMEM106B in different disease models and human 422 
disease to more accurately understand how TMEM106B pathology relates to neurodegeneration. 423 

As genetic variants in TMEM106B have been identified as modifiers of FTLD-TDP in patients with 424 
pathological G4C2 hexanucleotide expansion in C9orf72 [16, 26, 52, 89-91], we wanted to test whether a 425 
C9-mouse model expressing 149 repeats of the disease-associated G4C2 sequence showed any 426 
differences in endogenous TMEM106B localization or expression compared to control animals expressing 427 
a 2 repeat control. Intriguingly, we observed novel TMEM106B-positive perinuclear inclusions specifically 428 
in AAV-(G4C2)149-injected animals, but not in the control (G4C2)2 mice at 9-months of age (Figure 1A-E). 429 
These inclusions did not co-localize with markers of autophagy, stress granules, or lysosomes, suggesting 430 
these structures do not reflect canonical functioning of TMEM106B or represent bulk degradation of 431 
intracellular waste.  432 

One of the hallmark phenotypes of ALS and FTD is the loss of nuclear TDP-43 [2, 7, 51, 79]. Thus, we also 433 
examined TDP-43 distribution in the C9 mouse model. We found that cells with TMEM106B inclusions had 434 
an aberrantly low TDP-43 N/C ratio (Figure 1G, H), suggesting that TMEM106B inclusion formation may 435 
be related to TDP-43 mislocalization. 436 

To evaluate whether our findings in a mouse model were relevant to human pathology, we next compared 437 
our results in mice to human C9-ALS and C9-ALS/FTD patients. This comparison revealed important 438 
differences in pathology. Namely, we did not observe large perinuclear inclusions in any human cells 439 
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analyzed. Additionally, we did not identify a difference in the percentage of cells with TMEM106B inclusions 440 
by diagnosis in humans (Figure 2C). However, we did see a disease-dependent correlation between 441 
TMEM106B inclusion formation and pathological TDP-43 nuclear clearance (Figure 2E, F). Thus, in both 442 
the C9-AAV mouse model and C9-ALS human tissue, cells that have TMEM106B positive punctate-like 443 
structure have a decreased TDP-43 nuclear to cytoplasmic ratio, suggesting a potential relationship 444 
between abnormal TMEM106B pathology and TDP-43 mislocalization in C9-ALS and C9-ALS/FTD in 445 
humans. 446 

We next wondered whether the TMEM106B phenotype we observed in C9-animals was present in other 447 
models of ALS. As many as 20% of fALS cases are linked to mutations in SOD1 [6], however whether 448 
SOD1-related fALS and sALS share common patho-mechanisms is a matter of debate as SOD1-ALS cases 449 
with cytoplasmic TDP-43 inclusions are exceptionally rare [86]. Nevertheless, a previous study has reported 450 
mislocalization of TDP-43 in end stage SOD1 G93A transgenic mouse model [77]. Furthermore, a recent 451 
investigation found age-dependent changes in C-terminal TDP-43 in the spinal cord tissue of SOD1 G93A 452 
mouse model as well as in iPSC-derived motor neurons from a SOD1 G17S ALS patient [36].  453 

Here, we analyzed brain and spinal cord tissue from 3-month-old control or transgenic SOD1 G93A mice. 454 
Although we observe late-stage pathology, as indicated by the presence of vacuolization, increased SOD1 455 
staining (Figure 3A, C) and increased Iba1 staining (Figure 3B), we did not observe any changes in 456 
TMEM106B staining within the affected brain regions or spinal cord (Figure 3D, E). Indeed, in both non-457 
transgenic control and SOD1 G93A-expressing animals, we observed a punctate-like staining of 458 
TMEM106B in the midbrain/hindbrain and medulla of the brain, and in the ventral horn region of the spinal 459 
cord (Figure 3D). Thus, the TMEM106B pathology we observe in C9-ALS does not generalize to all types 460 
of ALS and adds to the body of literature that suggests SOD1 ALS is pathophysiologically distinct from 461 
sporadic and C9-ALS [14]. However, investigations of endogenous TMEM106B pathology in other 462 
populations of ALS and ALS/FTD in which TDP-43 pathology is well-established is an important future area 463 
of research. 464 

