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The development of tissue fibrosis in the context of a wound-healing response to injury is
common to many chronic diseases. Unregulated or persistent fibrogenesis may lead to
structural and functional changes in organs that increase the risk of significant morbidity
and mortality. We will explore the natural history, epidemiology, and pathogenesis of
fibrotic disease affecting the lungs, kidneys, and liver as dysfunction of these organs
is responsible for a substantial proportion of global mortality. For many patients with
end-stage disease, organ transplantation is the only effective therapy to prolong life.
However, not all patients are candidates for the major surgical interventions and life-long
immunosuppression required for a successful outcome and donor organs may not be
available to meet the clinical need. We will provide an overview of the latest treatment
strategies for these conditions and will focus on stem or progenitor cell-based therapies
for which there is substantial pre-clinical evidence based on animal models as well as
early phase clinical trials of cell-based therapy in man.
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INTRODUCTION

An appropriate response to injury is required for homeostasis. While injury may take many forms,
the repair response is typically generic. An understanding of aberrant wound repair has direct
relevance to human disease given that organ fibrosis has been estimated to contribute to 45%
of all-cause human mortality (Wynn, 2004). While large, this statistic should not be surprising
given the significance of fibrosis in chronic diseases affecting multiple organs (Table 1). Despite
an extensive understanding of fibrogenesis in response to injury, no effective anti-fibrotic therapies
are currently available. The highly conserved wound healing response is also highly redundant with
multiple overlapping pathways suggesting that inhibition of a single candidate molecule or pathway
is insufficient and new approaches are required. Based on this notion, cell-based therapies with the
potential to alter multiple therapeutic targets are gaining popularity. A broad discussion of all stem
cell types is beyond the focus of this mini-review. We will concentrate on mesenchymal stem cells
(MSCs), which form the largest experience in cell therapy, as well as our work with placental stem
cells.
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LUNG FIBROSIS

Epidemiology, Burden of Disease, and
Natural History
Pulmonary fibrosis is a family of over 200 chronic lung
diseases stemming from multiple underlying causes including
autoimmune diseases such as scleroderma and rheumatoid
arthritis. Pulmonary fibrosis may be a consequence of
environmental exposure to inhaled dust, bacteria, or molds,
but can also arise following exposure to cancer treatments
such as radiation therapy or chemotherapy using bleomycin or
methotrexate. However, idiopathic pulmonary fibrosis (IPF), a
type of pulmonary fibrosis where the cause is unknown occurs in
3–9 per 100,000 people annually based on conservative estimates
from Europe and North America (Hutchinson et al., 2015). The
incidence of IPF is increasing globally, comparable to many
cancers (Hutchinson et al., 2015). A low incidence of IPF in some
countries may reflect exclusion of milder cases or inconsistent
classification. The severity of reported disease appears to be
greater in East Asia, where the majority of cases were recorded as
“unspecified interstitial lung disease” rather than IPF (Munakata
et al., 1994; Ohno et al., 2008; Lai et al., 2012; Han et al., 2013).

Current Clinical Management
The clinical progression of IPF is often slow and gradual but an
accelerated decline has been reported in some patients, associated
with episodes of acute respiratory exacerbations. The median
survival rates are historically poor at 2–3 years, with 5-year
survival ranging between 30 and 50% (Bjoraker et al., 1998;
Mapel et al., 1998; Rudd et al., 2007; Raghu et al., 2011). To
date, lung transplantation remains the only intervention with
proven benefit. Corticosteroid use is discouraged due to the

TABLE 1 | Fibrosis as a major component of chronic diseases.

Organ Conditions

Skin Systemic sclerosis (may involve lung and kidney)

Keloids, burns

Lung Idiopathic pulmonary fibrosis

Interstitial lung disease (multiple aetiologies)

Cystic fibrosis (may involve pancreas)

Heart, blood vessels Congestive heart failure/cardiac fibrosis

Atherosclerosis (affects multiple organs)

Liver Cirrhosis (multiple aetiologies)

Hepatorenal fibrocystic diseases

Intestine Crohn’s disease

Post-operative adhesions

Pancreas Chronic pancreatitis

Kidney End-stage renal disease (diabetes or hypertension)

Renal interstitial fibrosis

Immune system Chronic graft vs. host disease

Musculo-skeletal
system

Rheumatoid arthritis (may involve lung)

Ankylosing spondylitis

IgG4-related retroperitoneal fibrosis

association between steroid use and survival rates following acute
exacerbations (Papiris et al., 2015).

