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Abstract

Empowered by the advancement of high-throughput bio technologies, recent research on body-fluid proteomes has led to
the discoveries of numerous novel disease biomarkers and therapeutic drugs. In the meantime, a tremendous progress in
disclosing the body-fluid proteomes was made, resulting in a collection of over 15 000 different proteins detected in major
human body fluids. However, common challenges remain with current proteomics technologies about how to effectively
handle the large variety of protein modifications in those fluids. To this end, computational effort utilizing statistical and
machine-learning approaches has shown early successes in identifying biomarker proteins in specific human diseases. In
this article, we first summarized the experimental progresses using a combination of conventional and high-throughput
technologies, along with the major discoveries, and focused on current research status of 16 types of body-fluid proteins.
Next, the emerging computational work on protein prediction based on support vector machine, ranking algorithm, and
protein–protein interaction network were also surveyed, followed by algorithm and application discussion. At last, we
discuss additional critical concerns about these topics and close the review by providing future perspectives especially
toward the realization of clinical disease biomarker discovery.
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Introduction
Human body fluids are biological fluids that are either excreted
or secreted from the bodies of living people [1]. They include, but
not limited to, plasma/serum, saliva, urine, cerebrospinal fluid,
seminal fluid, amniotic fluid, tear fluid, bronchoalveolar lavage

fluid, milk, synovial fluid, nipple aspirate fluid, cervicovaginal
fluid, pleural effusion, sputum, exhaled breath condensate and
pancreatic juice. It has been widely accepted that human body
fluids contain disease-associated proteins that are secreted or
leaked from pathological tissues across the body and are often
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easily obtainable through noninvasive procedures [2]. To date,
over 15 000 different proteins have been identified in major
human body fluids.

For decades, proteomic applications have spanned across
different fields in biomedical and biochemistry research [3] and
considered body fluids as the easy and attractive targets to pro-
file [4]. Since the first research on serum globulin separation in
1937 [5], numerous reports on human body-fluid proteomes have
been documented. Especially after the use of two-dimensional
gel electrophoresis (2-DE) [6], several instrumental milestones
appear. For example, in 1970, Freeman and Smith resolved 60
protein components in plasma using conventional gel filtration
[7], which clearly demonstrated the complex composition of
plasma and the feasibility of profiling blood proteins using those
techniques. However, despite its popularity, 2D electrophoresis
was known to have limits in terms of its very low efficiency
in the analysis of hydrophobic proteins and high sensitivity
to the dynamic range and quantitative distribution [8]. Such
drawbacks necessitate high-power analytical techniques. In the
early 1900s, Sir J.J. Thomson developed mass spectrometry (MS)
technique when he obtained mass spectra of small gaseous ions
[9]. Since then, MS has become the method of choice for analyz-
ing complex protein samples [10]. Since early 1980s, MS moved
from an analytical technique applicable only to small volatile
compounds to applications on large biomolecules [11] and has
been widely used for comprehensive profiling of human body-
fluids proteomes. For examples, the Human Plasma Proteome
Project initiated by international Human Proteome Organization
has involved a collaboration of many laboratories using MS
technology and compiled a core dataset of 3521 distinct proteins
in human plasma [12]. In addition, the Sys-BodyFluid database
published in 2009 contained 11 kinds of body-fluid proteomes
and over 10 000 proteins [13]. Many recent studies concentrated
on the discovery of protein biomarkers in pathologic conditions
such as cancers, metabolic disease and brain disease [14]. In
this regard, it is well-known that the major bottleneck chal-
lenges in biomarker discovery lie in the quantitative analysis
of highly specific proteins [15]. For example, diseases such as
Sjögren’s syndrome, bacterial and viral infectious diseases, and
oral cancer all cause alterations of salivary protein expression
[16]. Similarly, urine drains from the urinary tract and is there-
fore particularly enriched in proteins deriving from the kidney,
bladder and prostate [17]. Many hereditary glomerular disease
proteins have been identified in urine, such as podocin, alpha-
actinin-4, CD2-associated protein, myosin-9, myosin 1E, integrin
alpha 3 and cubilin, for which the quantitative measure is key to
the applications [18].

