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Tuberculosis (TB), caused by respiratory infection with Mycobacterium tuberculosis,
remains a major global health threat. The only licensed TB vaccine, the one-hundred-
year-old Bacille Calmette-Guérin has variable efficacy and often provides poor protection
against adult pulmonary TB, the transmissible form of the disease. Thus, the lack of an
optimal TB vaccine is one of the key barriers to TB control. Recently, the development of
highly efficacious COVID-19 vaccines within one year accelerated the vaccine
development process in human use, with the notable example of mRNA vaccines and
adenovirus-vectored vaccines, and increased the public acceptance of the concept of the
controlled human challenge model. In the TB vaccine field, recent progress also facilitated
the deployment of an effective TB vaccine. In this review, we provide an update on the
current virus-vectored TB vaccine pipeline and summarize the latest findings that might
facilitate TB vaccine development. In detail, on the one hand, we provide a systematic
literature review of the virus-vectored TB vaccines are in clinical trials, and other promising
candidate vaccines at an earlier stage of development are being evaluated in preclinical
animal models. These research sharply increase the likelihood of finding a more effective
TB vaccine in the near future. On the other hand, we provide an update on the latest tools
and concept that facilitating TB vaccine research development. We propose that a pre-
requisite for successful development may be a better understanding of both the lung-
resident memory T cell-mediated mucosal immunity and the trained immunity of
phagocytic cells. Such knowledge could reveal novel targets and result in the innovative
vaccine designs that may be needed for a quantum leap forward in vaccine efficacy. We
also summarized the research on controlled human infection and ultra-low-dose aerosol
infection murine models, which may provide more realistic assessments of vaccine utility
at earlier stages. In addition, we believe that the success in the ongoing efforts to identify
correlates of protection would be a game-changer for streamlining the triage of multiple
next-generation TB vaccine candidates. Thus, with more advanced knowledge of TB
vaccine research, we remain hopeful that a more effective TB vaccine will eventually be
developed in the near future.
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1 INTRODUCTION

Among the top 10 leading causes of death worldwide and the
leading cause of death by a bacterial infection, tuberculosis (TB)
caused 1.5 million deaths in 2020 (1). According to the World
Health Organization (WHO), a quarter of the world population
is infected with Mycobacterium tuberculosis (Mtb), the cause of
TB (1). The Coronavirus Disease 2019 (COVID-19) pandemic
reduced access to TB diagnosis and treatment and led to an
increase in TB deaths in 2020, the first time during the past
decade (1). Ambitious targets for TB control have been set by
WHO. The “End TB Strategy” defined milestones and targets
that aim to reduce TB incidence by 90% and deaths by 95% by
2035 compared with 2015 (2). However, progress has been slow
and the 2020 milestone was far from reached (1). The lack of an
optimal TB vaccine is regarded as one of the key barriers for TB
control, thus, WHO timelines to control the global TB epidemic
require a vaccine that is more effective, particularly in
adolescents and adults. In this review, we focus on the history
of research and the developmental progress of virus-vectored TB
vaccines that are in clinical trials, those that are in pre-clinical
animal research, and the latest ancillary findings facilitating TB
vaccine research and development.
2 ONE-HUNDRED-YEAR-OLD BCG:
SUCCESSES AND FAILURES

Mycobacterium bovis Bacille Calmette-Guérin (BCG), a vaccine
based on attenuation of a bacterium naturally causing TB in
cattle, is the only licensed TB vaccine up to now. BCG was first
administered to the newborn infant of a woman with TB in
France in 1921, neither adverse effects nor disease developed in
the subsequent 5.5 years (3). In the next several years, thousands
of children in families with a history of TB received BCG at the
Pasteur Institute (4). In 1928, the intradermal route was found to
be more reliable compared with the oral route, and this route
continues to be used today (5). In the same year, the League of
Nations (the predecessor of the United Nations) declared BCG to
be safe for use. Although the “Lübeck disaster”, in which 72
newborn babies died from TB after BCG vaccination due to
contamination with a virulent strain of Mtb (6), hindered the
public acceptance of BCG for a long time, a resurgence of TB
during World War II led to widespread BCG inoculation and
public confidence in its safety was regained (7). In 1974, the
WHO created the “Expanded Programme on Immunization”, to
ensure that mothers and children have universal access to
routinely recommended neonatal vaccines, and this resulted in
more than 4 billion BCG vaccinations being administered to date
(8). The vaccine has probably been administered to more
humans than any other vaccine. Two-thirds of those countries
giving BCG vaccination are estimated to have more than 90%
coverage (9) and the vaccine is still the gold standard against
which new candidates are compared.

The widespread use of the BCG vaccine in infants continues,
primarily because it offers protection against the aggressive
Frontiers in Immunology | www.frontiersin.org 2
childhood forms of the disease: meningeal and miliary TB (10).
However, for pulmonary TB prevention in adults, clinical trials
have estimated its vaccine efficacy to range from 0% in south
India to 80% in the UK (11). There are many hypotheses to
explain this wide variation, including age at vaccination (12, 13),
exposure to environmental mycobacteria (14), gender (15), risk
of TB in the study population (16), etc. However, the proposed
causes of variation often remain speculative and the basis is likely
to be multifactorial.

The failure of TB control indicates that BCG is insufficient.
Strategies to improve TB vaccination mainly address one of two
approaches: optimization of the current BCG vaccine or
development of novel vaccines such as subunit, vectored, and
live attenuated vaccines. In the optimization of BCG we include
BCG re-vaccination, change of inoculation route, and
recombinant BCG construction. Although WHO does not
recommend BCG re-vaccination due to a lack of proven
efficacy of repeat doses for protection against TB, the most
recently completed clinical trials showed BCG re-vaccination
had an efficacy of 45.4% in primary Mtb infection prevention,
which was defined immunologically by QuantiFERON-TB Gold
In-tube assay conversion (17). However, the side effects of BCG
re-vaccination hinder its application in humans with immune
disorders. Although intravenous BCG immunization was
consigned to the history books, this approach was recently re-
evaluated in the non-human primate model of TB, in which nine
out of ten intravenous BCG-vaccinated macaques showed slight
or even no signs of TB disease postMtb infection (18). However,
safety concerns will impede application in humans. One of the
most promising TB vaccines may provide an alternative. The
genetically modified BCG-based vaccine VPM1002, in which the
gene encoding urease C was replaced by the listeriolysin
encoding gene from Listeria monocytogenes, showed the
potential to replace the current BCG vaccine and is now
undergoing three phase III clinical efficacy trials (19).

