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Abstract
Background Studies have shown that m6A modification is related to the occurrence and development of 
papillary thyroid carcinoma (PTC). The disorder of succinic acid metabolism is associated with the occurrence and 
development of various tumors. However, there are few studies based on m6A and succinate metabolism-related 
genes (SMRGs) in PTC.

Methods The TCGA-Thyroid carcinoma (THCA), GSE33630, 1159 SMRGs, and 23 m6A regulatory factors were 
collected from the online databases. Subsequently, the differentially expressed genes (DEGs) were selected between 
PTC (Tumor) and Normal samples. The overlapping genes among the DEGs, m6A, and SMRGs were applied to screen 
the biomarkers. Using the 3 machine-learning algorithms, the biomarkers were determined based on the overlapping 
genes. Next, the biomarkers were evaluated by the ROC curve and expression analysis in TCGA-THCA and GSE33630. 
Then, the overall survival (OS) differences were compared between the high-and low-expression biomarkers. Finally, 
immune infiltration analysis, molecular regulatory network, and drug prediction were performed based on the 
biomarkers.

Results In TCGA-THCA, there were 2800 DEGs between and Normal samples, and then 7 overlapping genes were 
obtained. Importantly, ADK, TNFRSF10B, CYP7B1, FGFR2, and CPQ were determined as biomarkers with excellent 
diagnostic efficiency (AUC > 0.7). In PTC samples, ADK and TNFRSF10B were high-expressed while CYP7B1, FGFR2, 
and CPQ were low-expressed. Especially, the high-expression groups of ADK had a better prognosis, while the high-
expression groups of CYP7B1, FGFR2, and CPQ had a worse prognosis. Afterward, immune infiltration analysis found 
that 16 immune cells had infiltration differences between the Tumor and Normal samples. Finally, transcription factor 
SP1 could regulate CYP7B1 and TNFRSF10B. Moreover, Navitoclax was a potential drug for PTC patients.

Conclusion Overall, we described 5 biomarkers associated with adverse prognosis of PTC, including ADK, TNFRSF10B, 
CYP7B1, FGFR2, and CPQ. All these biomarkers were involved in succinate metabolism and m6A modification of RNA. 
This set of biomarkers should be explored further for their diagnostic value in PTC. Investigations into the mechanistic 
role of alteration of succinate metabolism and m6A modification of RNA pathways in the pathophysiology of PTC are 
warranted.

Keywords m6A, Papillary thyroid carcinoma, Succinic acid metabolism, Bioinformatics

Biomarkers related to m6A and succinic acid 
metabolism in papillary thyroid carcinoma
Minyu Li1†, Xiaodan Fu2†, Tianhan Zhou3 and Hui Han2*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-024-01975-8&domain=pdf&date_stamp=2024-8-6


Page 2 of 14Li et al. BMC Medical Genomics          (2024) 17:199 

Background
During the past decade, thyroid cancer incidence has 
increased, making it one of the most common malignant 
tumors in the endocrine system [1]. Papillary thyroid car-
cinoma (PTC) is the most common subtype of all thyroid 
cancers. Generally, it is characterized by a high degree of 
differentiation, slow clinical course, and low specific mor-
tality. However, a considerable number of patients still 
experience persistent or recurrent diseases, with an inci-
dence rate of 14–30% [2–4]. Most patients with thyroid 
cancer have a good prognosis, but some thyroid cancers 
are aggressive and prone to recurrence and metasta-
sis. In addition, the accompanying over-diagnosis and 
over-treatment are important problems [5]. At present, 
the most reliable method to evaluate PTC is fine needle 
aspiration cytology (FNA), but FNA still has its technical 
limitations. Less than 20% of surgically removed nodules 
are malignant. Therefore, in order to improve the diag-
nostic accuracy of PTC and avoid unnecessary surgery, 
more and more researchers focus on the exploration of 
molecular markers of PTC [6, 7].

In eukaryotes, m6A is the most common form of 
mRNA modification. Studies have shown that m6A exists 
widely in transcriptome, and has modified more than 
7600 genes and 300 non-coding RNAs [8]. Studies have 
shown that the changes and defects of the m6A regula-
tory factor gene are closely related to the malignant prog-
ress of various cancers [9, 10]. However, although m6A 
modification is involved in tumorigenesis [11], prolif-
eration [12], differentiation, invasion, and metastasis of 
different types of tumors, the role of m6A modification 
and the potential regulatory mechanism in PTC have not 
been fully explored.