The ability of MS to identify and to increasingly precisely
quantify thousands of proteins from complex fluids has a broad
impact on biomedical research [19]. However, regardless the
evolving technology, protein identification is still considered as
a challenging topic simply because a large amount of proteins
are subject to a variety of modifications in body fluids, making
the proteome composition highly complex. To facilitate such
research, a few computational pipelines have been developed to
characterize molecular features of various types of secreted pro-
teins and provide new predictions using statistical and machine-
learning methodologies. In 2008, Cui et al. [20] firstly proposed
a machine-learning strategy to predict if a protein is likely to
enter into bloodstream using support vector machine (SVM) clas-
sifier. Soon after that, several related studies were reported to
identify secreted proteins associated with different body fluids,
including blood [21], urine [22,23], saliva [24,25] and others [26]. In
addition to protein identification, those predictors can be used to

identify potential biomarkers for specific human diseases based
on the context-dependent genomics data [20]. Figure 1 shows the
major event nodes related to body-fluid proteome research.

In the following sections, we first review the major tech-
niques and discoveries in protein identification and then
focused on the computational work in this field in terms of the
methodologies and applications. The discussion will be centered
around critical issues related to future application in human
fluid proteomics research.

Major methodological strategies
for body-fluids protein profiling
Modern proteomic tools have provided different technical
frameworks for handling proteome complexity in human body
fluids [27]. Several previous works have addressed important
issues related to the standardization of sample collection,
separation and processing [28,29]. As a summary, Figure 2 shows
the currently used analytical workflows, including technologies
used to fractionate and analyze proteome in either qualitative
or quantitative manner [30].

The qualitative separation was mainly through 1-DE, 2-DE
and chromatography. Although 2-DE is low-cost, reproducible
and visual, questions remain concerning its ability of handling
protein co-migration [31] and limitations in protein analysis
for high- or low-molecular weight proteins as well as those
of proteins with extreme isoelectric point (pI) values [32]. In
contrast, multiple liquid chromatography (LC) techniques and
their continuous improvements in separation components are
providing further advances and enabling increasingly effective
large-scale proteomics [33].

A number of isotope-labeling approaches are available for
quantitative proteomic analysis [34], including 2D difference
gel electrophoresis [35], isotope-coded affinity tag [36], stable
isotope labeling by amino acids in cell culture [37], isobaric
tags for relative and absolute quantification [38]. Although in
general isotopic labeling technology is deemed successful, it has
some technical limitations due to the high costs of the labeling
reagents, computational difficulties and the error-prone nature
[39]. The ion intensity-based label-free quantitative approach
has gradually gained more popularity and provides an alterna-
tive powerful tool to resolve and identify thousands of proteins
from a complex biological sample [40]. It is rapid and sensitive
and can increase the protein dynamic range by 3- to 4-fold
compared with 2-DE [41]. Similarly, protein chip has also been
employed as a simple-to-use technology that offers the capa-
bility of differentiating proteins and quantifying the abundance
[42,43].

MS has become an indispensable analytical tool in quanti-
tative protein analysis. Particularly, both matrix-assisted laser
desorption ionization–time of flight (MALDI–TOF) MS and tan-
dem MS (MS/MS) can provide excellent mass accuracy, high
resolution, high sensitivity and direct analysis from complex
mixtures [44].

Proteomic analysis on 16 types of human
body fluids
In this section, we review proteomic research on 16 major types
of body fluids since 2001 and summarize the major discovery of
body-fluid proteins on Figure 3 shows the distribution of the 16
types of body fluids in human body.
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Figure 1. Major events related to proteomics technology development and body-fluid proteome research.

Figure 2. Overview of different strategies used for human body fluids analysis aiming biomarker discovery.

Plasma/serum

Blood plasma is believed to have the most complex human-
derived proteome [45] and has attracted high volume of research
attentions [45–111]. Owing to the importance of plasma proteins,
several large-scale proteomic efforts have been carried out on
human plasma proteins [112]. To date, over 12 000 different
plasma proteins have been identified with high confidence,
which provides the largest set of circulating proteins as the

most commonly-used pool for finding potential biomarkers for
clinical diagnosis. In the meantime, great challenges remain
because of the complex modification of proteins in blood.

Saliva

Saliva mainly comes from parotid, submandibular, sublingual
and several minor glands, and is a dilute aqueous solution
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Figure 3. The distribution of 16 types of body fluids in human body.

consisting of electrolytes, minerals, buffers and proteins [113].
The collection of saliva is simple, noninvasive and cheap and
can be easily repeated [28]. The saliva proteome research has led
to the identification of more than 4000 different protein species
[4,105,107,113–142]. In the context of clinical proteomics, it has
gained increasing potential for disease diagnosis using saliva
proteins, especially in oral cancers [105, 130,137] and periodontal
diseases [129].