Besides the optimization of the current BCG vaccine, another
approach is to utilize novel TB vaccines as a booster of the BCG
vaccine, since most adults who acquire TB worldwide today were
BCG-vaccinated as neonates. In the past decades, several viral
vector-based vaccines and protein-adjuvant vaccines were
designed to enhance BCG-primed immune protection. In this
review, we focus on the research and development of viral vector-
based TB vaccines.
3 RECOMBINANT VIRUS-VECTORED
TB VACCINES

Viruses provide some of the most widely used vaccine vectors.
Recombinant virus-vectored vaccines are capable of inducing
robust immune responses by mimicking the processes of
pathogens invading the organism and resulting in the
formation of long-lasting immune memory. Basically, most
viral vaccine vectors have the following advantages: 1) they can
accommodate genes encoding large antigenic fragments; 2) they
have stable exogenous gene expression efficiency; 3) they can
June 2022 | Volume 13 | Article 895020
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induce high levels of both cellular and humoral immune
responses; 4) the immune responses induced by the vector
itself have the potential to augment the antigen-specific
immune memory to some extent; 5) they do not always
require the use of adjuvants; 6) they are easy to manipulate
and culture; 7) the use of attenuated or replication-deficient
viruses with a clear mechanism of infection provides a strong
safety profile; 8) strong immune memory can generally be
induced by a single immunization, and repeated vaccinations
might not be required (20–24). The major disadvantages of viral-
vectored vaccines includes: 1) the pre-existing neutralizing
antibodies against the vector might limiting its application in
humans; 2) the host-induced anti-vector immunity might limit
the booster vaccination strategies; 3) some viral vectors are not
appropriate for use in immunocompromised individuals.

Although it was well illustrated that Th1 CD4+ T cell
responses dominated anti-TB immune protection, Mtb can
survive intracellularly for a long time after primary infection,
the induction of immune responses that include high levels of
cytotoxic T lymphocyte is also crucial to the clearance of
intracellular Mtb (25–27). Cytotoxic T cells are prominent in
the immune response to viruses and viruses accordingly provide
one of the most widely used vector formats in the field of
TB vaccines.

3.1 Mechanisms of Immune Protection
Afforded by Virus-vectored Vaccines
The mechanisms of immune protection vary depending on the
nature of the induction stimulus. Overall, recombinant viral-
vectored vaccines carrying exogenous antigen fragments are able
to invade host cells by using intrinsic viral mechanisms and
undergo massive intracellular replication. The intracellular
products and those secreted extracellularly induce cellular and
humoral immune responses, respectively. The commonly-used
attenuated or replication-deficient viruses are rapidly cleared
after the host’s immune response is activated, while the antigen-
specific immune cells are gradually transformed into memory
cells that can remain for a long time. In addition, recombinant
viral-vectored vaccines are able to induce a strong co-stimulatory
molecular signaling and the formation of an inflammatory
microenvironment, which together act as signals 2 and 3 of the
T-cell/B-cell response pathways to enhance the host’s antigen-
specific adaptive immunity.

3.2 Brief Introduction of the Widely Used
Viral Vectors
The poxviruses are among the most widely studied viral vectors.
They constitute a group of double-stranded DNA viruses that is
divided into 2 subfamilies and 12 genera, among which,
Orthopoxvirus, Molluscipoxvirus, Parapoxvirus, and
Yatapoxvirus are known to infect humans (28, 29). Poxviruses
of different genera infect different animals to cause different
diseases and vaccinia virus, belonging to the genus
Orthopoxvirus, although not fully non-pathogenic in human,
has been a highly effective “live” vaccine against the smallpox
epidemics that once ravaged humans (30). For safety reasons,
Frontiers in Immunology | www.frontiersin.org 3
most studies have chosen to use replication-deficient versions of
poxviruses in vaccine vector development. The reduced
immunogenicity consequent upon reduced replication can be
offset by genetic modifications to knock-down molecules used by
the virus to attenuate immune responses and by expression of
immunostimulatory molecules in addition to the target antigens
(31, 32). The types of genes encoded to enhance immune
responses include: type I and type II interferons, genes
regulating cytokines and chemokines, apoptosis and
immunosuppression related molecules, antigen presentation
signaling pathway molecules, etc. (33–35) Notable among
poxvirus vaccine vectors are four strains of replication-
deficient poxviruses, including modified vaccinia virus Ankara
(MVA) (36), NYVAC derived from Copenhagen strain (37),
ALVAC modified from canary poxvirus (38), avian poxvirus
TROVAC (38), and another attenuated vaccinia strain, namely
Chinese Tiantan strain poxvirus (39). The recombinant vaccine
MVA85A, also known as AERAS-485, expresses Mtb
immunodominant antigen Ag85A and was the first new TB
vaccine to complete phase IIb clinical trials (40). It induced
strong immune responses among Th1 and Th17 CD4+ T cells, in
addition to moderate CD8+ T cell responses (41).

Adenovirus (Ad) is another widely used vaccine vector. About
50 human adenovirus (AdHu) serotypes have been identified, of
which AdHu5 and AdHu35 are the two most widely used
subtypes. Two human adenovirus-based recombinant vaccines
against TB, AdAg85A (also known as AdHu5Ag85A) and
AERAS-402 (also known as Crucell Ad35), in addition to
ChAdOx1.85A, based on a chimpanzee adenovirus vector, are
capable of inducing a strong CD8+ T-cell immune response in
addition to high levels of Th1-type CD4+ T-cell immune response.

Other viral vectors including influenza virus, cytomegalovirus
(CMV), Sendai virus (SeV), lentivirus, vesicular stomatitis virus
(VSV), have also been applied to TB vaccine studies. Although
these viruses infect cells by different mechanisms, most of them
can induce high levels of antigen-specific Th1 CD4+ and CD8+ T
cell immune responses as TB vaccine vectors. Among them,
SeV85AB, a recombinant SeV-vectored vaccine expressing
Ag85A and Ag85B, was the first viral-vectored TB vaccine
found able to induce high levels of lung tissue-resident
memory T cells (TRM)-mediated immune protection (42) and
provided a new research direction for TB vaccines.

3.3 Brief History of Research and
Development of Virus-vectored
TB Vaccines
The recombinant poxvirus-vectored vaccine MVA85A was the
first of the new TB vaccines to complete phase IIb clinical trials
(40), but there are several other recombinant viral-vectored
vaccines against TB in clinical and preclinical phases of
evaluation. Herein, we give a brief overview of the history and
the latest discoveries in the field.