Succinic acid is produced by succinyl coenzyme A 
through the TCA cycle enzyme succinyl coenzyme A 
synthetase, which plays an important role in mitochon-
drial energy metabolism [13]. Abnormal mitochondrial 
metabolism may lead to cytoplasmic and/or extracellu-
lar succinic acid accumulation. It is reported that LPS-
induced macrophage activation will trigger the release 
of succinic acid, thus increasing the production of IL-1b 
and promoting inflammation [14]. It is reported that 
the accumulation of cytoplasmic succinic acid in cancer 
cells caused by TCA circulatory dysfunction promotes 
tumorigenesis [15]. Another study shows that compara-
tive metabonomics determines that succinic acid is a 
new factor secreted by cancer cells, which triggers TAM 
polarization and promotes cancer metastasis in vitro 
and in vivo [16]. Succinic acid enhances the migration 
of macrophages and the migration and invasion of can-
cer cells, which is helpful for cancer metastasis. These 
new findings indicate that succinic acid is a carcinogenic 
metabolite and may be a valuable target for cancer che-
moprevention and treatment.

In this study, bioinformatics technology was used to 
explore the biological function and potential mechanism 
of m6A and succinate metabolism-related biomarkers in 
the occurrence and development of PTC, so as to provide 
some reference for clinical diagnosis and treatment of 
PTC.

Materials and methods
Data sources
In this study, PTC patients of dataset were achieved by 
the TCGA online tool, namely TCGA-Thyroid carcinoma 
(THCA) dataset, containing 510 PTC (Tumor) and 58 
Normal samples, and it was utilized as the training set. 
The external validation set GSE33630 had 60 Tumor 
samples and 45 Normal samples. Moreover, a total of 
1159 succinate metabolism-related genes (SMRGs) were 
acquired (Relevance score > 7) by the GeneCards online 
tool (https://pathcards.genecards.org/). There were 23 
m6A regulatory factors to the related reference article 
[17].

Differential expression analysis and the WGCNA
In our study, DEGs between PTC (Tumor) and Normal 
samples were acquired by the DESeq2 (v 1.36.0) [18] 
package (|Log2FC| > 1 and p.adj < 0.05). Moreover, a heat 
map and a volcano map of DEGs were plotted by pheat-
map (v 0.7.7) and ggplot2 (v 3.3.0) [19] packages, respec-
tively. The expression levels of 23 m6A regulatory factors 
were compared between the tumor and normal controls 
in TCGA-THCA (Wilcoxon test, p < 0.05). Meanwhile, 
the m6A regulatory factors were used as the gene set, 
and all samples were scored by GSVA, and the difference 
in the GSVA score between Tumor and Normal groups 
was analyzed. Furthermore, the WGCNA was performed 
on the samples to screen out the critical module. Firstly, 
outlier samples were eliminated to secure the preci-
sion of the analysis by sample clustering. An appropriate 
soft threshold (β) was selected to make the engagement 
among genes conformed to the scale-free distribution 
to the maximum extent. Then, these genes were classi-
fied into several modules using dynamic tree cutting. The 
GSVA score of the m6A regulatory factor was used as a 
trait, and the relationships between the modules and trait 
were computed. Next, the module that most relevant to 
the trait was defined as the critical module.

Screening of overlapping genes
The SMRGs, DEGs, and the genes in the critical module 
were crossed to achieve the overlapping genes. In addi-
tion, for further studying the related biological functions 
and signaling pathways of the overlapping genes, the 
Gene ontology (GO) enrichment analysis (p.adjust < 0.05) 
was conducted by the clusterProfiler (v 3.8.1) package 
[20].