Urine

Urine is a complex fluid comprised of proteins from the different
sources, including the filtration of the blood within the glomeru-
lus and secretion form the kidneys and the urogenital tract
[143]. Urine has the advantage to be obtained in large volume.
In 1979, the Anderson’s group published the first studies by 2-DE
on normal urine [144], in which they identified only the major
components. Up to today, more than 8000 proteins have been
identified in human urine [17,18,107,143, 145–165]. Early success
has made toward the development of candidate biomarker in
urine for various urogenital diseases, including acute kidney
injury, bladder cancer and diabetic nephropathy [164].

Cerebrospinal fluid

Cerebrospinal fluid (CSF) is in continuum with the extra-cellular
fluid of the central nervous system (CNS) and is produced by the
choroid plexus that surrounds the brain [14]. Several proteomic
studies were conducted to identify the proteome of human
cerebrospinal fluid, and over 6000 proteins have been identified
[107,150,166–179]. CSF is a promising source for studying protein
biomarkers of diseases in the CNS [170] and provides an acces-
sible liquid pool in the brain [173].

Seminal fluid

Seminal fluid is the liquid component of sperm [180]. In the
case of studying human seminal plasma, the main aim would be
the discovery of new biomarkers for prostate and testis cancers

[181]. In addition, it also sheds new light into the fundamental
aspects of the human sperm and points to new potential pro-
teins involved in male infertility [182].

Amniotic fluid

Amniotic fluid (AF) contains cells of fetal origin and a wide range
of fetal proteins, and is formed from fetal urine and secretions
[183]. Proteomic profiles of amniotic fluid have been generated
by several groups using different methods since 1997 [184]. As an
important source of biomarkers for fetal pathologies, amniotic
fluid has been widely studied for diagnosis of many pregnancy-
related pathologies and genetic diseases [15,185–189], includ-
ing fetal abnormalities [15], gestational age-dependent changes
[189] and so on.

Tear fluid

Tear fluid (TF) is a complex mixture of secretions produced by
the lacrimal gland, goblet cells, cornea and vascular sources
[190]. Many methods have been used to map tear protein profiles,
including different MS technologies [191], such as MALDI–TOF
[192] and LC/MS [193]. TF is becoming an increasingly important
source for finding biomarkers for eye-related diseases, such as
Graves’ ophthalmopathy [194].

Bronchoalveolar lavage fluid

Bronchoalveolar lavage fluid (BALF) is a clinical body fluid used
in sampling of the soluble protein contents of the airway lumen
[195]. One of the earliest attempts to map the protein compo-
nents of normal human BALF has identified 49 proteins [196].
Since then, more than 1000 proteins have been identified [195–
205]. BALF also has the great advantage of easy collection and
lung-disease indication therefore has been widely studied in
ventilator-associated pneumonia [201], lung cancer [198,204],
lung adenocarcinoma [197] and chronic obstructive pulmonary
disease (COPD) [206].
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Milk

Human milk contains many bioactive proteins that serve as
the first source of nutrition for mammalian infants [207]. Over
1700 proteins have been identified in human milk [208]. Among
them, milk fat globule membrane [209] and human colostrum
[210] have become important targets for proteomics research. In
an effort to explore the benefits that human milk can provide,
numerous proteomic studies investigated the proteins in milk
whey [211,212], which comprises 40.0% of the total milk proteins
and has strong implication in growth/maintenance and immu-
nity support.

Synovial fluid

Synovial fluid is a serum filtrate located in the joints that con-
tains proteins from surrounding tissues, articular cartilage, syn-
ovial membrane and bone [213]. Many research on synovial-
fluid proteome focused on the rheumatoid arthritis [213,214] and
osteoarthritis [2, 214–220]. To date, only less than 1000 proteins
can be identified in synovial fluid.

Nipple aspirate fluid

Nipple aspirate fluid (NAF) is a fluid secreted by the epithelial
cells of the mammary ductal and lobular system, and it contains
a set of specific breast tissue proteins [221, 222]. Therefore,
NAF proteome is a valuable source of breast cancer biomarkers.
For decades, the literature on NAF and breast secretions has
expanded considerably and more than 2000 proteins have been
identified [221–228].

Cervical-vaginal fluid

Cervical-vaginal fluid (CVF) consists of water, electrolytes, low-
molecular-weight organic compounds, cells and a wide range
of proteins and proteolytic enzymes [229]. Up to today, about
600 proteins were identified in CVF by seven research groups
[189,229–234]. CVF could play a critical role in spontaneous
preterm birth by detecting biomarkers and potential molecular
networks.

Pleural effusion

Pleural effusion (PE) is the excess fluid in the pleural space,
which exists in lung cancer patients and also forms due to many
benign ailments [235]. To date, about 1300 proteins have been
detected in PE [236–240] and a number of potential biomarkers
were evaluated, such as lung surfactant protein A, cystatin-C,
vascular endothelial growth factor and so on.