We next characterized a murine model of tauopathy in which mice transgenically express human tau 465 
bearing the dementia-related P301S mutation (PS19) [95]. Consistent with prior reports, we find that 12-466 
month-old mice have significant neuron loss and accumulation of phosphorylated tau (Figure S4A, B). 467 
However, we did not see significant global changes to TMEM106B levels or localization (Figure S4C-E). 468 
Moreover, pTau burden was not correlated with TMEM106B intensity (Figure S4F). Indeed, AT8-positive 469 
aggregates did not colocalize with TMEM106B puncta at the 12-month time point (Figure S4G). However, 470 
at 9 months of age, when neuronal loss is less severe than at 12 months (Figure 4A, B) but significant 471 
pTau aggregation has accumulated (Figure 4C), PS19 mice have elevated levels of TMEM106B staining, 472 
and this increase is positively correlated with pTau burden (Figure 4D, E).  473 

To explore whether the colocalization of TMEM106B and pTau generalized to human tissue, we next 474 
characterized human AD and AD/LATE tissues. As expected, TMEM106B forms aggregates in these 475 
diseases (Figure 5A, S5A, B). Moreover, AD/LATE tissues have higher immunoreactivity for TMEM106B 476 
(Figure 5C), and TMEM106B staining is positively correlated with pTau staining for both AD and AD/LATE 477 
(Figure 5D). However, in contrast to the PS19 model, TMEM106B does not colocalize with pTau in either 478 
AD or AD/LATE (Figure 5E-H). Nevertheless, we find a consistent correlation between TMEM106B and 479 
pTau burden in both human disease and an in vivo model of tauopathy. Our findings warrant additional 480 
investigation into whether the correlation between TMEM106B and pathological tau is due to a direct 481 
relationship or can be attributed to a common, upstream mechanism.  482 

Given that our findings in both the AAV-induced C9 model and genuine human cases of C9-ALS and 483 
ALS/FTD suggest that TMEM106B inclusions are correlated with TDP-43 mislocalization, one important 484 
question for future research is whether a similar relationship occurs in other diseases where TDP-43 485 
pathology is present. Indeed, TDP-43 pathology, like TMEM106B aggregation, is not unique to ALS or 486 
ALS/FTD; TDP-43 cytoplasmic mislocalization and aggregation has been observed in Alzheimer’s disease 487 
and other types of dementia [8, 32, 43, 55], as well as in cognitively normal aged populations [58]. Moreover, 488 
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previous studies have found that tau burden is related to TDP-43 pathology in AD and other tauopathies 489 
[46, 85]. In this work, we found that pTau burden was correlated with TMEM106B intensity at the level of 490 
individual cells. Thus, characterizing the relationship between tau, TMEM106B, and TDP-43 in healthy and 491 
disease states will be an important step toward describing the nature of these diseases. 492 

It is still unclear whether the TMEM106B aggregates that have been described in neurodegenerative 493 
disease and normal aging are a cause or consequence of cellular injury or death. Indeed, the fact that 494 
TMEM106B aggregation occurs in healthy aging suggests that, at least to some extent, TMEM106B 495 
aggregation is tolerated. On the other hand, the genetic association between TMEM106B and disease, and 496 
the identification of disease-associated risk alleles in the TMEM106B gene that are associated with 497 
increased TMEM106B expression, indicate a relationship between the protein and cell death. In these 498 
studies, we characterize endogenous TMEM106B expression and localization in both mouse models of 499 
disease and genuine human disease to show distinct phenotypes. Broadly, our results reinforce the 500 
importance of relating findings from in vivo models to human tissue to optimize translatable research output. 501 
Specific to TMEM106B, we find that for C9-related diseases and tauopathies, TMEM106B pathology is 502 
correlated with standard measures of disease (i.e., TDP-43 nuclear clearance and pTau accumulation), but 503 
that there is no relationship between SOD1 pathology and TMEM106B. Taken together, our findings provide 504 
substantial evidence for further investigation into a potential mechanistic link between TMEM106B 505 
aggregation and pathological processes in neurodegeneration. 506 

