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Abstract: Objective: Hippocampal volume is reduced in patients with major depressive disorder
(MDD) compared with healthy controls. The hippocampus is a limbic structure that has a critical
role in MDD. The aim of the present study was to investigate the changes in the volume of the
hippocampus and its subfields in MDD patients who responded to antidepressants and subsequently
were in continuous remission. Subjects and Methods: Eighteen patients who met the following criteria
were enrolled in the present study: the DSM-IV-TR criteria for MDD, drug-naïve at least 8 weeks or
more, scores on the 17-items of Hamilton Rating Scale for Depression (HAMD) of 14 points or more,
and antidepressant treatment response within 8 weeks and continuous remission for at least 6 months.
All participants underwent T1-weighted structural MRI and were treated with antidepressants
for more than 8 weeks. We compared the volumes of the hippocampus, including its subfields,
in responders at baseline to the volumes at 6 months. The volumes of the whole hippocampus and
the hippocampal subfields were measured using FreeSurfer v6.0. Results: The volumes of the left
cornu Ammonis (CA) 3 (p = 0.016) and the granule cell layer of the dentate gyrus (GC-DG) region
(p = 0.021) were significantly increased after 6 months of treatment compared with those at baseline.
Conclusions: Increases in volume was observed in MDD patients who were in remission for at least
6 months.

Keywords: brain morphology; major depressive disorder; hippocampus; cornu Ammonis; dentate
gyrus; antidepressant

1. Introduction

Major depressive disorder (MDD) is a lifelong, episodic, prevalent and disabling mental disorder
found in individuals worldwide. The cause of MDD is multifactorial, including genetic, neurobiological,
and environmental factors, as well as their interactions. The hippocampus plays an important
role in MDD. According to the reviewed literature, MDD is characterized by an altered structural
network that encompasses reduced volumes of the orbitofrontal cortex(OFC), anterior cingulate,
hippocampus, and striatum [1]. The anterior cingulate cortex, amygdala and hippocampus comprise
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an interconnected prefrontal neocortical and limbic network that is dysregulated in MDD. Modulation
of this prefrontal–limbic network occurs primarily through the hypothalamus, basal ganglia and
midbrain [2]. Structural abnormalities in the hippocampus are present in MDD. This region is
considered to regulate behavioral and neuroendocrine responses to stress and can be damaged by
excessive exposure to the stress-induced release of steroidal and inflammatory signaling molecules [3].
The hippocampus is a complex structure and is related to many emotional, memory, and cognitive
functions. MDD is associated with a volume reduction in the hippocampus compared with healthy
controls, a finding that has been relatively consistent across studies [4–6]. The structure of the
hippocampus comprises 26 subfields (13 left and 13 right) with distinct morphologies [7,8].

Increased right hippocampal volumes have been found in female responders compared to
nonresponders after 8 weeks of fluoxetine treatment among MDD patients [9]. On the other hand,
treatment with escitalopram did not result in a change the hippocampal volume [10]. Maller et al. [11]
determined that a larger hippocampal tail volume was positively related to clinical remission between
patients who did and did not undergo remission to antidepressant medications in volume analyses
of 12 hippocampal subfields. Cao et al. [12] found that ECT-induced volume increases in the cornua
Ammonis (CAs), the dentate gyrus layer (GCL), the molecular layer (ML) and the subiculum by using a
segmentation pipeline. Thus, it has not been elucidated whether treatment with antidepressants affects
the hippocampal volume, and changes in hippocampal volume after recovery from MDD remain
unclear. It remains unclear if hippocampal volume is reduced in hippocampus in MDD or if volume
increases in remission. Volume reduction may be due to disease severity, duration, or recurrent nature
of MDD, or to the age of onset.

To the best of the authors’ knowledge, no previous reports have investigated the volume of
hippocampal subfields after 6 months of continuous remission in MDD patients after treatment
with antidepressants, therefore the aim of the present study was to investigate the changes in the
volumes of the hippocampus and its subfields in MDD patients who responded to antidepressants and
subsequently are in continuous remission.