While drugs such as nintedanib and pirfenidone appear to
reduce disease progression, widespread usage is unlikely due to
their high cost and conflicting data surrounding clinical efficacy.
Currently, the proposed use of pirfenidone is to bridge between
diagnosis and lung transplantation (Delanote et al., 2016).
Nintedanib has also been found to prevent disease progression,
and both drugs are comparable in terms of their estimated costs
and health-related quality of life benefits (Rinciog et al., 2017).
However, neither is curative and their cost is high (£100,000 per
QALY). Thus, there is a need to identify alternative therapies.

Pathophysiology
Historically, IPF was believed to be an inflammatory disorder
that progresses to fibrosis. The failure of anti-inflammatory
and immunosuppressive therapeutic strategies triggered the
need for reassessment (Selman et al., 2001; Raghu et al.,
2012). The current consensus is that IPF is a consequence of
multiple interacting genetic and environmental risk factors, with
repeated damage and premature aging of alveolar epithelial
cells (AECs) in genetically susceptible individuals (Wells and
Maher, 2017). One robust genetic linkages to IPF is MUC5B
polymorphism; however, the role of this gene in IPF pathogenesis
remains undefined (Conti et al., 2016; Nakano et al., 2016).
Unsurprisingly, the prototypic pro-fibrotic transforming growth
factor-β (TGFβ) plays a central role in IPF, and while its function
is well described, the source of excess TGFβ and activation of
its latent form are poorly understood. A recent study by Froese
et al. (2016) uncovered a role for mechanotransduction in TGFβ

activation, unique to fibrotic lungs, suggesting that the physical
stiffness of IPF lungs and mechanical forces applied to fibrotic
lungs may contribute to disease perpetuation. Premature aging,
telomere shortening, and alveolar senescence are also thought
to contribute to IPF pathogenesis. Telomere dysfunction in
AECs but not collagen-producing cells is responsible for age-
related lung fibrosis (Naikawadi et al., 2016). When telomere
dysfunction was conditionally induced in type 2 AECs (AEC2)
in mice, an AEC2-induced cytokine response was detected
and when challenged with bleomycin, a 100% mortality rate
was observed, supporting the critical role of telomere function
in AEC2 for alveolar repair (Alder et al., 2015). Given
the role of AEC2 as alveolar progenitor cells, Adler et al.
concluded that alveolar stem cell failure might contribute to
lung fibrosis. These observations have led some to postulate that
a regenerative approach is required (Chambers and Hopkins,
2013).

Cell Therapies for IPF
To date there are six Phase I/II clinical trials (ClinicalTrials.gov)
using stem cells for IPF, predominantly allogeneic bone
marrow-derived MSCs (NCT01919827, NCT02594839, and
NCT02013700). However, placenta and adipose tissue-derived
MSCs have also been tested (NCT01385644 and NCT02135380).
Interest in MSC-based therapies is attributed to their reported
immunomodulatory and anti-fibrotic properties exerted through
paracrine mediators. For example, there is recent evidence that
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MSC can reduce ER stress, thereby improving survival and
function of AEC2 through the release of hepatocyte growth
factor (Nita et al., 2017). One current clinical trial is aimed
at a specific subset (p63+/Krt5+) of the patient’s own lung
stem cells (NCT02745184), with the purpose of encouraging cell
engraftment and restoring the lost p63+/Krt5+ distal airway
stem cells in the fibrotic lung (Zuo et al., 2015). The outcomes of
two trials have been published. Allogeneic placental MSCs given
at a dose of 1 or 2 × 106 cells/kg body weight were well tolerated
in moderate to severe IPF (Chambers et al., 2014). Similarly, a
single infusion of 20, 100, or 200 million allogeneic bone marrow
MSCs was well tolerated by patients with mild to moderate
IPF (Glassberg et al., 2016). While these safety outcomes are
encouraging, clinical efficacy remains to be determined.