https://pathcards.genecards.org/
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Identification and verification of biomarkers
The Least absolute shrinkage and selection operator 
(LASSO), Random Forest (RF), and Extreme Gradi-
ent Boosting (XGBoost) algorithms were implemented 
on the overlapping genes to acquire the feature genes, 
respectively. Furthermore, the feature genes identified in 
those three algorithms were crossed to acquire the bio-
markers. To analyze the diagnostic performance of each 
biomarker, the ROC curves for biomarkers were drawn in 
the TCGA-THCA dataset and validation set GSE33630, 
respectively. The expression levels of biomarkers were 
compared between the tumors and normal samples 
in both TCGA-THCA and GSE33630 (Wilcoxon test, 
p < 0.05). Furthermore, according to the above biomark-
ers, a nomogram for forecasting disease probability rates 
of PTC patients was created. Moreover, the calibration 
curve was drawn to evaluate the precision of the predic-
tion model in the TCGA-THCA dataset and validation 
set GSE33630. Subsequently, the decision curve analysis 
(DCA) and ROC curve of the nomogram were performed 
in the training set. The chromosomal localization of bio-
markers was performed by biomaRt (v 2.52.0) [21].

The gene-gene interaction (GGI) network
Based on the 23 m6A regulatory factors and biomark-
ers, the top 20 genes that interacted with these genes 
were predicted from the GeneMANIA website (http://
genemania.org). Next, a GGI network was constructed 
based on the above genes using the Cytoscape (v 3.10.0) 
software.

The survival analysis
Firstly, the expression levels of each biomarker were 
calculated in 510 PTC samples from the TCGA-THCA 
dataset. The optimal thresholds of the expression 
were calculated by the ‘surv_cutpoint()’ function of 
the survminer (v. 0.4.9) package. Based on the optimal 
threshold of the biomarkers, the 510 PTC samples were 
divided into high- and low-expression groups. Then, the 
overall survival (OS) differences were compared between 
the high- and low-expression groups by the K-M curves 
(Wilcoxon test, p < 0.05).

Enrichment analysis of biomarkers
In order to find the regulatory pathways and related 
molecular functions enriched by various biomarkers, the 
GSEA was conducted using the clusterProfiler (v 3.8.1) 
package [20] (p.adjust < 0.05).

Immune infiltration analysis
In order to further explore the immune infiltration con-
dition of PTC, the CIBERSORT algorithm was imple-
mented on the samples in GSE32918 dataset to estimate 
the abundance of 22 different cell types of the immune 

cells between the Tumor and Normal groups. In addition, 
the differential immune cells between the Tumor and 
Normal groups were computed using the Wilcoxon test 
method. The Pearson correlation method was performed 
to analyze the association between immune cells. More-
over, the relationships between biomarkers and differen-
tial immune cells were computed by the Pearson method.

The construction of a regulatory network and the 
sensitivity analysis of drugs
The miRNAs corresponding to the above biomark-
ers were forecasted using the miRTarBase (http://miR-
TarBase.mbc.nctu.edu.tw/) and TarBase (http://www.
microrna.gr/tarbase) online databases. The miRNAs in 
those two databases were crossed to acquire the common 
miRNAs (co-miRNAs) of each biomarker. The lncRNAs 
corresponding to the above miRNAs were acquired 
based on the miRTarBase and TarBase online data-
bases. Subsequently, the competitive endogenous RNA 
(ceRNA) network was created. Moreover, the transcrip-
tion factors (TFs) of the biomarkers were forecasted by 
the TRRUST (www.grnpedia.org/trrust) online database. 
The TF-mRNA regulatory network was created. Besides, 
the drug sensitivity of biomarkers was analyzed based on 
the GSCALite online database (http://bioinfo.life.hust.
edu.cn/web/GSCALite/).

Results
Acquisition of DEGs and critical module
There were 2800 DEGs between PTC (Tumor) and Nor-
mal samples (Fig.  1A, Supplementary Table 1). The 
expression heat map of PTC-associated DEGs is shown 
in Fig. 1B. In TCGA-THCA, there were 20 differentially 
expressed m6A regulatory factors between the tumor and 
normal samples. Among them, the expression levels of 17 
m6A regulatory factors were much lower in tumors than 
those of normal samples (Supplementary Fig.  1). Like-
wise, there was a significant difference in GSVA scores 
for m6A regulatory factors between the Tumor and 
Normal groups (Fig.  1C). In addition, the sample clus-
tering result demonstrated that there were three outlier 
samples, and the remaining samples were used for sub-
sequent analysis (Fig. 1D). When the soft threshold was 
18, the genes conformed to a scale-free distribution to 
the greatest extent possible (Fig. 1E). A total of 13 mod-
ules were identified after merging (Fig. 1F). The MEblack 
module had the highest and most significant correlation 
with the trait, thus we identified it as the critical module 
(Cor = 0.67 and p.value < 0.05). There were 5254 genes in 
the module which were utilized for subsequent analysis 
(Fig. 1G).