 507 

Methods 508 

Animals 509 
C57BL/6J were purchased from Jackson Laboratories (Strain #000664) at 4-8 weeks of age. PS19 mice 510 
with C57BL/6J background were purchased from Jackson Laboratories (Strain # 024841) at 4-8 weeks of 511 
age. SOD1 G93A mice were purchased from Jackson Laboratories (Strain # 002726). At 6-9 weeks of age 512 
breeding pairs were established to produce pups for all subsequent experiments. Mice were housed in a 513 
constant 14-hour light/10-hour dark cycle and allowed access to food and water ad libitum. In this study, 514 
tissue from 8 (G4C2)2 repeat and 9 (G4C2)149 repeat injected animals, 7 SOD1 G93A (6 females, 1 male) 515 
along with 8 non-transgenic controls (4 females, 4 males), 5 9-month-old PS19 along with 5 non-transgenic 516 
controls, and 5 12-month-old PS19 along with 3 non-transgenic controls were used. All animal procedures 517 
complied with animal protocols approved by the Animal Use Committee at the Johns Hopkins University 518 
School of Medicine (JHUSOM).  519 

 520 

Neonatal Viral Injections 521 

The AAV2/9-(G4C2)2 and AAV2/9-(G4C2)149 viruses were provided by Dr. Leonard Petrucelli at Mayo Clinic 522 
Jacksonville. The viruses were prepared as previously described [12, 82]. AAV viral aliquots were thawed 523 
on ice and spun down in a centrifuge at 4°C. In a sterile hood, viruses were diluted to 1.5x1010 viral 524 
genomes/µL (vg/µL) with sterile PBS and were stored on ice until time of injection. Intracerebroventricular 525 
(ICV) injections of AAV were performed on C57BL/6J postnatal day 0 (P0) pups. AAV dilutions were 526 
prepared on the day of injections. Pups underwent cryoanesthesia on ice for approximately 3 minutes or 527 
until pups exhibited no movement. A 32-gauge needle (Hamilton; Small RN 32 gauge, 0.5 inch needle, 528 
point style 4) attached to a 10 µL syringe (Hamilton, Model 701 RN) was inserted approximately two fifths 529 
of the distance between the lambda and each eye at a 30° angle from the surface of the head and was held 530 
at a depth of about 2 mm. 2 µL of virus was manually injected into each cerebral ventricle and the needle 531 
was held in place for an additional 5 seconds after each injection to prevent back flow. After injections, pups 532 
were placed on a heating pad until fully recovered and then returned to their home cages with the dam. Any 533 
pups with back flow from the injection were excluded from the study.  534 

 535 
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Tissue Harvesting 536 

Brain 537 
The anesthetized mouse was transcardially perfused with ice-cold PBS containing 10 U/mL heparin (Sigma-538 
Aldrich H3149) for approximately 5 minutes. Subsequently, the brain was removed and put in a conical 539 
tube containing 4% paraformaldehyde in PBS overnight at 4°C and then moved into PBS containing 0.1% 540 
sodium azide for long store storage.  541 

Spinal Cord 542 
The spinal cord was dissected, similar to previously described [39]. Laminectomy was performed by gentle 543 
cutting laminae at 3 and 9 o’clock directions from cervical to lumbar level. The lumbar vertebra was cut out. 544 
The spinal nerve roots were gently cut off on both sides and the spinal cord was removed from the spinal 545 
canal. The spinal cord was then cut into Thoracic and Lumbar sections. Both Thoracic and Lumbar sections 546 
were put into microcentrifuge tubes containing 4% paraformaldehyde in PBS overnight at 4°C and then 547 
moved into PBS containing 0.1% sodium azide for long term storage. 548 

 549 

Immunofluorescence 550 

All mouse brain tissue were paraffin embedded and cut in sagittal orientation with 5 µm thickness. Mouse 551 
spinal cord tissue was also paraffin embedded and cut in cross section orientation with 5 µm thickness. 552 
Formalin-fixed-paraffin-embedded (FFPE) sections were deparaffinized in xylene and rehydrated through 553 
a series of ethanol solutions. Antigen retrieval was performed in 10 mM sodium citrate buffer, pH 6.0 for 60 554 
minutes in a steamer and then allowed to cool for 10 minutes. Following washing with deionized water and 555 
PBS, the tissue was permeabilized with 0.2% (mouse tissue) or 0.4% (human tissue) Triton X-100 in PBS 556 
for 10 minutes at room temperature. The sections were then washed with PBS with 0.05% Tween (PBST; 557 
mouse) or PBS (human) 3x. Mouse tissues were blocked with 10% Normal Goat serum containing 0.05% 558 
Tween for 1 hour at room temperature; human tissues were blocked in DAKO protein-free serum block 559 
(DAKO X0909) overnight at 4 ºC.  560 