2. Results

2.1. Participants

Eighteen participants responded to treatment with antidepressants, and none were relapsed within
at least 6 months. We demonstrate the HAMD score trajectory of each case in Figure 1. The subfields
of the hippocampus are shown in Figure 2a–c.
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Figure 1. The HAMD score trajectory of each MDD case. Each line presents the change the HAMD
score at baseline, 8 weeks, and 6 months after starting antidepressants.
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Figure 2. Representative subdivision of the hippocampal subfields. The mask of each region was 
overlaid on coronal T1-weighted images from anterior (a), middle (b), to posterior (c). Color 
classification: parasubiculum = yellow; presubiculum = black; subiculum = blue; cornu Ammonis (CA) 
1 = red; CA3 = dark green; CA4 = brown; granule cell layer of the dentate gyrus (GC-DG) = sky blue; 
hippocampus-amygdala transition area (HATA) = green; fimbria = purple; molecular layer of the 
hippocampus (HP) = dark brown; hippocampal fissure = dark purple; hippocampal tail = gray. 

2.2. Volume of Whole-Hippocampus 

No significant difference was found between the volume of whole hippocampus at baseline and 
six months after treatment initiation (Figure 3a,b, Table 1a and 1b). 

2.3. Volumes of Hippocampal Subfields 

A significant volume increase was found at 6 months in the molecular layer of hippocampus, 
the GC-MLDG, the CA3 (Figure 3a). We did not find a significant change in any other subfield volume 
at right (Figure 3b). 

 

(a) 

Figure 2. Representative subdivision of the hippocampal subfields. The mask of each region
was overlaid on coronal T1-weighted images from anterior (a), middle (b), to posterior (c).
Color classification: parasubiculum = yellow; presubiculum = black; subiculum = blue; cornu Ammonis
(CA) 1 = red; CA3 = dark green; CA4 = brown; granule cell layer of the dentate gyrus (GC-DG) = sky
blue; hippocampus-amygdala transition area (HATA) = green; fimbria = purple; molecular layer of the
hippocampus (HP) = dark brown; hippocampal fissure = dark purple; hippocampal tail = gray.

2.2. Volume of Whole-Hippocampus

No significant difference was found between the volume of whole hippocampus at baseline and
six months after treatment initiation (Figure 3a,b, Table 1a,b).

2.3. Volumes of Hippocampal Subfields

A significant volume increase was found at 6 months in the molecular layer of hippocampus,
the GC-MLDG, the CA3 (Figure 3a). We did not find a significant change in any other subfield volume
at right (Figure 3b).
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Figure 3. subfield volume in hippocampus at left (a) and right (b). T0; baseline, 6M; after 6 months, 
Y-axis shows volume in hippocampus subfields (mm3).Vertical bar means standard error (SEM). 
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Figure 3. Subfield volume in hippocampus at left (a) and right (b). T0; baseline, 6M; after 6 months,
Y-axis shows volume in hippocampus subfields (mm3).Vertical bar means standard error (SEM).

Table 1. Volumes of Hippocampal Subfields at left (a), and right (b).

(a) (b)
T0 6M T0 6M

n 18 18 n 18 18
Mean ± SD

(mm3)
Mean ± SD

(mm3) p-value Mean ± SD
(mm3)

Mean ± SD
(mm3) p-value

left_Hippocampal_tail 521.9 ± 93.2 509.7 ± 88.8 0.063 right_Hippocampal_tail 565.2 ± 94.9 560.3 ± 98.6 0.428
left_subiculum 432.0 ± 61.8 434.6 ± 62.7 0.36 right_subiculum 444.9 ± 65.9 445.4 ± 68.2 0.837

left_CA1 608.6 ± 88.6 617.0 ± 86.6 0.074 right_CA1 653.7 ± 92.9 652.8 ± 97.4 0.808
left_hippocampal-fissure 173.1 ± 27.0 176.9 ± 29.8 0.358 right_hippocampal-fissure 199.9 ± 44.7 201.9 ± 39.4 0.711