3.3.1 MVA85A/AERAS-485
TheMVA85A vaccine, which expresses theMtb immunodominant
antigen Ag85A, was developed by the University of Oxford in 2001,
June 2022 | Volume 13 | Article 895020
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researchers found that intradermal (i.d.) or intramuscular (i.m.)
immunization with this vaccine was able to induce a high level of
antigen-specific immune response and protective immunity against
Mtb challenge by decreasing the bacterial loads in organs in mouse
models (43–45); subsequently, the vaccine-induced protection was
further validated in other animal models such as guinea pigs (46),
cattle (47) and rhesus monkeys (48). In the first phase I clinical
trial, published in 2004, the vaccine was inoculated i.d. and induced
a strong specific T-cell immune response in adults with or without
a BCG immunization history (49). In 2010, the immunogenicity
and safety of this i.d. vaccine were further confirmed in children
and adolescents (50). Two phase I clinical trials completed in 2012
and 2013, were conducted to optimize the immunization dose (51)
and route of administration (i.m. and i.d.) (52). During this period,
from 2009 to 2011, researchers recruited 2,797 BCG-immunized
infants between 4 and 6 months of age and i.d. administered either
MVA85A or placebo and followed them for 19 to 28 months to
complete the first phase IIb clinical trial (40). Although the safety of
the vaccine was strongly demonstrated, the vaccine only induced
weak antigen-specific immune responses and was not protective
against TB disease (40), similar with the results that MVA85A did
not reduce the bacterial burden of BCG-prime mice (53). Thus, the
first viral-vectored TB vaccine clinical trial was declared a failure. In
a proof-of-concept phase II trial, the number of immunization
times was increased to two shots in a population of HIV-infected
patients, but the efficacy, which was defined by QuantiFERON-TB
Gold In-Tube conversion, remained poor (54). Nonetheless,
researchers have not given up their efforts. A phase I clinical trial
study in 2014 reported validation of the safety of mucosal
immunization with MVA85A (55), and in 2019 a phase I clinical
trial showed that an aerosol prime-intradermal boost regime was
well-tolerated and induced potent antigen-specific mucosal and
systemic immune responses (56). Additionally, i.m. inoculation
was tested in a phase II clinical trial (NCT02178748) that indicated
that a change in the route of administration may be a way to
improve the vaccine’s protective efficacy. In 2021 a phase I trial
showed that MVA85A delivered by aerosol was safe in UK adults
with latent TB infection (57). Utility in a potential niche application
was indicated in a phase II clinical trial that showed MVA85A
vaccination in HIV-exposed newborns might be used to avoid the
potential risk of BCG disease in this population (58).

Pre-clinical studies had indicated that the vaccine might
work best as a booster in combination with other vaccines.
To test this clinically, the vaccine was combined with
the recombinant adenovirus-vectored vaccine AERAS-402 (59)
with ChAdOx1.85A (currently in a phase II trial, NCT03681860)
(60), with the recombinant avian poxvirus-vectored vaccine
FP85A (61), or the protein adjuvant vaccine IMX313 (62), all
of which had all been validated in phase I clinical trials.

Besides MVA85A, the potential of several other MVA-based
recombinant TB vaccines has been indicated. For example, a
multiphasic vaccine expressing 14 antigens representative of the
three phases of TB infection (active, latent, and resuscitation)
was subcutaneously (s.c.) immunized and induced potent
multifunctional cell-mediated immunity in mice and rhesus
macaque models (63). A recombinant MVA expressing a-
Frontiers in Immunology | www.frontiersin.org 4
crystallin by using i.d. route enhanced BCG-induced protection
against Mtb infection in guinea pigs (64).

3.3.2 AdAg85A
Recombinant adenovirus vectors are widely used in the field of
TB vaccine research. At least three vaccines are currently moving
forward in clinical trials: AdAg85A based on AdHu5 (65, 66),
AERAS-402 based on AdHu35 (67–73), and ChAdOx1.85A (60)
based on a chimpanzee adenovirus vector, which would be
discussed in detail below.

Recombinant AdHu5 vectored vaccine AdAg85A, was
developed by McMaster University and published in 2004 (74).
Similar to the MVA85A vaccine study, the safety,
immunogenicity, and protective efficacy of the AdAg85A
vaccine by using the aerosol and i.m. route were validated in
animal models including mice (75–77), guinea pigs (78), cattle
(79), goats (80), and rhesus macaques (81) before entering
clinical trials. In the first clinical trial in 2013, AdAg85A was
i.m. administrated in BCG-naïve and previously BCG-
immunized healthy adults, and strong antigen-specific CD4+

and CD8+ T cell responses were observed (65). Most recently, in
2022, a phase Ib trial showed that aerosol delivery of AdAg85A
was also safe and well-tolerated in previously BCG-vaccinated
adults (66). A potential disadvantage of the vaccine is that
substantial levels of anti-AdHu5 antibodies tend to be
preexisting in humans, although the inventors of the vaccine
demonstrated that AdHu5 antibodies do not affect the safety and
immunogenicity of AdAg85A (65). However, a clinical trial of an
AdHu5-based HIV vaccine was terminated due to the discovery
that vaccinated subjects who had high titers of antibodies against
adenovirus tended to have a higher incidence of HIV acquisition
than those without anti-adenovirus antibodies in 2007 (82).
Consequently, the role of preexisting vector-specific antibody
responses remains controversial and there is currently an
international preference for the use of AdHu35, the antibodies
of which are largely absent from human serum. In addition,
considering low sero-reactivity was observed in chimpanzee- and
simian-derived adenoviral vectors compared with human-
derived vectors in humans (83), several recombinant
chimpanzee adenovirus-vectored TB vaccines were
constructed, which will be described below. However, through
a mouse model, the magnitude, quality and protective capacity of
CD8+ T cells elicited using simian immunodeficiency virus Gag
as the target antigen were compared, AdHu5 and AdCh3 vectors
conferred the best efficacy (83, 84). These studies added a layer of
complexity to balancing safety and vaccine efficacy in choosing
adenovirus vectors.

3.3.3 AERAS-402/Crucell Ad35
The AdHu35-based recombinant vaccine, AERAS-402,
expressing Ag85A, Ag85B, and TB10.4 was developed jointly
by Crucell and the Aeras organization. In 2007, it was shown that
this vaccine was i.m. immunized and was able to induce a strong
T-cell immune response and a strong immune-protective effect
against Mtb in a mouse model (85). The protection afforded by
AERAS-402 singly or in combination with other vaccines was
June 2022 | Volume 13 | Article 895020
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also validated in rhesus macaques (86–88). In 2010, the i.m.
vaccine’s safety and immunogenicity were confirmed in healthy
adults in a phase I clinical trial (67). In subsequent years, through
several phase I and phase II clinical trials, researchers have
expanded the potential target population to include healthy
infants previously vaccinated with BCG (68), healthy adults
immunized with BCG (69), adults with active or previous TB
(70), latently infected populations (71), and HIV-infected
patients (72). A two-dose i.m. regimen was also evaluated in
BCG-vaccinated adults in phase I clinical trial in 2021 (73).
Several AERAS-402-based phase II clinical trials targeting
different populations, including adults treated for pulmonary
TB, HIV-infected/BCG-vaccinated adults, and BCG-vaccinated
healthy infants, have been completed (NCT02414828,
NCT01017536, and NCT01198366). The safety of i.m. AERAS-
402 was confirmed through these trials.

3.3.4 ChAdOx1.85A
To minimize any effects of preexisting anti-adenovirus
antibodies in humans, researchers have developed the
recombinant replication-deficient chimpanzee adenovirus-
vectored vaccine ChAdOx1.85A. Its i.m. immunization is
capable of inducing high levels of cellular immune response in
BCG-primed mice and showing protective efficacy against Mtb
infection in combination with MVA85A (89, 90). In 2020, a
phase I clinical trial demonstrated that a ChAdOx1.85A i.m.-
MVA85A i.m. vaccination regimen was well tolerated and
immunogenic in healthy UK adults (60). As mentioned above,
this vaccine strategy is now in a phase II clinical
trial (NCT03681860).