Sputum

Sputum is a readily accessible biological fluid, and its compo-
sition may change by different disease [241]. Sputum contains
biomarkers of inflammation in common chronic airway dis-
eases, such as asthma and COPD [242].

Exhaled breath condensate

Exhaled breath condensate (EBC) is a biological fluid consisting
of aerosol droplets and water vapor, and can be obtained by
freezing exhaled air under conditions of spontaneous breathing
[243]. EBC composition reflects the physiological state of the
lung and consequently, and, in principle, can be used to

identify and monitor several pathologies, including asthma,
COPD, bronchiectasis, cystic fibrosis, acute respiratory distress
syndrome, infectious and neoplastic lung diseases [243].
Approximately 220 proteins were identified in EBC, which is
considerably lower than those identified in other body fluids
[243–249].

Pancreatic juice

Pancreatic juice is often used for pancreatic cancer detection
[250]. Only a few studies have been published on the identifi-
cation of pancreatic juice proteins. Over 740 unique proteins
were identified including known pancreatic cancer tumor
markers and proteins over expressed in pancreatic cancers
[250–253].

Clearly, apart from the applausive progresses made in the
field of human body-fluid proteomics, there are significant
discrepancies between different proteomic discoveries, which
is mainly caused by biased sample selection and preparation,
technical difference of proteomic profiling, and distinct rules
toward result interpretation. Nevertheless, the accumulation of
publically-available proteomics data has shown great potential
in facilitating various quantitative analysis in a broad array of
biomedical applications.

Computational predictions on
body-fluid proteome
In the last decade, the large-scale proteomics studies have
encounter challenges in large dynamic range of the protein
abundance [22] and high experimental costs (both in material
and time) [254]. As alternative strategies, several computational
methods for protein prediction based on statistics and machine
learning have been developed and demonstrated promising
performance [20–26].

Overview of learning-based prediction models

Intuitively, the discovery of proteins in different body fluids
can be formulated into a classification problem, where pub-
lished experimental data can be used for training a classifier
to infer undiscovered instances. In fact, different learning-based
approaches have been documented in the literature, including
the following: (i) SVM-based classification: In 2008, Cui et al.
[20] firstly proposed a computational method for prediction if
a secreted protein was likely to enter into bloodstream based
on a SVM classifier. Since then, similar other works include a
classifier that used physiochemical properties and amino acid
composition features to infer whether a protein can be excreted
into urine [22,23], and a computational model for identification
of origins of detected proteins in urine; classifiers for identifying
human salivary proteins and applications in head and neck
cancer biomarker discovery [24,25]; (ii) ranking-based prediction:
Liu et al. [21] presented a computational framework for blood-
secretory protein prediction using manifold ranking algorithm,
which ranks all the candidate proteins according to the possi-
bility of being blood-secreted. (iii) Network-based prediction: Hu
et al. [26] has developed a novel approach that employed protein–
protein interaction (PPI) network to predict human secreted
proteins related to different body fluids.

In general, all these data-driven predictions require the col-
lection of known body-fluid proteins for training and validation
of the model [20], as well as molecular features as instance
descriptors, as shown in Figure 4. Each approach introduces a
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Figure 4. Summary workflow of the statistical and machine learning process for prediction of body-fluid proteomes.

unique set of analytical or computational challenges. In the next
section, we will focus on several key issues on each topic.

SVM-based secreted protein prediction

Among all the learning-based methods, SVM has become the
most popular and powerful classifier for body-fluid proteins
because of its easy use and its compelling performance. Note
that SVM emphasizes the idea of maximizing the margin or
degree of separation in the two-class or multiple-class clas-
sification in the training process [23]. To ensure a successful
application in body-fluid proteomic study, the following steps
are key to train a reliable SVM classifier.

Data collection

It is essential to collect human body-fluid proteins that are
experimentally detected by multiple proteomic studies from
the public databases or literatures. For examples, Sys-BodyFluid
database [13] contains over 10 000 proteins from 11 kinds of body
fluids. Plasma proteome database contains information on 10
546 proteins detected in serum/plasma [112]. In addition, some
body-fluid protein datasets can be collected from published
literature. In [20], the authors collected a total of 1620 human
proteins that are annotated as secretory proteins from the Swis-
sprot and SPD database [255]. Approximately 305 of those pro-
teins match at least two peptides and hence are considered as
secreted proteins into blood—a common practice for protein
identification based on MS data. To ensure the good quality, this

study only used 305 proteins that has met two criteria (both
secreted and serum/plasma detected), as the positive dataset
and did not include proteins that leak into the blood as a result
of cell damage (e.g. cardiac myoglobin released into plasma after
a heart attack).