KIDNEY FIBROSIS

Epidemiology and Pathogenesis of
Fibrosis in Kidney Disease
The epidemic of chronic kidney disease (CKD) and end-stage
renal failure (ESRF) is a crisis for global healthcare. There is
urgent need for new therapeutic options considering the high
morbidity of dialysis, extensive healthcare costs, and donor-
kidney shortages. Known risk factors for CKD include age,
hypertension, obesity, and diabetes (McMahon et al., 2014).

Regardless of etiology, the common end-point of kidney
injury is fibrosis leading to CKD development (Samarakoon
et al., 2012). An excessive inflammatory and fibrotic response
to injury results in decreased renal function as the renal
tubules are damaged by scar tissue (Hewitson, 2009). Following
initial renal injury, endogenous kidney cells release pro-
inflammatory chemokines (Balasubramanian, 2013) that recruit
inflammatory cells, activating fibroblasts, and causing tubular
dilation (Meran and Steadman, 2011). The recruited immune
cells release further inflammatory cytokines including those
from the TGFβ superfamily and mitogen-activated protein
kinases (MAPK/ERK) that activate fibrotic genes through SMAD
signaling (Chevalier et al., 2010), leading to interstitial fibrosis
and extracellular matrix accumulation. While inflammation and
the TGFβ pathway are essential for normal kidney development
and homeostasis, unopposed expression results in a harmful cycle
of injury as seen in CKD (Schnaper et al., 2009).

Potential of Cell-Based Therapies for
Kidney Disease
Stem or progenitor cell therapies offer a strategy for modulating
CKD progression by suppressing multiple pathogenic pathways
and promoting pro-regenerative mechanisms. MSCs are pursued
as a therapeutic tool as they are immunomodulatory, easily
obtainable from bone marrow, and can be expanded in culture
for use in the clinic (Yagi et al., 2010). MSCs elicit endogenous
repair through paracrine and/or endocrine mechanisms that
modulate the immune response, ultimately allowing for cellular
replacement. In pre-clinical studies we have demonstrated
that MSCs have immunomodulatory properties, and secrete

anti-inflammatory cytokines that promote inhibition of pro-
inflammatory cytokines (Wise et al., 2014; Huuskes et al., 2015;
Wise et al., 2016). MSCs have been used in experimental and
clinical settings to improve diabetes and diabetic complications
including kidney fibrosis. Recent clinical trials show that MSCs
are safe and well tolerated in diabetes (Skyler et al., 2015);
however, the diabetic microenvironment and/or comorbidities
alter the quality or efficacy of MSCs following transplantation.
Further mechanistic studies are needed to understand how MSCs
protect against fibrotic injury and to improve efficacy following
cell transplantation to overcome the transient clinical benefits
that observed to date.

Endothelial progenitor cells (EPCs) also have therapeutic
potential. EPCs can be mobilized from the bone marrow
and adventitial tissue surrounding endothelial cells (ECs), and
home toward sites of injury. There, they influence the release
of vasoactive substances or directly differentiate into mature
ECs to regenerate damaged endothelium. Diabetes-related EPC
dysfunction is closely linked to the impaired healing response
experienced by many patients with diabetic CKD. Circulating
EPCs are low in type 2 diabetic patients and the loss of function
of these cells may contribute to the vasodegenerative changes
observed in diabetic micro- and macrovasculature disease
(Schatteman et al., 2000). Therefore, harnessing the vascular
reparative properties of EPCs represents a novel treatment
for therapeutic revascularization and vascular repair for CKD
patients with diabetes.

Challenges to Reverse Kidney Fibrosis to
Promote Repair
A growing number of clinical trials show that MSCs are safe and
well tolerated in diabetes (Skyler et al., 2015). The exogenous
application of angiogenic-stimulating EPCs has shown promise
for treatment of kidney failure, heart disease, and diabetes
including retinopathy (Stitt et al., 2013). Both MSCs and
EPCs mediate their effects largely through paracrine signaling
and therefore require microenvironments that support optimal
cell engraftment and proliferation. However, impediments in
clinical translation occur due to low cell survival rates following
transplantation that limit therapeutic efficacy (Chevalier et al.,
2010). In particular, the fibrosis and chronic inflammation
hamper cell survival and limit the cell integration into host tissue.
Modulation and removal of the fibrotic lesion is therefore crucial
to facilitate cell integration. In addition, the low number of
transplanted cells retained at the site of injury also hampers stem
cell efficacy.