Mouse sections were immunostained with primary antibodies (Table 1) diluted in blocking buffer overnight 561 
at 4 ºC and were subsequently washed with PBST (PBS with 0.05% Tween). Secondary antibodies diluted 562 
in blocking solution were incubated at room temperature for 1 hour. After secondary antibody staining, the 563 
sections were processed with the autofluorescence eliminator reagent (Millipore Sigma #2160) according 564 
to the manufacturer’s instructions. 565 

Sections were then incubated with PBST and Hoechst (1:1000) for 10 minutes, followed by additional 566 
washes with PBST. Slides were mounted on a coverslip with ProLong Gold mounting solution 567 
(ThermoFisher Scientific P36931).  568 

Human tissues were immunostained with primary antibody diluted in DAKO antibody diluent (DAKO S0809) 569 
and stored in a humidified chamber at 4 ºC for 2-3 days. Before applying secondary antibody, tissues were 570 
brought to room temperature for ~20 minutes, then washed 3x with PBS. Secondary antibodies were diluted 571 
in DAKO antibody diluent and applied to slides for 1 hour at room temperature. After secondary antibody 572 
staining, the sections were processed with the autofluorescence eliminator reagent (Millipore Sigma #2160) 573 
according to the manufacturer’s instructions. Tissues were then washed 3x with PBS, stained with DAPI, 574 
and washed another 2x with PBS before mounting with ProLong Gold. 575 

 576 

DAB Staining 577 

FFPE sections were deparaffinized in xylene and rehydrated through a series of ethanol solutions. Antigen 578 
retrieval was performed in 10 mM sodium citrate buffer, pH 6.0 for 1 hour. Tissues were immunostained 579 
with primary antibodies overnight. DAKO Envision+HRP polymer kits (K4003 and K4001) were used, and 580 
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the reaction was visualized using ImmPACT® VIP Substrate Kit (Vector Laboratories SK-4605). Sections 581 
were then counterstained with Hematoxylin QS Counterstain (Vector Laboratories H-3404-100) and 582 
mounted with Aqua-Poly/Mount (Polysciences 18606-20).  583 

 584 

Microscopy 585 

For DAB, slides were imaged as 20x magnification tiles or individual 63x magnification images using Zeiss 586 
Axio Imager. For IF, slides were imaged at 20x, 40x, or 63x magnification using a Zeiss LSM 980 with 587 
Airyscan, as indicated. 588 

 589 

Human postmortem tissue 590 

All human ALS tissues used within this study were obtained from Dr. Alyssa Coyne (Johns Hopkins), Dr. 591 
Dennis Dickson (Mayo Clinic), and the Target ALS Postmortem Tissue Core (see Table 3). All human AD 592 
tissues used within this study were obtained from the Johns Hopkins Alzheimer’s Disease Research Center 593 
(IRB 00082277, see Table 4). 594 

 595 

C9 Tissue Quantification 596 

The motor cortex was imaged at 63x using confocal microscopy. Maximum intensity projections were used 597 
for all quantification purposes. The number of TMEM106B inclusions and total number of neurons in the 598 
field were manually counted. TDP-43 N/C ratio was quantified in ImageJ by manually drawing a region with 599 
the guide of Hoechst channel as a nuclear mask and NeuN channel as a cytoplasm mask. 600 

 601 

Mouse PS19 Tissue Image Quantification 602 

For TMEM106B and AT8 staining intensity in the PS19 studies, 20x images were taken of the dentate 603 
gyrus. A mask was drawn using ImageJ around the NeuN+ cells in these regions. The mean intensity of 604 
NeuN, TMEM106B, and AT8 were then quantified in ImageJ.  605 