For binary classification through SVM, a negative dataset
of non-body-fluid proteins is always required. Since such data
are often not well-defined, it often requires a reliable way to
generate the negative datasets, e.g. through a random selection
of representative from all non-secreted related protein families,
as defined in Pfam protein families [23]. Specifically, the negative
data generation includes the following steps: (i) obtaining all
human proteins and Pfam families from the UniProt database, (ii)
mapping the known fluid proteins (positive data) to Pfam family,
(iii) excluding the families which include known fluid proteins
and (iv) randomly selecting representatives from each remaining
family to construct the negative data with comparable size.
Cui et al. used a large test set containing 98 secretory proteins
and 6601 non-secretory proteins of human along with other
additional data to evaluate the models [20].

Feature selection

Numerous protein features have been used to train the clas-
sification model that can predict human body-fluid proteins,
which can be categorized into four types of property [24]: (i)
sequence properties, (ii) structural properties, (iii) domains and
motifs properties and (iv) physicochemical properties, as shown
in Table 1.
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Table 1. The major type of features and the number of selected contributing features in each referenced study

Feature category Feature description Feature
dimentionality

Sources Number of selected
contributing features in
each referenced study

Sequence properties Sequence length 1 Uniprot [256], Profeat [257] –
Amino acid composition 20 Hong et al. (2010):13 [22];

Wang et al. (2016):4 [23];
Wang et al. (2013):5 [25];
Sun et al. (2015):3 [24]

Di-peptides composition 400 Hong et al. (2010):12 [22];
Wang et al. (2016):33 [23];
Wang et al. (2013):25 [25];
Sun et al. (2015):20 [24]

Normalized Moreau–Broto autocorrelation 240 Wang et al. (2016):8 [23];
Wang et al. (2013):4 [25];
Sun et al. (2015):5 [24]

Moran autocorrelation 240 Wang et al. (2016):8[23];
Wang et al. (2013):5[25];
Sun et al. (2015):7 [24]

Geary autocorrelation 240 Wang et al. (2016):8 [23];
Wang et al. (2013):6 [25];
Sun et al. (2015):6 [24]

Sequence order 160 Wang et al. (2016):10 [23];
Sun et al. (2015):6 [24]

Pseudo amino acid composition 50 Hong et al. (2010):11 [22];
Wang et al. (2016):3 [23];
Sun et al. (2015):3 [24]

Physicochemical
properties

Hydrophobicity 21 Profeat [257], Fldbin [258],
ExPASy Tools [259]

Cui et al. (2008):8 [20];
Hong et al. (2010):4 [22];
Wang et al. (2013):2 [25];
Sun et al. (2015):5 [24]

Normalized Van der Waals volume 21 Cui et al. (2008):11 [20];
Hong et al. (2010):5 [22];
Wang et al. (2016):2 [23]

Polarity 21 Cui et al. (2008):12 [20];
Hong et al. (2010):4 [22];
Wang et al. (2013):2 [25];
Sun et al. (2015):1 [24]

Polarizability 21 Cui et al. (2008):8 [20];
Hong et al. (2010):4 [22];
Wang et al. (2016):1 [23];
Wang et al. (2013):1 [25];
Sun et al. (2015):1 [24]

Charge 21 Cui et al. (2008):11 [20];
Hong et al. (2010):5 [22];
Wang et al. (2016):1 [23];
Wang et al. (2013):1 [25];
Sun et al. (2015):1 [24]

Secondary structure 21 Cui et al. (2008):13 [20];
Hong et al. (2010):4 [22];
Wang et al. (2016):1 [23];
Wang et al. (2013):2 [25];
Sun et al. (2015):2 [24]

Solvent accessibility 21 Cui et al. (2008):6 [20];
Hong et al. (2010):3 [22];
Wang et al. (2016):1 [23];
Sun et al. (2015):2 [24]

Unfoldability 1 Cui et al. (2008):1 [20];
Hong et al. (2010):1 [22]

Fldbin charge 1
Hydrophobicity 1 Cui et al. (2008):1 [20];

Wang et al. (2013):1 [25]

Continue
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Table 1. Continued

Feature category Feature description Feature
dimentionality

Sources Number of selected
contributing features in
each referenced study

Longest disordered regions 1 Cui et al. (2008):1 [20];
Wang et al. (2016):1 [23]

Isoelectric point 1 Hong et al. (2010):1 [22];
Wang et al. (2016):1 [23];
Sun et al. (2015):1 [24]

Charge 1 Cui et al. (2008):1 [20];
Hong et al. (2010):1 [22];
Wang et al. (2016):1 [23]