Intranasally (i.n.) immunization with a recombinant
ChAdOx1 vaccine expressing Rv1039c (PPE15) instead of
Ag85A conferred better protection than ChAdOx1.85A in a
murine model, meriting further evaluation in clinical trials
(91). Similarly, a recombinant chimpanzee adenovirus-68-
vectored vaccine expressing Ag85A, namely AdCh68Ag85A,
was i.n. immunized and found to be superior to AdAg85A in
the induction of T-cell responses and protection against Mtb
infection in mice that had previously been exposed to human
adenovirus (92). In addition, there is evidence that this vaccine
could be used as a therapeutic vaccine: Immunotherapy with a
single-dose respiratory mucosal but not parenteral application of
AdCh68Ag85A as an adjunct to antibiotic therapy accelerated
pulmonaryMtb clearance, limited lung pathology, and restricted
disease in mice (93).

3.3.5 TB/FLU-04L
In 2006, a recombinant influenza virus-vectored vaccine
expressing ESAT-6 was shown to be able to induce a high level
of Th1 CD4+ T cell immune response with two i.n. injections in a
mouse model (94). The protective efficacy of the vaccine was
confirmed in mice and guinea pigs (95). This vaccine, named TB/
FLU-04L, was aerosol immunized and completed a phase I
clinical trial in 2015, but no study results have been published
(NCT02501421). According to WHO reports in 2017 (96), a
phase IIa clinical trial is being conducted in patients with latent
TB infection. Besides TB/FLU-04L, another recombinant
Frontiers in Immunology | www.frontiersin.org 5
influenza virus-based vaccine expressing the dominant peptides
of Ag85B was constructed, and robust TRM responses and
protective efficacy were observed in a murine model by using
i.n. route (97).

3.3.6 MCMV85A and RhCMV/TB
In 2014, a recombinant murine CMV-vectored vaccine
MCMV85A expressing Ag85A was developed by the
University of Oxford. This vaccine was inoculated
intraperitoneal (i.p.) or intravascular (i.v.), and activated NK
cells to provide early nonspecific protection against Mtb
infection, which was further potentiated by a weak 85A-
specific T cell response in a murine model (98). In 2018, a
rhesus monkey CMV vector vaccine RhCMV/TB was described
that encoded nine proteins from three phases of Mtb infection:
acute (Ag85A, Ag85B, ESAT-6), latency (Rv1733, Rv2626,
Rv3407), and resuscitation (RpfA, RpfC, RpfD). Two doses of
s.c. RhCMV/TB induced high levels of specific CD4+ and CD8+

T cell immune responses, and provided long-lasting vaccine-
mediated immune control after highly pathogenic Mtb
strains challenge one year after immunization in rhesus
macaques, in which 41% animals showed no TB disease
evaluated by computed tomography scans or necropsy (99).
However, although human CMV infection only causes
asymptomatic infection in the immunocompetent population,
CMV is highly species-specific and systemic disease with severe
complications and high mortality rate might be occurred in
immunocompromised individuals (100, 101). Moreover,
epidemiological studies have identified the increased human
CMV infection is an important risk factor for active TB disease
and latent TB infection, which was found to be associated with
the magnitude of IgG, enhanced CMV-driven T-cell activation,
systemic inflammation, and immune dysregulation (102, 103).
Thus, more animal and clinical studies are warranted to better
understand CMV-vectored immunity, to ensure its safe
translation to humans, especially in active TB patients and
individuals with latent TB infection.

3.3.7 SeV85AB
SeV85AB, a recombinant SeV-vectored vaccine, is the first
application of a SeV vector to the TB vaccine development and
it expresses Mtb immunodominant antigens Ag85A and Ag85B
and inherently has a high safety profile. Being based upon an
RNA virus, the SeV vector has no risk of integration with the
human genome. Furthermore, in contrast to respiratory
pathogens such as the influenza virus, the SeV does not cause
human disease and there are very low antibody levels present. In
2017, using a mouse model, we validated its immunogenicity and
protective efficacy against Mtb infection in mice and
demonstrated the establishment of a high level of TRM-
mediated immune response in mucosal tissues by using i.n.
route (42). Such memory cells can establish the first line of
defense in the lung against Mtb invasion in the early phase of
infection. In contrast, BCG vaccination usually produces a
response of memory T cells in the circulatory system only after
several weeks of infection. Therefore, this vaccine may be used to
optimize the systemic BCG-induced immune protection against
June 2022 | Volume 13 | Article 895020
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Mtb infection (104). This immunization strategy was further
optimized in combination with recombinant DNA vaccines for
improved protective efficacy (105).

3.3.8 Other Viral-vectored Vaccines
Several other promising viral vectors are being explored as
candidates for TB vaccine construction. In 2008, Hamamatsu
University School of Medicine constructed a lentiviral vector
vaccine expressing MPT51 of Mtb. This construct enhanced
the antigen presentation efficiency of dendritic cells, and
intratracheal (i.t.) immunization of mice was able to induce a
CD8+ T-cell immune response at the lung site and protection
against Mtb infection (106). Recently, several other lentiviral
vector-based TB vaccines have been developed, but they are
at early animal model phases of investigation (107–110).
Lentiviral vectors have been successfully used in the clinical
trials of patients with advanced leukemia and other gene
immunotherapy research (111, 112). In most of these TB
vaccine studies described above, self-inactivation or non-
integrating vector systems were chosen to get safe vaccines.

In 2008, researchers at McMaster University constructed a
recombinant VSV-vectored vaccine VSVAg85A that expressed
Ag85A and was able to induce an antigen-specific immune
response and protection against Mtb infection but only for a
short duration by using i.n. or i.m. routes. Combining the
vaccination with AdAg85A in a prime-boost immunization
strategy improved the protective efficacy (113); VSV-based
boosting resulted in inferior protection compared with
adenovirus-based boosting, and this was associated with
differentially imprinted innate phagocytes at the mucosal site
of immunization (114). Besides VSVAg85A, another VSV-based
TB vaccine expressing Rv2660c, Rv3615c, and Mtb10.4 has
generated antigen-specific T cell responses and immune
protection in a BCG challenge murine model by using i.n.
route (115, 116).

The use of a combination of vectors expressing the same
antigen in order to enhance responses is a recurring theme. As
mentioned in Section 3.3.1 above, a recombinant fowlpox virus
FP9 that expressed Ag85A (FP9.Ag85A or FP85A) and boosted
BCG/MVA85A-induced protective immunity in guinea pigs (46)
also boosted immune responses to MVA85A in a clinical phase I
trial in 2013 (61).