The signal of TMEM106B and AT8 were each normalized to the respective NeuN signal for each image. 606 
For each image, the NeuN-normalized signal for TMEM106B and AT8 of each image was used for 607 
correlation analysis. Colocalization analysis was measured across the entire image for maximum intensity 608 
projections of the NeuN, AT8, and TMEM106B channels using MeasureColocalization in CellProfiler with 609 
the threshold as percentage of maximum intensity set to 15.0. The Rank Weighted Colocalization (RWC) 610 
coefficient was used, as this measure incorporates image intensity by first ranking each pixel in each image 611 
from 1 – n based on intensity, with 1 representing the highest intensity pixel [78]. The RWC coefficient is 612 
calculated using the following equations: 613 

(1)	𝑅𝑊𝐶!:# =
∑𝐴$,&'('& ∗ 𝑊$

∑𝐴$
		614 

(2)	𝑊$ =	
𝐴)*+ −𝐷$
𝐴)*+

	615 

(3)	𝐷$ =	 |𝑅𝑎𝑛𝑘(𝐴$) − 𝑅𝑎𝑛𝑘(𝐵$)| 616 

Where Ai is the intensity of image A at a given pixel, and Ai, coloc = Ai if Bi is > 0, and Ai, coloc = 0 if Bi is < 0 617 
(i.e., Ai, coloc represents only pixels where images A and B both have a positive signal). Wi is weight, which 618 
incorporates Amax as the maximum rank of the pixel in either A and B, and Di, the absolute value of the 619 
difference between the rank of the pixel for each image. 620 
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 621 

Human AD Tissue Image Quantification 622 

Cells in the CA1 region of the hippocampus were imaged at 63x using confocal microscopy. Maximum 623 
intensity projections were used for all quantification purposes. To quantify target intensity, a cellular mask 624 
was manually drawn using NeuN; this mask was then used to quantify the mean intensity of NeuN, 625 
TMEM106B, and AT8. TMEM106B and AT8 intensities were normalized to the NeuN intensity for each cell. 626 
For line scans, a line was drawn over cells using ImageJ and a plot profile was generated for both the 627 
TMEM106B and AT8 channels. These values, paired by position along the line, were then plotted for each 628 
cell.  629 

Table 1. List of antibodies for tissue staining.  630 

Target Source Catalog # Dilution 

TMEM106B Sigma SSAB2106773 IF: 1:500 

TMEM106B (TMEM239) Gift from Michel 
Goedert 

 IF: 1:500 

NeuN Millipore ABN91 IF: 1:500 (mouse); 
1:100 (human) 

SOD1 Abcam Ab52950 IF: 1:50 

Misfolded SOD1 MédiMabs MM-0070-2-P IF: 1:50 

AT8 ThermoFisher MN1020 DAB: 1:250 

IF: 1:500 

p62 BD Biosciences 610832 IF: 1:200 

eIF3η Santa Cruz sc-137214 IF: 1:100 

Cathepsin D B&D Systems MAB1029 IF: 1:100 

TDP-43 Abcam ab104223 IF: 1:500 

Goat anti-Chicken IgY (H+L) 
Secondary Antibody, Alexa Fluor 488, 
Invitrogen 

Invitrogen A-11039 IF: 1:1000 

Goat Anti-Mouse IgG Polyclonal 
Antibody (CF™ 647) 

Biotium 20281-1 IF: 1:1000 

Goat anti-Rabbit IgG (H+L) Highly 
Cross-Adsorbed Secondary Antibody, 
Alexa Fluor™ 568 

ThermoFisher A-11036 IF: 1:1000 

 631 

Table 2. List of key reagents and resources. 632 

Reagent or Resource Source Catalog # 
Hoechst 33342 BD Biosciences via GRCF 561908 
DAPI Invitrogen D1306 
ProLong Gold Antifade Mountant Thermo Fisher P36930 
18x18 mm High Tolerance Coverslips MatTek PCS-170-1818 
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DAKO Envision+HRP polymer kits  Agilent K4003 and K4001 
DAKO Serum-Free Protein Block Agilent X0909 
DAKO antibody Diluent Agilent S3022 
ImmPACT® VIP Substrate Kit Vector Laboratories SK-4605 
Hematoxylin QS Counterstain Vector Laboratories H-3404-100 
Aqua-Poly/Mount Polysciences 18606-20 
ZEN Microscopy Software Zeiss Zen Ver. 3.5 
CellProfiler [81] N/A 
Prism 10 GraphPad N/A 
ImageJ (FIJI) [74] N/A 