http://genemania.org
http://genemania.org
http://miRTarBase.mbc.nctu.edu.tw/
http://miRTarBase.mbc.nctu.edu.tw/
http://www.microrna.gr/tarbase
http://www.microrna.gr/tarbase
http://www.grnpedia.org/trrust
http://bioinfo.life.hust.edu.cn/web/GSCALite/
http://bioinfo.life.hust.edu.cn/web/GSCALite/
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A total of 7 overlapping genes were identified
According to the intersection, 7 overlapping genes 
(FGFR2, CPQ, etc.) were identified (Fig. 2A). The enrich-
ment analysis demonstrated that overlapping genes 
mainly participated in ‘prostate gland epithelium mor-
phogenesis’, ‘death receptor activity’, etc. GO items 
(Fig. 2B, Supplementary Table 2).

Five biomarkers were screened out
According to the RF algorithm, 5 feature genes such as 
CYP7B1, FGFR2, ADK, CPQ, and TNFRSF10B were 
identified by the RF algorithm (Fig.  3A). There were 
six feature genes including FGFR2, CPQ, TNFRSF10B, 
GLS2, ADK, and CYP7B1 were detected by the LASSO 
algorithm (Fig.  3B). The top five feature genes (ADK, 
TNFRSF10B, CYP7B1, FGFR2, and CPQ) were acquired 
using the XGBoost algorithm (Fig.  3C). Furthermore, 
5 biomarkers including ADK, TNFRSF10B, CYP7B1, 
FGFR2, and CPQ were achieved by the intersection 
(Fig.  3D). In the TCGA-THCA dataset, the AUC val-
ues for all biomarkers were above 0.8. Moreover, in the 

validation set GSE33630, the AUC values of three bio-
markers (ADK, TNFRSF10B, and FGFR2) were greater 
than 0.9, and the AUC value of CPQ was above 0.7, dem-
onstrating that the screened biomarkers had high diag-
nostic value (Fig. 3E-F). In TCGA-THCA and GSE33630, 
the expression levels of the 5 biomarkers had significant 
differences between the tumors and normal (p < 0.05). 
Compared with the normal samples, the expression lev-
els of TNFRSF10B and ADK were significantly higher 
in tumors, and the other 3 biomarkers were the oppo-
site (Fig.  3G-H). In addition, a nomogram for forecast-
ing survival rates of PTC patients was created based on 
ADK, TNFRSF10B, CYP7B1, FGFR2, and CPQ (Fig. 4A). 
The chromosome mapping results showed that the posi-
tions of ADK and FGFR2 were on 10-chromosome, and 
TNFRSF10B, CYP7B1, and CPQ were located on 8-chro-
mosome (Fig.  4B). The calibration curves and the DCA 
curve indicated that the predictive ability of the model 
was favorable (Fig. 4C-E). The AUC value of the nomo-
gram was 0.9774, which demonstrated that the effec-
tiveness of the nomogram (Fig.  4F). Moreover, a GGI 

Fig. 1 Determination of DEGs and m6A score-related genes in PTC. (A) Volcano plot of DEGs between PTC (Tumor) and Normal samples. (B) Heat map 
of PTC-associated DEGs. (C) GSVA scores for m6A regulatory factors between the Tumor and Normal groups. (D) The sample clustering plot to remove 
outlier samples. (E) Screening of the optimal soft-threshold values. (F) The dynamic cut tree after merging modules. (G) Module-trait relationship heatmap
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network was generated based on the 23 m6A regulatory 
factors, 5 biomarkers, and the top 20 genes. Obviously, 
we found that ADK-RBKS, RBM15-DIDO1, YTHDF2-
YTHDF3, etc., interacted with each other (Supplemen-
tary Fig. 2).

The survival analysis of biomarkers
The low-expression group of CYP7B1, FGFR2, and CPQ 
had a higher survival probability (p < 0.05), and the low-
expression group of ADK had a lower survival probability 
(p > 0.05) (Fig.  5A-D). There was no significant differ-
ence between the high- and low-expression groups of 
TNFRSF10B (Fig. 5E).