Molecular weight 1
Percentage of disordered region 1 Hong et al. (2010):1 [22]
Percentage of disordered residues 1
Relative surface accessibility 3 Cui et al. (2008):3 [20]

Domains/motifs
properties

Beta-barrel transmembrane (BBTM) score 1 SingalP [260], TMB-Hunt
[261], TatP [262], Phobius
[263], NetOglyc [264],
NetNGlyc [265]

Cui et al. (2008):1 [20]

Log P BBTM/Non-BBTM protein ratio 1 Cui et al. (2008):1 [20]
Twin-arginine signal peptide 1 Cui et al. (2008):1 [20]
Transmembrane domains 1 Cui et al. (2008):1 [20];

Wang et al. (2016):1 [23];
Sun et al. (2015):1 [24];
Hong et al. (2010):1 [22]

Signal peptide 1 Cui et al. (2008):1 [20];
Hong et al. (2010):1 [22];
Sun et al. (2015):1 [24]

Glycosylation number and presence 4 Cui et al. (2008):1 [20];
Hong et al. (2010):2 [22]

C-mannosylated 1
Phosphorylation sites 1
Cleavage site 2 Wang et al. (2016):1 [23]
Subcellular location 4
Percentage of coil-content 1 Hong et al. (2010):1 [22]

Structural
properties

Secondary structural content 4 SSCP [266], Radius of
Gyration

Cui et al. (2008):1 [20];
Wang et al. (2016):1 [23];
Sun et al. (2015):2 [24]

Radius gyration 1 Cui et al. (2008):1 [20]
Radius 1 Wang et al. (2016):1 [23];

Wang et al. (2013):1 [25];
Sun et al. (2015):1 [24]

Since not all the initial features are related to a specific
application, it is often useful to remove features that are
noisy or irrelevant when predicting a specific group of body-
fluid proteins [267]. A simple t-test is often used to determine
the significance of a feature in terms of distinguishing
two classes. Based on the derived P-value, a q-value is
calculated to control the false discovery rate [268], where
0.005 is used as the threshold for removing non-contributing
features. Furthermore, a classic feature-selection method
known as recursive feature elimination [269] based on SVM
is employed to remove features with weak classification
power.

Table 1 listed the selected features in each of the published
classifier, which are mostly related to transmembrane domains,
signal peptide, sequence order, amino acid composition, Moran
autocorrelation and so on. These selected features can better
predict body-fluid proteins and improve the performance
of classifier compared to using the whole original set of
features.

Model learning

In SVM, the hyperplane of a high-dimensional space, called fea-
ture space, is constructed to separate two classes [23], where one
class represents body-fluid proteins and the other represents
non-body fluid proteins. The SVM makes prediction based on
the function [270]:

y (x; w) =
M∑

i=1

wiai + w0 = wTx + w0 (1)

where x = {ai}M
i=1 represents one input vector. Each ai repre-

sents one aforementioned feature vector for each protein in
the training set. w = {wi}M

i=1 and w0 represent the unknown
weights to compute. The output is 1 or − 1 representing if the
input protein is movable to human body fluid or not. Among all
available kernels in SVM (e.g. linear, polynomial and Gaussian),
the Gaussian kernel [271] has been most extensively used in
protein studies using SVM [20,22–24].
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Model evaluation and selection

The classification performance is often evaluated by the sensi-
tivity, specificity, precision, accuracy and Matthews correlation
coefficient (MCC) value [25]. The formulas are shown in Equa-
tions (2–6).

Sensitivity = TP
TP + FN

(2)

Specificity = TN
TN + FP

(3)

Precision = TP
TP + FP

(4)

Accuracy = TP + TN
N

(5)

MCC = (TP × TN − FP × FN)√
(TP + FN) (TP + FP) (TN + FP) (TN + FN)

(6)

where TP, FP, TN and FN mean the number of true positives, false
positives, true negatives and false negatives, respectively. N is
the total number of proteins for prediction in a given test set
[23]. For instance, the sensitivity relates to the classifier’s ability
to correctly identify the positive examples, that is, body-fluids
proteins, while the specificity relates to the ability to correctly
identify the negative examples, that is, non-body-fluids proteins.
Note that MCC [272] is generally used as a balance measure of the
quality of two-class classifications when the classes are of very
different sizes. Additionally, the area under curve (AUC) is the
average value of sensitivity for all possible values of specificity
[273]. Last, the performance can be assessed using k-fold cross-
validation [274] to identify the optimized model, e.g. the one
achieves the highest AUC of the recall-precision curve precision.
For example, in the study of blood-secreted protein [20], the SVM
classifier achieved ∼90% sensitivity and ∼98% specificity on the
test set containing 98 secretory proteins and 6601 non-secretory
proteins of human with AUC as 0.96. Several additional datasets
were used to further assess the performance in that study [20].