 633 

Table 3. Human tissue demographics – C9ORF72 634 

Patient ID Condition Age Sex 
001 (1) Control 52 M 
005 Control 72 M 
008 Control 71 F 
002 (1) C9-ALS 61 F 
003 (2) C9-ALS 54 F 
004 C9-ALS/FTD 74 M 
006 C9-ALS 56 F 
007 C9-ALS/FTD 68 F 
009 C9-ALS 47 M 
010 C9-ALS 62 M 

Numbers in parentheses refer to the patient numbering convention used in figures. 635 

Table 4. Human tissue demographics – Alzheimer’s Disease 636 

Patient ID Condition Age Sex Race CERAD1 Braak Stage2 

BRC 2664 (1) Control 88 M W 0 III 
BRC 2052 (2) Control 79 M W A II 
BRC 2775 (3) Control 88 F W 0 II 
BRC 2396 Control 94 M W 0 0 
BRC 2497 Control 93 M W 0 II 
BRC 2522 Control 89 F W 0 II 
BRC 2590 Control 77 M W 0 IV 
BRC 2808 Control 94 F W 0 II 
BRC 2332 (1) AD 88 F W C VI 
BRC 2845 (2) AD (Probable) 79 M W C VI 
BRC 2791 (3) AD (Atypical) 80 F W C VI 
BRC 2852 AD (High) 70 M W C VI 
BRC 2854 AD (High) 71 M W C V 
BRC 2858 (4) AD (High) 57 F W C VI 
BRC 2862 AD (High) 55 M W C VI 
BRC 2865 (5) AD (High) 89 M W C VI 
BRC 2846 AD with LATE 81 M W C VI 
BRC 2848 (2) AD with LATE 85 M W C V 
BRC 2857 AD with LATE 90 M W C V 
BRC 2874 AD with LATE 83 M W C V 
BRC 2884 (1) AD with LATE 72 F W C N/A 

Numbers in parentheses refer to the patient numbering convention used in figures. 637 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 18, 2024. ; https://doi.org/10.1101/2024.10.16.618765doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.16.618765
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

1CERAD: Consortium to Establish a Registry for Alzheimer’s Disease; 0: no histological evidence of 638 
Alzheimer’s disease; A: sparse evidence; C: indicative evidence [54]. 639 
2Braak stage: higher stages indicate more aggressive pathology [4]. 640 
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Supplemental Figures 676 

 677 

 678 
Figure S1: TMEM106B immunoreactivity probed with the TMEM239 antibody and co-localization 679 
analysis of TMEM106B inclusion with other cellular markers. (A) Representative immunofluorescence 680 
images of the motor cortices of (G4C2)2 (n = 6) and (G4C2)149 (n = 6) mice probed by the TMEM239 antibody. 681 
Scale bar = 20 µm. (B) Quantification of the percentage of cells with TMEM106B puncta probed by the 682 
TMEM239 antibody. Dots represent individual animals, bars represent means ± SEM. Unpaired Welch’s t 683 
test, p=0.0036. (C) Quantification of the average number of TMEM106B puncta probed by the TMEM239 684 
antibody. Mann-Whitney test, p=0.0043. (D) Representative images of TMEM106B perinuclear inclusion 685 
probed with the TMEM-Sigma antibody co-stained with an autophagy marker (p62), a stress granule marker 686 
(eukaryotic initiation factor 3η, eIF3η), and a lysosome marker (cathepsin D, CthD). A line crossing through 687 
the TMEM106B inclusion is shown on the left panel and the normalized intensity of TMEM106B and each 688 
marker along the line are plotted on the right panel. (E) Correlation analysis reveals that TMEM106B 689 
inclusions are not associated with the lysosome or autophagic bodies, but are positively correlated with the 690 
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presence of stress granules. Each data point stands for a pixel on a line crossing through TMEM106B 691 
inclusions.  692 