To overcome these limitations, we recently reported a bimodal
attack by combining MSC therapy and relaxin (RLX) to combat
kidney fibrosis progression and aid in MSC survival (Huuskes
et al., 2015). Combined MSCs and RLX administration in
an obstructive nephropathy model significantly ameliorated
kidney fibrosis, reduced macrophage infiltration, myofibroblast
proliferation, and upregulated active MMP-2 compared to either
therapy alone. This suggested that rather than inhibiting collagen
accumulation, combination therapy induced significant collagen
degradation. We provide evidence that RLX may influence
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MSCs in vivo creating a more favorable environment for
MSC-mediated repair (Huuskes et al., 2015). Targeting fibrosis
resolution and limiting vascular damage may also be beneficial
through combination therapy, as kidney function is dependent
on adequate organ perfusion.

LIVER FIBROSIS

Epidemiology, Burden of Disease, and
Natural History
Globally in 2013, cirrhosis was the 6th cause of life years lost
in developed countries; ranging from 5th in Europe and central
Asia, to 9th in southeast Asia and Oceania. In the United States,
cirrhosis was the 12th leading cause of death overall and the
5th in adults aged 45–54 years (Heron, 2012). Common causes
of chronic injury leading to cirrhosis include non-alcoholic
steatohepatitis (NASH), alcohol use, and viral hepatitis.

Hepatic fibrosis will progress to cirrhosis in many patients
unless the cause of injury is removed. Progressive hepatocyte
loss and subsequent disruption of the hepatic vasculature
by unregulated ECM expansion result in liver insufficiency
characterized by jaundice, coagulopathy, and hypoalbuminemia.
Portal hypertension leads to ascites, variceal hemorrhage, and
hepatic encephalopathy. The onset of any of these conditions
defines hepatic decompensation, which has a significantly higher
1-year mortality than compensated cirrhosis, 20% compared
with 5% in one study of 700 patients (Zipprich et al., 2012).
In these patients, the only treatment that alters long-term
survival is liver transplantation. Unfortunately, not all patients
are transplantation candidates and wait-list mortality remains a
concern (Toniutto et al., 2016).

Pathogenesis
Hepatic fibrogenesis involves a dynamic interplay among hepatic
stellate cells (HSCs), macrophages, and liver progenitor cells
(LPCs). HSCs are pericytes that store vitamin A. During
chronic liver injury, they transform to myofibroblasts, acquire a
contractile phenotype, and accumulate at sites of injury where
they secrete large amounts of ECM including collagen. TGFβ

is a major fibrogenic cytokine that triggers HSC activation and
ECM production and induces hepatocyte apoptosis (Gressner,
2002). Platelet-derived growth factor (PDGF) is the most potent
mitogenic cytokine for HSC (Borkham-Kamphorst et al., 2007).
These cytokines are logical targets for drug development.
Blocking TGFβ and PDGF signaling has been effective in
ameliorating experimental liver fibrosis (Yata et al., 2002;
Liu et al., 2011), however, off-target effects hinder clinical
development.

Kupffer cells (resident liver macrophages) and recruited
circulating monocytes contribute to inflammation, fibrogenesis,
and fibrosis resolution. Macrophages are capable of distinct
activation states and functions, broadly classified as M1 (classical)
or M2 (alternative) (Mantovani et al., 2004). M1 macrophages
are classically pro-inflammatory, whereas M2 macrophages
are responsible for immunomodulation and wound-healing
responses. In addition a fibrolytic macrophage subset (Ly6Clo)

that produces high levels of matrix metalloproteinases
that contribute to ECM degradation has been described
(Ramachandran et al., 2012).