left_presubiculum 286.0 ± 50.2 279.3 ± 46.7 0.088 right_presubiculum 263.2 ± 41.7 259.2 ± 43.7 0.314
left_parasubiculum 40.3 ± 12.1 40.3 ± 10.3 0.984 right_parasubiculum 43.2 ± 8.8 42.7 ± 9.5 0.505

left_molecular_layer_HP 571.1 ± 64.3 578.0 ± 63.7 0.046 right_molecular_layer_HP 604.8 ± 64.8 608.2 ± 71.3 0.347
left_GC-ML-DG 307.6 ± 40.3 313.2 ± 38.7 0.021 right_GC-ML-DG 338.2 ± 37.8 340.1 ± 40.4 0.495

left_CA3 204.3 ± 36.4 211.5 ± 36.1 0.016 right_CA3 232.1 ± 33.2 235.3 ± 35.5 0.059
left_CA4 273.1 ± 37.8 277.4 ± 34.6 0.1 right_CA4 299.0 ± 34.9 301.3 ± 37.0 0.34

left_fimbria 84.6 ± 16.9 88.5 ± 18.1 0.135 right_fimbria 78.9 ± 23.1 79.2 ± 23.5 0.892
left_HATA 49.5 ± 10.4 51.1 ± 10.2 0.099 right_HATA 55.2 ± 9.5 55.8 ± 9.5 0.308

left_Whole_hippocampus 3379.0 ± 381.1 3400.5 ± 376.8 0.131 right_Whole_hippocampus 3578.3 ± 421.7 3580.2 ± 444.0 0.916

2.4. Change in the HAMD Score and in the Volume of the DG and CA3 Region

There was no correlation between the change in the HAMD score and the volume increases in the
molecular layer of the left hippocampus, the left GC-DG, the left CA3 regions (Figure 4).
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3. Discussion

We recruited first-episode, drug-naïve MDD patients and subsequently followed them for
at least 6 months. All participants had undergone baseline MRI before starting any treatments,
including pharmacotherapy. The volumes of the left cornu Ammonis (CA) 3, the left CG-DG and
the whole hippocampus were increased in the MDD patients who responded to antidepressants and
were subsequently in continuous remission. However, the volumes of the subfields and the whole
hippocampus were not correlated to the HAMD score. The reason for this lack of correlation remains
unknown. The weakest point of the present study is the lack of the normal controls and MDD patients
who were not in continuous remission. Future studies should consider investigating the correlation
using only MDD patients who did not undergo remission due to the negative results.