In 2014, a recombinant human parainfluenza type 2 virus-
vectored vaccine expressing Ag85B, rhPIV2-Ag85B, was
developed by the National Institute for Biomedical Innovation
in Japan (117). This i.n. vaccine was able to induce a T-cell
immune response and immune protection in a murine model
that was subsequently found to be associated with induction of
bronchus-associated lymphoid tissue (118). Similarly, a
parainfluenza virus 5 vector expressing Ag85A and Ag85B has
also shown immunogenicity and protective efficacy in a murine
infection model by using i.n. route (119).

In 2020, different prime-boost strategies using the
chimpanzee Ad3 (ChAd3) and MVA vectors expressing
Ag85B, ESAT-6, Rv1733, Rv2626, and RpfD, were evaluated
for immunogenicity and protective efficacy in highly susceptible
rhesus macaques through different inoculation routes such as
Frontiers in Immunology | www.frontiersin.org 6
i.m., i.d., and aerosol. However, although specific immune
responses were induced, none of these vaccine strategies
conferred a protective effect compared to non-vaccinated
controls (120).

To be noted , mos t o f these s tud ie s used Mtb
immunodominant antigens such as Ag85A, Ag85B, TB10.4,
ESAT-6, etc., which were chosen based on their expression
levels in Mtb and IFN-g-inducing ability. However, the failure
of MVA85A in its first phase IIb clinical trial suggest other
antigens should be selected to construct a more effective vaccine.
Recently, an unbiased immunopeptidomics pipeline for
identifying novel antigens presented by MHC was developed,
in which MHC I and MHC II complexes from BCG-infected
THP-1 macrophages were immunoprecipitated and analyzed by
liquid chromatography tandem mass spectrometry (121). Thus,
identifying more efficient antigens by novel assays is also
important in virus-vectored TB vaccine development.

Table 1 summarizes the viral vectored TB vaccine candidates
that are currently in clinical trials, and Table 2 summarizes the
candidates that are currently in preclinical animal model phases.
These studies of novel virus-vectored TB vaccines have been
successful in developing a number of candidates that have
entered the TB vaccine pipeline (https://www.tbvi.eu/what-we-
do/pipeline-of-vaccines/) and are at different stages of clinical
trials in humans. This may lead to newly licensed vaccines
capable of replacing/supplementing the current BCG vaccine
and even conferring therapeutic benefit in patients with
active/latent TB.
4 LATEST FINDINGS THAT FACILITATE TB
VACCINE RESEARCH DEVELOPMENT

Over the past two decades, huge progress has been achieved in
the field of TB vaccine development and more than a dozen
candidate vaccines including viral-vectored vaccines are in
clinical trials now. However, several knowledge gaps and
challenges to the successful development of a universally
effective TB vaccine remain. Here we summarize the latest
findings facilitating TB vaccine research development.

4.1 Controlled Human Infection Model
The immunogenicity and protective efficacy of the TB vaccines
that have entered clinical trials were first repeatedly validated in
animal models such as mice, guinea pigs, and rhesus macaques
before trial commencement. Validation in these animal models is
not only time-consuming and costly but there is also a high
technical barrier in undertaking Mtb challenge experiments in
animals (requiring prolonged use of ABSL-3 level laboratories).
In addition, the failure of the phase IIb clinical trial of the
MVA85A vaccine showed that the currently available animal
models do not predict human immunity well. Moreover, in the
clinical trials evaluating TB vaccines, the assessment of protective
efficacy relies on natural exposure to Mtb infection and requires
enrollment and follow-up of tens of thousands of people for
multiple years. The limited availability of suitable human
June 2022 | Volume 13 | Article 895020
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populations in which this can be undertaken and the enormous
cost of clinical trials further hinder the progress of TB
vaccine development.

In recent years, the concept of a controlled human infection
model has come under consideration to facilitate vaccine research
progress. In this model, healthy volunteers are vaccinated with
candidate vaccines and then are deliberately infected with the
corresponding pathogen. The efficacy of the candidate vaccine is
then assessed by either presence or absence of established infection
or by disease progress. Recently, Vaxchora, a Cholera vaccine, was
approved based on a human challenge study (122). In the field of
TB, deliberately infecting healthy volunteers with virulent Mtb
would not be ethical, since there is currently no method of anti-
TB treatment that could reliably completely eradicate infection. As
an alternative, Helen McShane, a co-inventor of MVA85A,
described in 2012 a model in which humans are challenged with
BCG (123). In this model, BCG-naive and BCG-vaccinated healthy
volunteers in the UK were challenged with intradermal BCG, and
the bacterial load was quantified from punch biopsies by PCR and
bacterial culture (123). This model was used to assess the protective
Frontiers in Immunology | www.frontiersin.org 7
effect of MVA85A on BCG-vaccinated healthy adults (124), the data
support the contention that this intradermal BCG challenge model
is able to detect differences in anti-mycobacterial immunity induced
by vaccination. In addition, an aerosol BCG challenge study is now
underway in healthy UK adults to mimic the natural route of
exposure (NCT02709278, NCT03912207).

Recently, Sarah Fortune and Eric Rubin described the
development of an Mtb human challenge model, in which,
Mtb’s growth is controlled by dependence on the availability of
selection compounds; the bacteria are no longer viable once
those compounds are removed. The study has not yet been
published but was described in a commentary paper (125). This
human Mtb infection model could substantially reduce the
numbers of participants, study duration, and economic costs in
TB vaccine studies.

4.2 Ultra-Low-Dose Aerosol Murine and
Non-human Primate Infection Models
In general, in pre-clinical TB vaccine efficacy evaluation, animals
are always infected using a single large bolus of Mtb that is
TABLE 1 | Viral vectored TB vaccine candidates that are currently in clinical trials.

Candidate
vaccines

Vectors Antigens Populations/animals Clinical trial
phases

Clinical
trialstatus

Sponsors/inventors References/clinical trial
registry numbers

MVA85A i.d. MVA Ag85A BCG-vaccinated healthy
infants

IIb Completed Aeras, University of Oxford 37/NCT00953927

MVA85A i.d. MVA Ag85A Adults infected with HIV-
1

II Completed Aeras, University of Oxford 50/NCT01151189

MVA85A i.m. MVA Ag85A BCG-vaccinated healthy
adolescents

II Completed University of Oxford NCT02178748

ChAdOx1.85A i.m.
-MVA85A i.m.