The GSEA of the biomarkers
We performed GSEA on the above biomarkers, and 
according to the GO enrichment analysis, we found that 
ADK and TNFRSF10B were mainly associated with ‘cad-
herin binding’, ‘macroautophagy’, and so on GO items. 
CYP7B1, FGFR2, and CPQ were mainly involved in 
‘cilium organization’, ‘MHC protein complex’, etc. GO 
items (Fig. 6, Supplementary Tables 3–7). Moreover, the 
KEGG enrichment analysis demonstrated that ADK and 
TNFRSF10B were mainly enriched in ‘Bacterial invasion 
of epithelial cells’, and ‘Endocytosis’ etc. KEGG pathways. 
CYP7B1, FGFR2, and CPQ mainly participated in the 
‘mRNA surveillance pathway’, ‘Lysine degradation’, and so 
on KEGG pathways (Fig. 7, Supplementary Tables 8–12).

Immune infiltration analysis between Tumor and normal 
samples
The abundance of immune cells in Tumor and Normal 
samples was shown by the heat map (Fig.  8A). Further-
more, 16 differential immune cells (Neutrophils, Mac-
rophages M0, Eosinophils, etc.) between Tumor and 
Normal groups were acquired (Fig.  8B). There was the 
highest positive correlation (Cor = 0.48, p < 0.05) between 
Monocytes and Eosinophils, and Plasma cells had the 
highest negative correlation (Cor = -0.38, p < 0.05) with 
memory resting CD4 T cells (Fig.  8C). We found that 
CYP7B1 was significantly negatively correlated with reg-
ulatory T cells (Tregs) (Cor = -0.33, p < 0.05), and there 
was a highest positive relationship between FGFR2 and 
Eosinophils (Cor = 0.3, p < 0.05) (Fig. 8D).

The construction of ceRNA and TF-mRNA networks and the 
drug sensitivity analysis
The ceRNA network was created including 5 biomarkers, 
36 miRNAs, and 146 lncRNAs. We found that CYP7B1 
was regulated by hsa-miR-17-5p, and hsa-miR-335-5p 
could be regulated by C15orf32 (Fig. 9A, Supplementary 
Table 13). In addition, a total of 25 TFs were forecasted 
based on two biomarkers (CYP7B1 and TNFRSF10B), 
such as TP53, STAT3, MYC, and so on (Fig. 9B). Among 
them, the SP1 regulated both CYP7B1 and TNFRSF10B 
biomarkers. Moreover, TNFRSF10B had the highest 
positive association with Navitoclax, and there was the 
highest negative correlation between ADK and AICAR 
(Fig. 9C).

Fig. 2 Determination of m6A-succinic acid-related genes in PTC. (A) The Venn Diagram showed the intersection of DEGs, succinic acid-related genes, and 
module genes (m6A related). (B) Gene Ontology (GO) enrichment analysis of overlapping genes
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Discussion
About 80% of thyroid cancers are PTC, a relatively inert 
tumor with a long-term survival rate exceeding 95%. 
However, there are some types of PTC that are extremely 
invasive, and their overall survival rate as well as disease-
free survival rate are poor [22, 23].

More than 100 chemical modifications of RNA have 
been identified in organisms, including N1-methyl-
adenosine (m1A), N6-methyladenosine (m6A), and 
5-methylcytosine (m5C). M6A is the most abundant 
mRNA and internal modification of long-chain noncod-
ing RNA (lncRNA) in most eukaryotes. In addition, m6A 
was significantly clusters around the stop codon and 
3’ untranslated region (3’UTR), mainly on the RRACH 
motif. In different tumors, the effect of m6A modifi-
cation is different. The change of m6A also affects the 
progress of tumors, including proliferation, growth, inva-
sion, and metastasis [24–26]. Studies have shown that 
m6A can inhibit the development of PTC by modifying 

and regulating APOE expression [27], and METTL3 can 
inhibit the development of PTC through m6A-mediated 
neutrophil infiltration [28].