LPCs are rare in healthy tissue but proliferate and differentiate
into cholangiocytes or hepatocytes during chronic liver injury.
The LPC response corresponds with the degree of liver injury
(Lowes et al., 1999; Roskams et al., 2003) because, unlike
hepatocytes, LPC resist the anti-proliferative actions of TGFβ

(Nguyen et al., 2007). LPC express surface markers representative
of their primitive, undifferentiated state such as Thy-1 (CD90),
prominin (CD133), and pan-cytokeratin. A close physical
relationship exists between HSC and LPC suggesting that the two
cell types proliferate in tandem as HSC depletion significantly
dampens the LPC response (Roskams, 2008; Ruddell et al., 2009).
HSC produce soluble factors that increase LPC proliferation
and hepatocyte differentiation (Nagai et al., 2002; Lin et al.,
2008) and ECM proteins produced by HSC, such as laminin,
may activate the LPC response (Kallis et al., 2011). Conversely,
LPC produce lymphotoxin (LT), which recruits HSC through
paracrine signaling (Ruddell et al., 2009). LPC also recruit
macrophages via CCL2 and CX3CL1. Macrophage-derived TNF
and LT, in turn, influence LPC response (Viebahn et al., 2010).

Treatment of Hepatic Fibrosis
The concept that hepatic fibrosis develops from a wound-
healing response to chronic injury provides a rational basis
for treatment. Diminishing liver injury by inhibiting chronic
hepatitis B replication results in significant fibrosis regression
in cirrhotic patients (Marcellin et al., 2013). Similar outcomes
occur in patients with chronic hepatitis C infection (Hoefs
et al., 2011). In diseases without specific therapy, a general
anti-fibrotic approach might be useful. However, a recent trial
of a monoclonal antibody against lysl-oxidase-like 2, which
mediates collagen cross-linkage, was not effective (Meissner
et al., 2016). Considering the complex interactions involved
in hepatic wound healing, cell-based therapy may provide a
strategy to control inflammation, degrade collagen, and promote
hepatic parenchymal regeneration. Human clinical trials have
utilized MSC with variable cell doses, delivery routes, and
administration frequency (Table 2). Trial endpoints commonly
include liver tests, ascites volume, or clinical scores (Child–Pugh–
Turcotte, model for end-stage liver disease). To date, outcomes
have yet to translate into clinical practice. Furthermore, there
is experimental evidence that bone marrow-derived MSC can
contribute to hepatic fibrosis (Russo et al., 2006). MSCs as an
anti-fibrotic therapy has been critically reviewed (Haldar et al.,
2016).

We studied human amnion epithelial cells (hAECs), fetus-
derived stem-like cells that arise prior to gastrulation and
are easily isolated from the placenta, which is an abundant
and ethically undisputed source. hAEC prevent and reverse
inflammation and established fibrosis in immunocompetent
animal models of liver injury (Manuelpillai et al., 2010), diminish
myofibroblast activation, and skew hepatic macrophages toward
a reparative phenotype (Manuelpillai et al., 2012). Similar effects
are seen with cell-free conditioned media, suggesting that hAEC
release factors responsible for the observed outcomes (Hodge

Frontiers in Pharmacology | www.frontiersin.org 4 September 2017 | Volume 8 | Article 633

http://www.frontiersin.org/Pharmacology/
http://www.frontiersin.org/
http://www.frontiersin.org/Pharmacology/archive


fphar-08-00633 September 20, 2017 Time: 15:49 # 5

Lim et al. Regenerative Medicine for Fibrotic Diseases

TABLE 2 | Summary of reports from clinical trials assessing safety and efficacy of cell therapies for lung and liver fibrosis.

Study Number of
patient
treated/
control

Cell type Route Number of cells
transfused/
number of
injections

Functional
benefit sustained
to end of F/U
period?