ChAdOx1/
MVA

Ag85A Healthy adults and
adolescents

II Active, not
recruiting

University of Oxford NCT03681860

AERAS-402 i.m. AdHu35 Ag85A,
Ag85B,
TB10.4

Adults treated for
pulmonary TB

II Completed Aeras, Crucell NCT02414828

AERAS-402 i.m. AdHu35 Ag85A,
Ag85B,
TB10.4

HIV-infected, BCG-
vaccinated adults

II Completed Aeras, Crucell NCT01017536

AERAS-402 i.m. AdHu35 Ag85A,
Ag85B,
TB10.4

BCG-vaccinated healthy
infants

II Completed Aeras, Crucell NCT01198366

TB/FLU-04L aerosol FLU-04L ESAT-6 BCG-vaccinated healthy
adults

IIa Unknown Research Institute for
Biological Safety Problems

NCT02501421 and
unkown

AdAg85A aerosol AdHu5 Ag85A BCG-vaccinated healthy
adults

Ib Completed McMaster University 70/NCT02337270

AdAg85A i.m. AdHu5 Ag85A BCG-naïve and
-vaccinated healthy
adults

I Terminated McMaster University 69/NCT00800670

MVA85A aerosol MVA Ag85A BCG-vaccinated healthy
adults

I Completed University of Oxford 51/NCT01497769

MVA85A aerosol-
MVA85A i.d.

MVA Ag85A BCG-vaccinated healthy
adults

I Completed University of Oxford 52/NCT01954563

MVA85A aerosol MVA Ag85A Healthy adults with latent
TB infection

I Completed University of Oxford,
University of Birmingham

53/NCT02532036

AERAS-402 i.m.-
MVA85A i.d.

AdHu35/
MVA

Ag85A BCG-vaccinated healthy
adults

I Completed University of Oxford, Aeras,
Crucell

55/NCT01683773

MVA85A i.d.-FP85A
i.d.

MVA/FP9 Ag85A BCG-vaccinated healthy
adults

I Completed University of Oxford 57/NCT00653770

MVA85A i.d.-
IMX313 i.d.

MVA/
nanoparticle

Ag85A BCG-vaccinated healthy
adults

I Completed University of Oxford 58/NCT01879163
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delivered to the lungs by intratracheal or aerosol installation.
However, in natural infection most people are infected by
repeated inhalation of low doses. In animal models, the
evidence for the efficacy of a TB vaccine is usually accepted as
significant by the demonstration of 0.5-1 log10 lower numbers of
Mtb in vaccinated compared to control animals at some point
after challenge infection. A wide range of experimental and cost
constraints dictate that the demonstration of larger and more
Frontiers in Immunology | www.frontiersin.org 8
meaningful effects with smaller infection challenges is difficult to
achieve. Consequently, vaccine development often moves
forward on the basis of modest vaccine impact compared to
the potency required in human clinical efficacy testing, in which
at least a 60% improvement in efficacy in prevention of the
disease compared to BCG alone is required (126). These
divergences between laboratory models and clinical scenarios
hinder TB vaccine development.
TABLE 2 | Viral vectored TB vaccine candidates that are currently in preclinical animal model phases.

Candidate vaccines Vectors Antigens Animals Protective
efficacya

Route/dose
of Mtb

challenge

Sponsors/
inventors

References

RhCMV/TB s.c. RhCMV Ag85A, Ag85B, ESAT-6, Rv1733, Rv2626,
Rv3407, RpfA, RpfC, RpfD

Rhesus
macaques

~2b i.b., 25/10
CFU

Oregon Health and
Science University

(99)

MVA multiphasic s.c. MVA RpfB, RpfD, Ag85B, TB10.4, ESAT-6, Rv2029,
Rv2626, Rv1733, Rv0111, Rv0569, Rv1813,
Rv3407, Rv3478, Rv1807

Rhesus
macaques

N/A N/A Transgene,
Advanced
BioScience
Laboratories

(63)

ChAd3-5Ag aerosol/i.m.
prime, MVA-5Ag
aerosol/i.d. boost

ChAd3-
MVA

Ag85B, ESAT-6, Rv1733, Rv2626, and RpfD Rhesus
macaques

NS i.b., ~15
CFU

Biomedical Primate
Research Center

(120)

rMVA.acr i.d. MVA a-crystallin Guinea
pigs

1.27c Aerosol, 5-
10 CFU

University of Delhi
South Campus

(64)

SeV85AB i.n. SeV Ag85A, Ag85B Mice ~0.8 Aerosol,
~100 CFU

Shanghai Public
Health Clinical
Center, ID Pharma

(42, 104,
105)

ChAdOx1.Rv1039c i.n. ChAdOx1 Rv1039c Mice ~1 Aerosol, 50-
100 CFU

University of Oxford (91)

AdCh68Ag85A i.n. AdCh68 Ag85A Mice ~0.7 Aerosol,
~100 CFU

McMaster University (92, 93)

PR8.p25 i.n. H1N1
PR8

Ag85B Mice ~0.5 Aerosol,
~100 CFU

The University of
Sydney

(97)

MCMV85A i.v. MCMV Ag85A Mice ~0.6 i.n., ~200
CFU

University of Oxford,
Ludwig Maximilians
University

(98)

MPT51 lentivirus i.t. Lentivirus MPT51 Mice ~1 i.t., 1.2×104

CFU
Hamamatsu
University School of
Medicine

(106)

LAR f.p. Lentivirus Ag85B, Rv3425 Mice ~1c i.v., 1.2×106

CFU
Fudan University (107)

LV vF/85A s.c./i.n. Lentivirus Ag85A Mice NS i.n., 5×106

CFUd
University College
London

(108)

A3-Len f.p. Lentivirus Ag85B, Rv3425 Mice ~0.3 i.v., 6.8×105

CFU
Fudan University,
Institute Pasteur of
Shanghai

(109)

LV-AEG/SVGmu f.p. Lentivirus Ag85A, ESAT-6 Mice N/A N/A Pasteur Institute of
Iran

(110)

VSVAg85A i.n./i.m. VSV Ag85A Mice ~0.6/0.1 i.n., ~100
CFU

McMaster University (113, 114)

VSV-846 i.n. VSV Rv2660c, Rv3615c, Mtb10.4 Mice ~1.5 i.n., 1×107

CFUd
Soochow University (115, 116)

rhPIV2-Ag85B i.n. hPIV2 Ag85B Mice ~1.9 Aerosol, ~50
CFU

National Institute for
Biomedical
Innovation

(117, 118)

PIV5-85A/PIV5-85B i.n. hPIV5 Ag85A/Ag85B Mice ~1.2/0.4 Aerosol, 50-
100 CFU

University of Georgia
College of Veterinary
Medicine

(119)
June
 2022 | Volume 13 | A
aBacterial load log reduction compared with vector-immunized/non-immunized animals in the lung.
bLog reduction in the density of culturable Mtb (CFU/g) in all lung-draining lymph nodes.
cBacterial load log reduction of BCG prime-candidate vaccine boost group compared with BCG immunization group.
dBCG infection.
f.p., foot pad; i.b., intrabronchial; i.d, intradermal; i.m., intramuscular; i.n., intranasal; i.p., intraperitoneal; i.t., intratracheal; i.v., intravascular; s.c., subcutaneous; N/A, not available; NS, not
significant.
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Optimization of Mtb challenge doses in pre-clinical TB
vaccine evaluation was undertaken in non-human primate
models. Recent studies tended to use a lower dose than prior
vaccine studies. For instance, in 2018, in the RhCMV/TB vaccine
study, the monkeys received 10 or 25 bacteria (99). In 2019, a
repeated limiting-dose challenge model used an average of 1.3
bacteria implanted weekly for 8 consecutive weeks by
endobronchial installation (127). In 2020, in the BCG
immunization route optimization study, the monkeys were
challenged by bronchoscope with 4-36 bacteria (18). These
low-dose-infection non-human primate models better
mimicked the natural course of TB infection in humans and
al lowed invest igators to observe vacc ine-mediated
sterilizing immunity.