Succinic acid is a typical respiratory metabolite. As 
an intermediate of the TCA cycle, it is usually confined 
to the mitochondrial matrix. In normal cells, succinate 
dehydrogenase catalyzes the transformation of succinic 
acid into fumaric acid in the TCA cycle and electron 
transfer in ETC (electron transfer chain). When cells are 
under stress, such as hypoxia, hyperglycemia, and endo-
toxemia, the TCA cycle is damaged, leading to the accu-
mulation of succinic acid in the mitochondrial matrix. 
Excessive succinic acid leaks into the cytoplasm and is 
secreted into the extracellular space cytoplasm, and the 
accumulation of extracellular succinic acid promotes 
cancer growth through different mechanisms [29]. Stud-
ies have shown that the succinate pathway can be used 
as a diagnostic marker in head and neck squamous cell 
carcinoma [30]. Metastatic cancer nodules in the lungs 

Fig. 3 Determination of m6A-succinic acid-related biomarkers in PTC. (A) Importance score of variables from random forest model. (B, C) LASSO regres-
sion was performed. (D) The XGBoost model based on the SHAP algorithm. (E) Five biomarkers detected by Venn diagram. (F, G) Diagnostic value of hub 
genes. ROC curves of hub genes in the training dataset (F) and validation dataset (G). (H, I) The expression levels of biomarkers in the training dataset (H) 
and validation dataset (I)
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of mice receiving succinate are higher than those of mice 
receiving normal saline [31]. In addition, the imbalance 
of succinate metabolism is related to the occurrence and 
development of gastrointestinal stromal tumors, gastric 
cancer, ganglioma, hepatocellular carcinoma, ovarian 
cancer, and prostate cancer [32–37], but there are few 
reports exploring the potential mechanism of succinate 
metabolism-related genes in PTC based on bioinformat-
ics technology.

Based on the transcriptome information and clini-
cal information of thyroid papillary carcinoma data set 
in TCGA database and GEO database, this study con-
ducted bioinformatics analysis, and obtained the follow-
ing results: First, the differential expression analysis of 
TCGA-THCA data set was carried out, and 2,800 DEGs 
were screened out, including 1,730 up-regulated DEGs 
and 1,070 down-regulated DEGs. Through WGCNA 

analysis, the module (MEblack) with the highest correla-
tion with the GSVA score of the m6A regulatory factor 
was found, which contained 5254 module genes. Then, 
after crossing the DEGs with the module gene (m6a cor-
relation) and succinic acid-related genes, seven inter-
section genes were obtained, the enrichment analysis of 
the intersection genes was carried out, and the enrich-
ment items of the intersection genes were found. Then, 
five biomarkers (ADK, TNFRSF10B, CYP7B1, FGFR2, 
and CPQ) were further screened out by three machine 
learning models, and the ROC curve of the biomarkers 
was verified (diagnostic value verification). The results 
showed that the biomarkers could effectively predict 
papillary thyroid cancer. The nomogram model was con-
structed by using biomarkers, and the calibration curve 
of the nomogram model was constructed. The results 

Fig. 4 The nomogram prediction model for PTC based on the nomogram prediction model. (A) Construction of the nomogram prediction model. (B) 
Chromosome mapping of five genes that encode biomarkers. (C-E) Calibration curves (C-D) and decision curve analysis (DCA) (E) of the nomogram. (F) 
The AUC value of the Nomogram in the ROC curve is 0.9774
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showed that the prediction effect of nomogram model 
was decent.

Adenosine is a key regulator of metabolism and 
immune checkpoint, which is related to the escape of 
tumors from host immune system. The receptor-indepen-
dent epigenetic effect of adenosine has been confirmed, 
and adenosine has additional adenosine receptor-inde-
pendent activities, including the special emerging role of 
adenosine kinase (ADK), which exists in the cytoplasm 
(ADK-S) and nucleus (ADK-L) isoforms. Cytoplasmic 
ADK-S provides AMP with the main metabolic pathway 
of adenosine clearance through adenosine phosphoryla-
tion under physiological conditions [38]. Nuclear ADK-L 
is biochemically directly linked to S-adenosylmethionine 
(SAM)-dependent methylation pathway, which drives 
DNA and histone methylation [39].