Brain imaging studies of the hippocampus in patients and stress-induced animal models with
either depression or anxiety disorders indicate a remarkable reduction in hippocampal region volume
and the number of dendritic spines [13,14]. Potentially underlying these structural anomalies, chronic
stress has been shown to have detrimental effects on hippocampal neurogenesis and neuroplasticity in
these individuals [15,16], consequently leading to cognitive and emotional symptoms of depression and
anxiety. The hippocampus is not a uniform structure and consists of several subfields, such as CA (1–4)
and the DG, which includes a GCL and an ML. It is known that cellular and molecular mechanisms
associated with MDD may be localized to specific hippocampal subfields. Thus, it is necessary to
investigate the link between the in vivo hippocampal subfield volumes and MDD. Hippocampal
subfields CA (1–3) are reduced by experimental stress in animal studies [17], which is consistent with
human behavioral findings of the preferential impact of early-life maltreatment stress, particularly
in high-risk patients [18]. The sub-granular zone of the dentate gyrus is only source of neurogenesis
in the hippocampus [19]. Thus, the finding of an increase in the volume of these regions observed
after remission and subsequent recovery in MDD patients is not a contradiction. The treatment
with fluoxetine, a selective serotonin reuptake inhibitor promotes the hippocampal neurogenesis in
rodents [20]. Based on the postmortem study, dentate granule cell number and dentate gyrus size
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in medicated patients with depression are larger than those in nonmedicated patient [21]. SSRIs,
lithium, and electroconvulsive therapy produce larger increases in hippocampus volume in treated
depressed patients than in nontreated patients [22,23]. Huang et al. reported hippocampal subfields
has revealed larger dentate gyri in medicated depressed patients [24]. Although the mechanisms
of the neurogenesis remain unknown, glycogen synthase kinase-3β/β-catenin signaling might be
involved in the mechanism of how antidepressants might influence hippocampal neurogenesis [25].
Recently, it has been reported that Tropomyosin receptor kinase B-dependent neuronal differentiation
is involved in the sustained antidepressant effects of ketamine, which has potent antidepressive
efficacy [26]. Nevertheless, there is no adequate evidence to establish that hippocampal neurogenesis
is necessary for the antidepressant’s efficacy [27,28]. The volumes of the bilateral CA1, bilateral CA4,
left CA2/3, bilateral GCL, and bilateral ML were decreased in medicated MDD patients compared with
healthy subjects [29]. The volumes of GC-DG and CA (1–3) were also decreased in unmedicated MDD
patients compared with healthy controls [24]. On the other hand, Brown et al. [30] reported that there
were no significant differences between MDD patients and healthy subjects in hippocampal subfield
volume. Recently, we also reported that the volumes of all hippocampal subfields did not significantly
differ between MDD patients and healthy controls [31]. Taken together, it remains controversial
whether a significant difference exists in hippocampal subfield volume between MDD patients and
healthy subjects.

FreeSurfer v6.0 was used for image processing. For all scans, “recon-all” and Longitudinal
Processing [32,33] were performed first. After Longitudinal Processing, brain structure volumes were
calculated based on Aseg segmentation. In addition, we calculated hippocampal subfield volumes
using longitudinal segmentation [24,34]. The motivation behind the use of Longitudinal Processing was
to generate topologically equivalent surface meshes for any volumes under comparison. The surface
mesh generated from the unbiased within-subject template was used for repositioning of the surface
mesh relative to each volume. The repositioning procedure provided surfaces with the same geometry.
Therefore, longitudinal processing may provide a more accurate estimate of differences [32,33,35].

Several limitations exist in the present study. First, this study has a small sample size, which
was heterogeneous. Second, pharmacological treatment regulated. Third, we could not compare the
difference in volume change between the two groups referring to single episode vs. recurrent/multiple
episodes in the present study because of the few subjects in recurrent/multiple episodes. Fourth,
we included neither a control group nor a group that did not undergo remission. Therefore, we should
perform further studies considering the above points. We are now performing new project comparing
the hippocampal volume of MDD patients in first episode and recurrent episodes treated with SSRIs
and SNRIs with a larger sample.

In conclusion, an increase in the volume of CA3 and CG-DC of the only left, but not right
hippocampus was observed in drug-naive MDD patients who subsequently underwent remission for
at least 6 months with antidepressant use.

4. Material and Methods

4.1. Ethics Statement

The study protocol was approved by the Ethics Committee (approval number: H25-13, 8 May
2013) of the University of Occupational and Environmental Health, Japan. Written informed consent
was obtained from all subjects who participated in this study. Informed consent was obtained from
each patient in accordance with the Declaration of Helsinki.