In 2021, a model of ultra-low-dose aerosol infection in mice
was established, in which infection was initiated by only 1-3
founding bacteria, instead of the conventional ~100 CFU dose.
As in human TB, highly heterogeneous bacterial burdens,
immune responses, and disease manifestations were observed
in this model (128). In addition, the well-circumscribed
granulomas shared features with human granulomas. Thus,
this ultra-low dose infection murine model more closely
replicates human disease. It is also much cheaper and easier to
handle than the low-dose non-human primate models, thus, it
might faci l i tate precl inical test ing of vaccine and
immunotherapeutic candidates and act as a gatekeeper to
determine which vaccines show promise and warrant
further testing.

4.3 TRM-Mediated Anti-TB
Immune Protection
TRM represents a distinct subset of memory T cells that was
found in the past decade. Unlike other memory T cells such as
central memory and effector memory T cells, TRM cells colonize
local tissues infected by pathogens and remain there for a long
time after the pathogen has been eliminated without
participating in blood circulation (129). They have been
demonstrated at sites that include the intestines, skin,
urogenital tract, and lung mucosa (130–133). When the
pathogen invades again, TRM cells immediately sense and
initiate immune responses so that the pathogen can be
controlled or be eliminated at the early stage of infection. This
process does not depend on memory cells in the peripheral
circulation and is in the first line of defense of the body as an
adaptive immune response to pathogen infection (134). In 2014,
Daniel L. Barber’s group reported for the first time the role of
lung TRM in anti-TB infection in a murine model. The Mtb-
specific CD4+ T cells in lung tissues could be divided into two
populations, namely, a subpopulation of TRM colonizing the lung
parenchyma and other memory cell subsets circulating in the
vasculature; the former were identified with molecular markers
as KLRG1-CXCR3+ and the latter as KLRG1+CX3CR1+ (135).
The adoptive transfer of lung Mtb-specific TRM between mice
resulted in potent immune protection (135–137). Based on these
observations, our investigation of the properties of circulating
CD4+ T cells in patients with active TB led us to suggest that
Frontiers in Immunology | www.frontiersin.org 9
inhibition of KLRG1+ expression through the incorporation of a
specific inhibitor of the Akt signaling pathway in a vaccine could
enhance the protective responses in immunotherapeutic and
perhaps prophylactic vaccination regimens (138).

In 2016, Stefan H. E. Kaufmann’s group reported for the first
time TRM-mediated immune protection against TB infection,
which was induced by mucosal delivery of BCG (139) and we
reported that SeV85AB induced high levels of lung CD8+ TRM by
using a comprehensive intravascular staining method (42). In the
same year, several TB vaccines were also reported to be able to
induce TRM (140–142). In fact, as early as 2010, researchers had
found that treatment with FTY720 (an immunosuppressant that
blocks memory cells in circulation (143)) partially counteracted
the immune protection induced by the BCG vaccine (144),
indirectly demonstrating that BCG possesses the ability to
induce a certain level of TRM-mediated immune protection. In
2020, by using an intravascular staining method in non-human
primates, intravenous BCG was shown to induce higher levels of
lung parenchymal CD4+ T cells compared with intradermal
vaccination, and this was associated with sterilizing immunity
against Mtb challenge (18), indicating that vaccine-induced TRM

also conferred Mtb resistance in this model.
By mimicking the route of infection in vaccination, a mucosal

or intravenous vaccination might be an optimal vaccination
strategy, targeting the induction of immune responses at the
point of entry of the bacteria. However, the role of TRM in TB
protection awaits further experimental confirmation; a better
understanding of vaccine-induced lung TRM would facilitate
novel TRM-targeting vaccine designs.

4.4 Role of Trained Immunity in TB
Vaccine Development
Traditionally, vaccine development is mainly focused on the
induction of the adaptive immune response that elicits antigen-
specific long-term immune memory against infection. However,
recently it has been shown that innate immunity also plays an
important role in immune memory against homologous or even
heterologous challenges (145, 146). Trained immunity, a de facto
innate immune memory, has been defined as a long-term
functional reprogramming of the innate immune cells that is
evoked by endogenous or exogenous insults, with the cells then
returning to a non-activated state and showing altered
inflammatory responses against a second challenge (147, 148).

In 2020, a randomized clinical trial of BCG vaccination in the
elderly showed immune protection against heterologous
infections and improved survival (149). In 2021, another
investigator-blind randomized controlled trial showed that
BCG vaccination at birth significantly reduced all-cause
infectious disease morbidity during the neonatal period (150).
Trained immunity was proposed to be implicated in such BCG-
induced heterologous protection. The first report of BCG-
induced trained immunity showed that BCG vaccination in
healthy volunteers enhanced the release of monocyte-derived
cytokines in response to unrelated bacterial and fungal
pathogens, and induced lymphocyte–independent protection of
immunodeficiency SCID mice against disseminated candidiasis
June 2022 | Volume 13 | Article 895020

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hu et al. Virus-vectored Tuberculosis Vaccines
(151). In a study of BCG-induced trained immunity against Mtb
infection in people, a global DNAmethylation analysis revealed a
stable and robust differential DNA methylation pattern among
the promoters of genes belonging to immune pathways in
“responders” to BCG vaccination but not in non-responders.
Responders were defined as having an enhanced macrophage
capacity to restrict the growth of Mtb associated with higher
levels of IL-1b production (152). In rhesus macaques, mucosal or
intravenous BCG inoculation conferred better protection against
Mtb infection and TB disease than standard intradermal
vaccination, and this was associated with the induction of
enhanced trained immunity (153). b-glucan-induced trained
immunity also afforded protection against Mtb infection (154).
In contrast to BCG, Mtb infection impairs the development of
protective trained immunity through impacting IFN-I signaling
(155). These data suggest that vaccines that are aimed at
enhancing trained immunity might give better protection
against Mtb infection.

In 2018, the inventors of AdAg85A reported that respiratory
infection with adenovirus could induce alveolar macrophages
(AMs) that had a long-lasting memory that was sustained by an
enhanced trained immunity phenotype in the local mucosal sites
(156). This study suggested that non-specific trained immunity
induced by the virus-vectored TB vaccine might contribute to the
immune protection against Mtb infection. In 2020, they used a
murine model of TB vaccination to investigate the role of AMs in
host defense against Mtb and showed that respiratory mucosal
immunization with AdA85A provided a type of trained
immunity capable of potent protection against Mtb in the early
stage of infection (157). In 2022, they further showed that
mucosal immunization is superior to intramuscular
immunization for the induction of trained immunity in AMs
in a murine model of the SARS-CoV-2 vaccine (158), further
adding to the evidence for the importance of local induction of
trained immunity.