Tumor necrosis factor (TNF) is a proinflammatory 
cytokine involved in cancer progression and develop-
ment. The TNF family inhibits tumor formation through 

apoptosis, but TNF imbalance promotes metastasis, 
migration and invasion of tumor cells [40]. TNFRSF10B, 
a tumor suppressor gene located on chromosome 8. 
Mutations in candidate genes lead to the deletion of 
chromosome P-arm, which is very common in head 
and neck tumors. TNFRSF10B inhibits tumor formation 
through apoptosis, but deregulates and promotes metas-
tasis, migration, and invasion of tumor cells [38]. The 
decreased expression of CYP7B1 triggers the accumula-
tion of 27-hydroxycholesterol (27-HC), and CYP7B1 is 
down-regulated in breast cancer compared with normal 
breast tissue [41, 42]. According to these findings, com-
pared with benign tumors, CYP7B1 is strongly down-
regulated in invasive tumor tissues (PTC high risk and 
PDTC/ATC). These data indicate that the CYP7B1 may 
promote the development and progress of thyroid cancer 
[43]. Moreover, a common TF between the TNFRSF10B 
and CYP7B1, specificity protein 1 (SP1), is ubiquitously 
expressed in mammalian cells [44]. Meng et al. found 

Fig. 5 The survival analysis (K-M curve) of biomarkers (CYP7B1, FGFR2, CPQ, ADK, and TNFRSF10B).
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that the binding of the SP1 to the TNFRSF10B promoter 
was enhanced in the presence of poly (ADP-ribose) poly-
merase (PARP) inhibitors [45]. And the regulation of 
CYP7B1 transcription by SP1 plays an important role in 
regulating the level of oxysterol in cholesterol metabo-
lism [46].

FGFR2 (fibroblast growth factor receptor 2), also 
known as CD332, is located on chromosome 10. FGFR2 
plays an important role in embryonic development, 

tissue repair, and angiogenesis. Like other members of 
the fibroblast growth factor receptor family, these recep-
tors activate tyrosine kinase activity by binding to their 
ligands. These signal molecules regulate cell division, 
growth, and differentiation. FGFR2 is highly expressed in 
various human malignant tumors, such as gastric cancer, 
lung cancer, breast cancer, ovarian cancer, and endome-
trial cancer. Previous studies have shown that the up-reg-
ulation of FGFR2 partially reversed the inhibitory effect 

Fig. 7 The GSEA of the biomarkers (Top 10 KEGG items)

 

Fig. 6 The GSEA of the biomarkers (Top 10 GO items)
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of miR-1266 overexpression on cell growth and progress, 
and miR-1266 can inhibit cell proliferation and the prog-
ress of thyroid papillary carcinoma by targeting FGFR2 
[47].

CPQ is a regulatory factor related to phagocytosis, 
which is positively correlated with macrophages in TC 
tissue and is considered as a potential prognostic indica-
tor [48].

These 5 biomarkers including ADK, TNFRSF10B, 
CYP7B1, FGFR2, and CPQ were identified by K-M analy-
sis, and we found the low-expression group of CYP7B1, 
FGFR2, and CPQ had a higher survival probability, and 
the low-expression group of ADK had a lower survival 
probability. Interestingly, lower expression of CYP7B1, 
FGFR2, and CPQ was observed in thyroid cancers, 
while a low-expression group of CYP7B1, FGFR2, and 
CPQ had a high overall survival. We infer that CYP7B1, 
FGFR2, and CPQ have inhibitory roles in the transition 

of normal cells to early thyroid cancer in thyroid cells. In 
thyroid cancer, CYP7B1, FGFR2, and CPQ may promote 
or inhibit certain pathways leading to tumor progression. 
Also, higher expression of ADK was observed in thyroid 
cancers, while a high-expression group of ADK had a 
high overall survival. This is the opposite of the previous 
article, the ADK gene plays a catalytic role in the occur-
rence of tumors, while the ADK gene plays an inhibitory 
role in the development of tumor cells. What’s more, 
the expression level of TNFRSF10 was higher in tumors 
than that of normal samples. However, differences in 
TNFRSF10 expression do not affect the survival of thy-
roid cancer. It is speculated that the TNFRSF10 gene only 
affects the occurrence of thyroid cancer and does not 
worsen cancer. The mechanism of action of these bio-
markers in the progression of PTC requires further study.