4.2. Participants

The patients with MDD were recruited from the University hospital of University of Occupational
and Environmental Health, Japan. The subjects in the present study partially overlapped with those
in our recently published study. Eighteen patients with major depressive disorder were additionally
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enrolled in the present study. The MDD patients were recruited from March 2009 to January 2017.
All patients were diagnosed by using the full Structured Clinical Interview from the Diagnostic and
Statistical Manual for Mental Disorders, Fourth Edition, Text revision, Research Version. The severity
of the depressive state was evaluated using the 17-item Hamilton Rating Scale for Depression (HAMD).
Patients who met the following criteria were enrolled in the study: (a) a diagnosis of MDD, (b) a
HAMD score of ≥14, (c) drug-naïveté MDD, and (d) response to antidepressant treatment (a 50% or
more reduction in the HAMD score at week 8 from week 0). The exclusion criteria were as follows:
(a) a history of neurological disease and/or the presence of psychiatric disorders on either Axis I
(schizophrenia, other affective disorders, etc.) or Axis II (personality disorders, mental retardation,
etc.), (b) the presence of comorbid substance use disorders, and (c) lack of a second MRI. Eighteen
right-handed drug-naïve patients with MDD were included in this study. The clinical and demographic
characteristics of the patients are summarized in Table 2. Patients took one of several classes of
antidepressants, including selective serotonin reuptake inhibitors, i.e., escitalopram (n = 2, maximum
dose: 20 mg/day), sertraline (n = 3, maximum dose: 150 mg/day), paroxetine (n = 5, maximum dose:
40 mg/day), and fluvoxamine (n = 3, maximum dose: 200 mg/day), and serotonin and norepinephrine
reuptake inhibitors, i.e., duloxetine (n = 3, maximum dose: 60 mg/day), and mirtazapine (n = 2,
maximum dose: 45 mg/day) at least 6 months or more.

Table 2. The characteristics of patients, the HAMD score, and dose of antidepressants.

N 18

Age 44.4 ± 13.8

Gender(Male/Female) 10/8

Episode(First/Recurrent) 12/6

HAM-D T0 22.5 ± 4.99

HAM-D 8weeks 5.4 ± 2.6

HAM-D 6months 3.2 ± 1.7

dose at 8 weeks (imipramine equivalent) 188 ± 105.2

All participants underwent T1-weighted structural MRI and were treated with antidepressants
for 8 weeks. We defined patients whose HAM-D scores were <8 points or less as being in remission.
We compared the volume of the hippocampus, including its subfields, in patients in remission at
baseline to the volume at 6 months (Table 2).

4.3. MRI Acquisition

All participants underwent T1-weighted structural MRI at baseline and at 6 months after starting
antidepressant therapy. The MRI data were obtained using a 3 T MR System (Signa EXCITE 3T;
GE Healthcare, Wankesha, WI, USA) with an 8-channel brain phased-array coil. The original T1 images
were acquired using a 3D fast-spoiled gradient recalled acquisition in the steady state. The acquisition
parameters were as follows: repetition time in ms/echo time in ms/inversion time in ms = 10/4.1/700;
flip angle = 10; field-of-view = 24 cm; section thickness = 1.2 mm, and resolution = 0.9 × 0.9 × 1.2 mm3.
All the images were corrected for image distortion resulting from gradient nonlinearity using the Grad
Warp software program and from intensity inhomogeneity using the “N3” function [36].

4.4. Image Processing

FreeSurfer v6.0 (http://surfer.nmr.mgh.harvard.edu/) was used for image processing. For all scans,
“recon-all” and Longitudinal Processing [32,33] were performed first. For each subject, templates
for one scanning session were generated from images acquired at baseline and 6 months later.
After Longitudinal Processing, brain structure volumes were calculated based on Aseg segmentation.

http://surfer.nmr.mgh.harvard.edu/
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In addition, we calculated hippocampal subfield volumes using longitudinal segmentation [24,34].
The motivation behind the use of Longitudinal Processing was to generate topologically equivalent
surface meshes for any volumes under comparison. The surface mesh generated from the unbiased,
within-subject template was used for repositioning of the surface mesh relative to each volume.
The repositioning procedure provided surfaces with the same geometry. Therefore, Longitudinal
Processing may provide a more accurate estimate of differences among subjects [32,33,35]. Although the
results provided by Longitudinal Processing may not be generalized to those provided with a
conventional stream, the same differences can be detected by pooling measurements across a large
population to average the processing bias [35].

4.5. Statistical Analysis

We used paired t-rests to compare the change in hippocampal subfield volume between baseline
and after 6 months. We calculated Pearson’s correlation coefficients between the change in the HAMD
score and the change in hippocampal subfield volume. We regarded values of p < 0.05 (two tailed) as a
statistically significant difference.
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