 693 

 694 
Figure S2: TMEM106B pathology is not observed in the occipital lobe of C9-ALS or ALS/FTD 695 
patients. (A) Representative immunofluorescence images of human occipital cortex co-stained for NeuN, 696 
TDP-43, and TMEM106B (Sigma antibody). The patients shown here are the same as shown in Figure 2. 697 
Scale bar = 20 µm. (B) Quantification of the percent of cells with cytoplasmic TMEM106B puncta shows 698 
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there is no difference between control and disease. For the C9-ALS and ALS/FTD bars, closed dots 699 
represent C9-ALS, and open diamonds represent C9-ALS/FTD. Data points represent averages from 700 
individual people (healthy control n = 3, C9-ALS and ALS/FTD n = 7), bars represent means ± SEM. A t-701 
test was used to compare groups. (C) Quantification of the TDP-43 nuclear to cytoplasmic (N/C) ratio in 702 
neurons shows there is no difference between control and disease. For the C9-ALS and ALS/FTD bars, 703 
closed dots represent C9-ALS, and open diamonds represent C9-ALS/FTD. Data points represent 704 
averages from individual people (healthy control n = 3, C9-ALS and ALS/FTD n = 7), bars represent means 705 
± SEM. A t-test was used to compare groups. 706 

 707 

 708 
Figure S3: TMEM106B localization in the motor cortex is consistent between control and transgenic 709 
SOD1 mice. (A) In addition to the midbrain and hindbrain, we observe SOD1 overexpression in the motor 710 
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cortex and hippocampus of SOD1 transgenic mice. We also observe positive staining for an antibody that 711 
recognizes misfolded SOD1. Images are representative from n = 8 non-transgenic (nTg) and 7 transgenic 712 
animals expressing the G93A SOD1 mutant protein. Scale bar = 25 µm. (B) High-resolution Airyscan 713 
microscopy taken of cells exhibiting vacuolization does not show strong TMEM106B signal near or around 714 
vacuoles. Scale bar = 25 µm. (C) As was observed in the midbrain and hindbrain, TMEM106B staining is 715 
indistinguishable in the motor cortex of transgenic and nTg animals. Images are representative from n = 8 716 
nTg and 7 transgenic animals. Scale bar = 10 µm. 717 

 718 

 719 
Figure S4: TMEM106B pathology is distinct from phosphorylated tau in PS19 mice in aged animals. 720 
(A) Representative images of CA1 and motor cortex with DAB staining against phosphorylate tau (AT8) in 721 
non-transgenic (nTg) animals and animals expressing the P301S mutant tau (PS19). Scale bar = 50 µm. 722 
(B) Immunofluorescence confocal microscopy of NeuN and AT8 in the dentate gyrus region of the 723 
hippocampus. Scale bar = 50 µm. Below, left: the integrated density signal for NeuN for each image. Below, 724 
right: the signal for each AT8 image was normalized to the signal of its corresponding NeuN channel. Each 725 
data point represents an individual image from n = 3 nTg animals and 5 PS19 animals. Bars represent 726 
means ± SEM. A student’s t-test was used to compare nTg and transgenic animals; **, p<0.007; ****, 727 
p<0.0001. (C) CA1 and motor cortex with DAB staining against TMEM106B. Scale bar = 20 µm. (D) 728 
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Immunofluorescence confocal microscopy of dentate gyrus hippocampal tissue for non-transgenic and 729 
PS19 animals. Scale bar = 25 µm. (E) Quantification of TMEM106B intensity normalized to NeuN intensity. 730 
Each data point represents an individual image from n = 3 nTg animals and 5 PS19 animals. Bars represent 731 
means ± SEM. A student’s t-test was used to compare nTg and PS19 animals. (F) Correlation analysis 732 
between the TMEM106B signal and AT8 staining; Pearson r value of 0.61, p = 0.27. Linear regression of 733 
the data yields a line with an R2 value of 0.38 with a slope that does not significantly deviate from zero. 734 
Data points represent individual images from n = 5 transgenic animals. (G) Images from the dentate gyrus 735 
two different PS19 animals showing instances of pTau aggregation (solid arrows) or TMEM106B-positive 736 
staining outside of the neuronal cell layer (empty arrows). Scale bar = 20 µm. 737 

 738 

 739 
Figure S5: TMEM106B forms extracellular inclusions in human Alzheimer’s disease. (A) 740 
Representative images of the pyramidal layer with DAB staining against TMEM106B in three neurologically 741 
healthy controls. Scale bar = 50 µm, Inset scale bars = 10 µm. (B) Representative images of the pyramidal 742 
layer with DAB staining against TMEM106B in three AD patients. Scale bar = 50 µm, Inset scale bars = 10 743 
µm. 744 

 745 
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