We performed GSEA on the above biomarkers, and 
according to the GO enrichment analysis, we found that 

Fig. 8 Immune cell infiltration analysis. (A) Heatmap of immune cell abundances. (B) Boxplot of immune cell abundances between Tumor and Normal 
groups (* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001). (C) Heatmap of immune cell correlation analysis. (D) Heatmap of Pearson correlation between 
the biomarkers
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ADK and TNFRSF10B were mainly associated with ‘cad-
herin binding’, ‘macroautophagy’, and so on GO items. 
CYP7B1, FGFR2, and CPQ were mainly involved in ‘cil-
ium organization’, ‘MHC protein complex’, etc. GO items. 
Moreover, the KEGG enrichment analysis demonstrated 
that ADK and TNFRSF10B were mainly enriched in ‘Bac-
terial invasion of epithelial cells’, and ‘Endocytosis’ etc. 
KEGG pathways. CYP7B1, FGFR2, and CPQ mainly par-
ticipated in ‘mRNA surveillance pathway’, ‘Lysine degra-
dation’, and so on KEGG pathways.

CD4 + T and B cells are reported to be positively cor-
related with reduced tumor sizes in PTC [49]. Increased 
tissue infiltration of Treg cells was positively correlated 
with advanced thyroid cancer stage, whereas NK-cell 
infiltration was negatively correlated, indicating that NK 
and Treg cells might be important regulators of PTC pro-
gression [50–52]. High tumor-infiltrating CD8 + Tc e l l 
density was associated with a favorable prognosis in thy-
roid cancer patients [49, 53].

In our study, 16 differential immune cells (Neutrophils, 
Macrophages M0, Eosinophils, etc.) between Tumor and 
Normal groups were acquired. We found that CYP7B1 
was significantly negatively correlated with regulatory 
T cells (Tregs) (Cor = -0.33), and there was a highest 
positive relationship between FGFR2 and Eosinophils 
(Cor = 0.3).

We found that CYP7B1 was regulated by hsa-miR-
17-5p, and hsa-miR-335-5p could be regulated by 
C15orf32. Research has shown that hsa-miR-17-5p may 
be a positive regulator of NFE2L2 Nuclear Factor (Ery-
throid-derived 2)-Like 2, which is involved in angio-
genesis and oxidative stress, can lead to thyroid cancer 
progression [54].

We found that TNFRSF10B had the highest positive 
association with Navitoclax, and there was the highest 
negative correlation between ADK and AICAR. Navi-
toclax (ABT-263) is a Small-molecule BH3 mimetics, 
disrupt BCL-2/BCL-XL interactions with proapoptotic 
proteins such as BIM, thereby inducing apoptosis [55]. 

Fig. 9 The regulatory networks and targeting drugs of the biomarkers. (A) The ceRNA (lncRNA-miRNA-mRNA) network of the biomarkers. (B) The TF-
mRNA regulatory network of the biomarkers. (C) The drug sensitivity correlation analysis between drugs and the biomarkers
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Study shows that the combination of vemurafenib and 
Navitoclax can induce substantial cell death and exert 
cytotoxic effects in BRAFV600E-positive PTC. More-
over, the combination of vemurafenib and navitoclax 
requires lower doses to obtain a therapeutic effect com-
pared to the doses with single drug treatments; therefore, 
it may be applied as a safer and more efficient therapeutic 
strategy in BRAFV600E-positive PTC [56].

AICAR exerts its action by activating the energy sen-
sor (AMP-activated protein kinase) AMPK, which plays 
a central role in the control of cell growth, proliferation, 
and autophagy through the regulation of mTOR (mam-
malian target of rapamycin) [57, 58]. AMPK agonists, 
such as AICAR, are regarded as potential therapeutic 
molecules in cancer therapy [59, 60]. Study demonstra-
tion of the inhibition of CXCL8 secretion exerted by 
AICAR in TPC-1 and BCPAP indicating that the antican-
cer properties of AICAR are, at least in part, mediated by 
its ability to reduce the protumorigenic effects of CXCL8 
[61].

Conclusion
In the current study, there were 5 succinate metabo-
lism and m6A-related biomarkers including ADK, 
TNFRSF10B, CYP7B1, FGFR2, and CPQ associated with 
PTC, providing a reference for the clinical diagnosis and 
treatment of PTC. This study provides ideas for further 
study on the diagnostic value and potential mechanism 
of genes related to m6A and succinic acid metabolism in 
PTC. Further experimental studies should be carried out 
to elucidate the mechanisms involved in this observation.
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