Safety

Clinical trials in lung fibrosis

Tzouvelekis et al.,
2013

14/0 Autologous
adipose stromal
cells

Endobronchial 0.5 × 106/kg body
weight single
injection

No, 12 months No serious
side-effects or
complications

Chambers et al.,
2014

8/0 Allogeneic placental
MSC

Intravenous 1 × 106;
2 × 106 kg
body weight
single injection

No, 6 months One chest
infection; one IPF
exacerbation

Glassberg et al.,
2016

9/0 Allogeneic BM
MSC

Intravenous 20, 100, or
200 × 106

single injection

Yes, 6 months No serious
side-effects or
complications

Clinical trials in liver fibrosis

Terai et al., 2006 9/0 Autologous BM Peripheral IV 2.21–8.05 × 109

Avg. 5.2 × 109
Significant
decrease in
average CPT at 4
and 24 weeks

All had fever (38◦C)
at 1 day
post-therapy

Couto et al., 2011 8/0 Autologous BM
MNC

HA 2–15 × 108

single injection
Yes, 2 months
No, 12 months

Amer et al., 2011 20/20 Hepatocyte lineage
from autologous
BM MNC

Intrahepatic or
intrasplenic

5 mL of cell
suspension
(2 × 106/mL)
single injection

Yes, 6 months Fever within 24 h
after injection in 10
subjects (50%)

Peng et al., 2011 53/105 Autologous BM HA 106/mL, number
transfused not
stated

Yes, 3 and
9 months
No, 48 months

No serious
side-effects or
complications

El-Ansary et al.,
2012

15/10 BM MNC nine
undifferentiated
six HC
differentiated

Peripheral IV 106/kg
(40% HLC, 60%
MSC)
single injection

Yes, 3 and
6 months

No safety
evaluation

Zhang et al., 2012 31/15 Umbilical cord MSC Peripheral IV 0.5 × 106/kg body
weight

Yes, 48 weeks Four had fever
38◦C at 2–6 h

Mohamadnejad
et al., 2013

15/12 BM MSC Peripheral vein
(30 min)

195 million
(120–295 million)
single injection

No difference
between treated
and control

Lukashyk et al.,
2014

6/0 BM MSC Intrahepatic 5 mL suspension,
1 × 106/kg
single injection

Yes, 1 and
6 months

No safety
evaluation

Salama et al., 2014 20/20 G-CSF, autologous
BM MSC

Peripheral IV 1 × 106/kg body
weight

Yes, 6 months

Mohamadnejad
et al., 2016

18/9 Eight CD133+

nine BM MNC
Portal vein 4.7 × 106–

9.17 × 108

(averages)
two injections

Yes, 3 months
No, 6 months

No procedural
complications

et al., 2014). Liver fibrosis reduction also occurs in hAEC-treated
mice given a “Western diet” high in lipids and fructose to model
fatty liver disease (unpublished). A phase 1 safety trial is planned
in patients with compensated cirrhosis.

SUMMARY

The global burden of end-stage fibrotic disease can be seen in
the impaired survival of patients with IPF, diabetic CKD, and
cirrhosis. Fortunately, the pathogenesis of fibrosis in response
to injury is relatively well understood and remarkably similar in

different organs, suggesting that an integrated approach may be
possible. Control or removal of the injury stimulus should be the
primary focus in preventing disease progression, yet for many
control is incomplete or unachievable, thus the need for a broadly
effective anti-fibrotic therapy that targets multiple fibrogenic
pathways remains. Cell-based approaches employing stem cells
that are easy to isolate and upscale to sufficient quantities for
clinical use have been successfully characterized in animal models
of organ fibrosis. While the outcomes of early phase clinical
trials indicate that cell-based (primarily MSC) therapies are safe,
efficacy data remain scarce. Consequently, cell-based therapies
remain largely experimental. The lack of robust efficacy data
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may be due to the heterogeneity of MSC populations as well
as limited agreement regarding differentiation state, doses, and
administration regimens. Challenges remain in determining the
goals of cell therapy – whether to supply sufficient cells to
replace damaged parenchyma, to dampen inflammation with
the aim of decreasing fibrosis, or to stimulate endogenous
progenitor cells and repair processes. Furthermore, the ability to
manufacture, transport, and store stem cells in a cost-effective
manner must be considered. Clinical trials will continue to
inform us about the most effective stem cell types on which
to base therapy as well as the optimal dosages necessary to
achieve a clinically meaningful reduction in fibrosis-related organ
dysfunction.
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