Ranking-based models

Different from SVM-based binary classifier that often requires a
clean negative dataset of non-body-fluid for training, ranking-
based algorithms can be employed to rank all the candidate
proteins according to the possibility of being in body fluids
[21]. For example, the manifold ranking algorithm [275], initially
proposed to rank data points along their underlying manifold
by analyzing their relationship in Euclidean space [276], has
been used for to identify proteins in blood [21]. Specifically, a
manifold ranking algorithm uses two datasets, a true sample set
(as positive set) and an unknown sample set (as background set).
According to the relevance of the unknown sample set with the
true samples, the individual members of the unknown sample
set can be ranked [21]. An intuitive description of this algorithm
is as follows: a weighted graph is first formed, where each node
represents one sample and an edge with weight score represents
the similarity between the two nodes in the feature space; all
the nodes then propagate their scores to the nearby points via
the weighted graph; the propagation process is repeated until a
global stable state is reached (which means convergence), and
all the nodes except the true sample will have their own scores
according to which they will be ranked.

Specifically, Liu et al. performed the analysis following the
steps shown in Figure 5 [21]. A total of 11 394 proteins was used to

Figure 5. The workflow of the ranking-based models.

training the model, where 253 high-confidence secreted proteins
were used as positive data the rest are background data. As a
result, 3681 proteins were identified as human plasma proteins.
Novel blood proteins were ranked based on their relevance to
the core set of experimentally validated blood proteins. The
higher the ranked proteins, the more likely to be body-fluid
proteins. The AUC to evaluate the prediction performance is
66.3% in Liu’s study [21]. Although ranking method provides an
alternative solution for single class classification, it is not always
advantageous over binary SVM when one can generate pseudo
negative examples.

Network-based models

Considering interacted proteins may be secreted into the same
body fluid to perform their functions [26], the PPI information
was used in the prediction. The PPI community has been char-
acterized by a wide and open distribution of proteomic data
through the collection of PPI and pathway information [277]. For
example, the human PPI networks were retrieved from STRING, a
database dedicated to both physical and functional interactions
of human proteins [26].

PPI networks can be intuitively modeled as a static graph G =(
V, E

)
, where V is the set of nodes (proteins), and E is the set of

edges (PPI) [278]. The weight of undirected edge between each
pair of nodes represents the interaction confidence score in the
PPI network.

This network method for body-fluid proteome prediction
requires only a true sample set and the rest of the procedure
is follows:

i. Define the relationship fbetween the protein set (the true
sample set) and the body fluid. f = 1means this protein can
be secreted into the certain body fluid, otherwise f = 0;

ii. Denote the interaction confidence score w between the
query proteins with the protein set in the PPI network (w =
0 means no interaction);

iii. Formulate the likelihood score sas the sum of the
interaction confidence scores of the query protein with its
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Table 2. An overview of the protein prediction and application of disease biomarker. N/A = not application (no application discussion
in this article)

Study Body fluid Algorithm Size of training
data set

# of selected
features

Performance Application
outcome

Ref

Cui et al. (2008) Bloodstream SVM 6696 (151/6545) 85 0.94 (AUC) 13 biomarkers in
gastric cancer; 26
biomarkers in
lung cancer

[20]

Hong et al. (2011) Urine 3940 (1313/2627) 74 0.90 (AUC) Six biomarkers in
gastric cancer

[22]

Wang et al. (2013) Saliva 7077 (261/6816) 55 0.81 (AUC) 37 biomarkers in
breast cancer

[25]

Sun et al. (2015) Saliva 2757 (556/2201) 68 0.90
(Accuracy)

29 biomarkers in
head and neck
cancer

[24]

Wang et al. (2016) Urine 2000 (1000/1000) 87 0.93 (AUC) 29 biomarkers in
lung cancer

[23]

Liu et al. (2010) Bloodstream Ranking 11 394 (253/11 141) 85 0.66 (AUC) N/A [21]
Hu et al. (2011) Body fluids PPI 529 N/A 0.96

(Accuracy)
N/A [26]

interacting proteins that can be secreted into a certain body
fluid j;

iv. The most likely body fluid F, where the protein is secreted
should be the one with the maximum score.

Jackknife test cross-validation methods are used to examine
a predictor for its effectiveness in practical application. For the
jth order prediction, the accuracy φjobtained by the jackknife test
can be formulated as

φj = Nj

M

(
j = 1, 2, . . . , m

)
(7)

where Nj represents the number of the secreted proteins, whose
jth order predicted body fluid is one of the true body fluids, and
M represents the total number of proteins in the PPI network.