Cumulatively, the evidence suggests that the deciding
battleground is the apoptosis of Mtb-infected macrophages in
early infection, which is mediated by AMs and is enhanced by
trained immunity. However, our understanding of the relative
contribution of trained immunity to viral-vectored vaccine
induction of T cell-mediated immune protection against TB
remains limited. In addition, it remains to be answered that
whether the anti-TB immune protection induced by BCG-prime-
viral vector boost strategy is associated with the trained
immunity, and the effective of live viral vector boost on innate
immune training by BCG prime. Unraveling the elaborate
molecular mechanisms of trained immunity will be critical for
devising novel approaches to optimize the exploitation of trained
immunity by TB vaccines.

4.5 Lack of Validated Immune Correlates
of Protection by TB Vaccines
COPs are defined as laboratory biomarkers that are associated
with protection from clinical disease. In particular, vaccine-
inducible COPs are expected to be transformative in
developing novel vaccines as they will de-risk the selection of
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candidate vaccines for human efficacy studies at an early stage.
They might also substantially reduce the costs of large-scale
clinical trials by helping to tailor the selection of participants
being enrolled and by measuring vaccine immunogenicity
and potential efficacy as a supplement, or even sometimes
an alternative, to assessments of disease burden (159).
Once validated in efficacy trials, COPs could potentially
facilitate the development and licensure of vaccines. The
absence of reliable parameters that could be used as COPs for
TB vaccines represents one of the greatest challenges in TB
vaccine development.

The complexities ofMtb infection create challenges in finding
predictive markers of protective efficacy. The Th1 cytokines IFN-
g, IL-2, TNF-a, the Th17 cytokine IL-17, and other cytokines are
active in the immune response against Mtb and are used as
biomarkers to determine the antigen-specific T cell responses in
TB vaccine evaluation research. However, studies have found
that IFN-g accounted for only about 30% of the CD4+ T cell-
mediated immune protection against Mtb infection; and its
overexpression even accelerated death in infected mice (137).
More recently, close contacts of active TB patients who were
persistently negative by IFN-g release assay and tuberculin skin
tests were defined as “resisters” of Mtb (160) and in 2019, a
cohort study showed that “resisters” possess IgM and class-
switched IgG antibody responses and non-IFN-g T cell
responses to Mtb-specific proteins (161), challenging the
rationality of focus on assessing IFN-g-based immunogenicity
in TB vaccine design. In 2020, we found that T-cell activation
status marker CD69 is associated with Mtb infection and may
have the potential to distinguish latent TB infection (positive
IFN-g responses) and “resisters” (negative IFN-g responses)
(162). Based on these and similar studies, there is an urgent
need to find novel molecular markers that are more correlated
with immunogenicity/protective efficacy to be able to more
accurately predict the protective efficacy of vaccines and to
accelerate vaccine evaluation.

As mentioned above, TRM showed a potential for application
among novel COPs in TB vaccine research. However, validation
of vaccine-induced COPs is possible only when successful
placebo-controlled efficacy trials become available. Only then
can compelling comparisons be made. In 2019, a phase IIb
clinical trial of the subunit TB vaccine M72/AS01E showed
49.7% efficacy against progression to TB compared with
placebo control. This is the first novel TB vaccine to almost
reach 50% protection in the past century (163). These vaccine
cohorts offered an opportunity to identify COPs of vaccine-
induced immune protection against Mtb infection and some
strategies are in place. Bill & Melinda Gates Medical Research
Institute, vaccine manufacturers, sponsors of clinical trials, and
trial investigators have launched an international “TB Immune
Correlate Program” consortium to identify immunological COPs
for TB. The first priority is informed by existing knowledge and
recent findings from animal models and clinical studies,
including the magnitude of mycobacteria-specific Th1/Th17
CD4 T cell responses, magnitude/subclass/avidity of
mycobacteria-specific mucosal IgA or IgG antibody responses,
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Fc-mediated, functional antibody activities, and trained
immunity (27). However, the relatively small number of
participants that reached clinical endpoints in the M72/AS01E
clinical trial might restrict the statistical power of COPs
discovery. Thus, larger clinical trials or the human infection
model study are needed to validate the COPs that might be
identified in the ongoing efforts.
5 CONCLUSION

Identified at the end of 2019, COVID-19 became a global public
health threat within 3 months, it spread over the globe so rapidly
that it was declared to be a “pandemic” by the WHO in March,
2020. Vaccinologists worked on the challenge immediately,
leading to the development and deployment of novel vaccines
within one year. Up to February of 2022, 144 and 195 COVID-19
vaccine candidates based on diverse platform technologies are
being evaluated in clinical and preclinical stages, respectively,
and dozens of vaccines have already been licensed to human use
(164). The rapid COVID-19 vaccine development and
deployment is critical for the world to return to pre-pandemic
normalcy. Ironically, the only licensed TB vaccine is still the one-
century-old BCG, which is inadequate. Thus, TB remains a
leading cause of mortality from an infectious disease, only now
surpassed by SARS-CoV-2 causing COVID-19. Considering the
morbidity and mortality that is suffered from TB globally, it is
time to accelerate commitment, investment, and implementation
to stop the infectious disease agent that has killed more human
beings than any other.

We believe that the success of COVID-19 vaccines and recent
progress in TB vaccine research illustrate that the deployment of
an effective TB vaccine is likely in the near future. The highly
efficacious COVID-19 vaccines accelerated the vaccine
development process in human use, with the notable example
of mRNA vaccines and adenovirus-vectored vaccines, and
increased the public acceptance of the concept of the
controlled human challenge model, which might provide
valuable experience on the development of TB vaccines. In this
review, we have provided an update on the current viral vectored
TB vaccine pipeline and summarized the latest findings that
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might facilitate TB vaccine developments. On the one hand,
several viral vectored TB vaccines are in clinical trials, and other
promising candidate vaccines at an earlier stage of development
are being evaluated in preclinical animal models, and this sharply
increases the likelihood of developing an effective TB vaccine in
the near future, although this is far from certain. On the other
hand, we propose that a better understanding of the lung-
resident TRM-mediated mucosal immunity, and the unique
trained immunity of phagocytic cells against intracellular Mtb
infection, could help provide novel targets for innovative and
superior TB vaccine designs. Moreover, new tools, such as
controlled human infection and ultra-low-dose aerosol
infection murine infection models, should facilitate TB vaccine
development and selection in the preclinical phase of the
investigation. In addition, identification of COPs in the M72/
AS01E trial and other ongoing clinical trials could be valuable in
streamlining triage and evaluation of next-generation TB vaccine
candidates. Allocation of resources must include the discovery
and development of early pipeline candidates to increase clinical
trial capacity. With more advanced knowledge, we remain
hopeful that a more effective TB vaccine will be developed
sooner rather than later.
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