Given a query protein, the higher the likelihood score, the
more likely they are to be secreted into a certain body fluid
[26]. In [26], a breakdown of the 529 human secreted proteins
from 11 different types of body fluids based on the literature
search were used in the training dataset according to the, and
57 blood-secreted proteins were used to test this method. The
model achieved 96% accuracy based on validation.

As shown in Table 2, all those methods have shown promis-
ing prediction power in the identification of body-fluid proteins.
Particularly, the average performance (AUC or accuracy) of inde-
pendent test across all these computational methodologies is
87.0%, while the average accuracy of SVM-based methods is
90.0%.

Discussions and future perspective
As mentioned earlier, a useful repertoire of proteomics tech-
nologies is currently available for disease diagnosis and clinical-
related applications. Our article reviews a large collection of
different approaches involved in the proteomic data analysis
of human body fluids, both experimentally and computation-
ally. Current successes of the wet experimental technologies
for protein characterization have been obvious. So far, there
are over 15 000 different proteins discovered in major human
body fluids. As discussed earlier, the largest sample dataset

includes over 12 000 plasma and serum proteins; on the contrary,
the smallest set is on EBC, including approximate 220 proteins.
Further development of those technologies, especially with MS,
will likely reduce sample requirement, increase the throughput
and more effectively uncover various types of protein alterations
such as post-translational modifications [279].

In the meantime, a great variety of computational tools has
been developed to assist the analysis of body-fluid proteome and
has shown promising performance, especially in novel protein
discovery. Since the first predictor was proposed in 2008 to anno-
tate the body fluids where human protein can be secreted into
blood stream [20], it is anticipated that such methods will benefit
the relevant experimental researches and stimulate a series
of follow-up investigations into this emerging and challenging
area. As reviewed previously, machine learning-based prediction
through, e.g. SVM, has proved to be highly effective in terms of
identifying novel secreted proteins and disease biomarkers. Sim-
ilarly, both ranking and PPI network methods have made promis-
ing progress in body-fluid proteomics research. Although SVM-
based prediction has achieved decent performance, it still has
room for improvement through possibly increasing the size and
quality of the positive training set and including more relevant
features. This, however, may raise concern of computation com-
plexity in the ranking algorithm. In general, a few key aspects to
ensure a good performance of those computational predictions
include a proper data collection of high quality experimentally-
detected proteins to train the model, a comprehensive collection
of molecular features underlying possible mechanisms of the
secretion and effective techniques for feature and model selec-
tion.

Note that in general when learning larger dataset with
high-dimensional features, new challenges arise. Conventional
machine-learning techniques were somewhat limited in
processing high-dimensional data [280]. New approach based on
deep learning will likely lead to more successes in the near future
because it requires very little engineering by hand and can easily
take advantage of the increasingly-accumulated data available
in the field [281]. As an example, the deep neural network-based
model introduced in [282] can be another promising method
that facilitates the understanding of body-fluid proteome and
accelerate biomarker discovery in human disease.
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A reliable prediction of human body-fluid proteins allows
for effective targeted search for biomarker in body fluids.
When further combined with other information such as
disease-associated transcriptomic data, as reviewed above, such
framework provides an upstream tool that is highly useful for
finding candidate biomarkers associated with human diseases
or physiological phenotypes. Often a combination of several
proteins can form a signature panel for non-invasive test
in clinical practice for diseases diagnosis. Ongoing effort in
identifying and designing such effective panels for disease
detection represents other major research topics in this field,
which is beyond the scope of this review. All in all, a highly
innovative and integrative approach leveraging the strength
of both experimental profiling and computational prediction
should be further pursued along the current research line to
accelerate the process toward successful clinical applications.

Key Points
• A tremendous progress in disclosing the body-fluid pro-

teomes through high-throughput technologies has led
to a collection of over 15 000 different proteins detected
in major human body fluids. However, common chal-
lenges remain with current proteomics technologies
about how to effectively handle the large variety of
protein modifications in those fluids.

• Major computational studies focused on the predic-
tion of body-fluid-related secreted proteins have been
reviewed in this article along with discussion on various
bioinformatics techniques and tools.

• Machine-learning models have been successfully
applied in the prediction of various types of pf human
secretome, as well as disease biomarker discovery.

• Circulating proteins play important roles as disease
markers for diagnosis and prognosis application.

• Further research focused on data-driven discovery of
disease protein markers through reliable modeling and
computational prediction are emerging. New insights
about future applications are presented.
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