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Abstract

Background

We previously reported that stable rotors were observed in in-silico human atrial fibrillation

(AF) models, and were well represented by dominant frequency (DF). We explored the spa-

tiotemporal stability of DF sites in 3D-AF models imported from patient CT images of the left

atrium (LA).

Methods

We integrated 3-D CT images of the LA obtained from ten patients with persistent AF (male

80%, 61.8 ± 13.5 years old) into an in-silico AF model. After induction, we obtained 6 sec-

onds of AF simulation data for DF analyses in 30 second intervals (T1–T9). The LA was

divided into ten sections. Spatiotemporal changes and variations in the temporal consis-

tency of DF were evaluated at each section of the LA. The high DF area was defined as the

area with the highest 10% DF.

Results

1. There was no spatial consistency in the high DF distribution at each LA section during

T1–T9 except in one patient (p = 0.027). 2. Coefficients of variation for the high DF area

were highly different among the ten LA sections (p < 0.001), and they were significantly

higher in the four pulmonary vein (PV) areas, the LA appendage, and the peri-mitral area

than in the other LA sections (p < 0.001). 3. When we conducted virtual ablation of 10%,

15%, and 20% of the highest DF areas (n = 270 cases), AF was changed to atrial tachycar-

dia (AT) or terminated at a rate of 40%, 57%, and 76%, respectively.
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Conclusions

Spatiotemporal consistency of the DF area was observed in 10% of AF patients, and high

DF areas were temporally variable. Virtual ablation of DF is moderately effective in AF termi-

nation and AF changing into AT.

Introduction
Atrial fibrillation (AF) is the most common cardiac electrophysiological rhythm disturbance
that results in the absence of normal atrial contractions. During the past decade, radiofre-
quency catheter ablation (RFCA) of AF has evolved rapidly from an investigational procedure
to the standard procedure for antiarrhythmic drug resistant AF [1]. Current clinical ablation
strategies are largely based on atrial anatomy and substrate detected using different approaches,
and they differ from one clinical center to another [2]. Recently, Narayan et al. reported that
detection and ablation of rotors in AF patients is effective in terminating AF and improves the
clinical outcome of AF catheter ablation [3]. However, the detection of a mother rotor, which
is stable and induces fibrillatory conduction [4–7], is affected by the spatiotemporal resolution
of mapping and detection parameters. We recently simulated a mother rotor in 2-D and 3-D
simulation models of human AF and documented the locations of the rotors, which were well
represented by dominant frequency (DF) [8]. Nevertheless, it has been reported that the DF is
temporally variable and that high DF sites can be transient in clinical experimentation [9–11].
Therefore, we explored the spatiotemporal stability of DF sites in patient-specific left atrium
(LA) geometry-integrated in-silicomodeling of human AF. Computer simulation modeling
provides a unique advantage to evaluating the spatiotemporal variance from single cells to
entire tissue regions under various conditions reproducibly and precisely [12,13]. The purpose
of this study was to evaluate the spatiotemporal variability of high DF sites at nine specified
periods in ten different LA sections among ten different patient-specific LA models of AF, as
well as to assess the outcome of virtual ablation for high DF sites.

Methods
The study protocol was approved by the Institutional Review Board of Severance Cardiovascu-
lar Hospital, Yonsei University Health System, and adhered to the Declaration of Helsinki. All
subjects provided written informed consent.

A. 3-D atrial remodeling
The 3-D in-silicomodel of the human LA was reconstructed using an by EnSite NavX1 system
(Endocardial Solutions, St. Jude Medical, Inc., St. Paul, MN, USA) with computed tomographic
(CT) image data from clinical persistent AF patients. Cellular ionic currents were calculated
using the Courtemanche [14] human atrial myocyte model, and electrical wave conduction in
tissue was simulated using the following partial differential Eq (1) [15]:

@V
@t

¼ Dr2V � Iion þ Istim
Cm

; ð1Þ

where V is the membrane potential, D is the diffusion coefficient that represents gap junctional
coupling, Iion and Istim are the total transmembrane ionic current and stimulus current, respec-
tively, and Cm is the membrane capacitance of human atrial myocyte. AF modeling was
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implemented using CUDA 6.5 in Microsoft Visual Studio 10.0 (Microsoft Co., Redmond, WA,
USA) for computer simulation. For the remodeling of ion currents of AF, we reduced Ito, IKur,
ICaL by 80%, 50%, and 40%, respectively [16,17], and increased IK1 by 50% [18]. Additionally,
the diffusion coefficient was adjusted to simulate a conduction velocity (CV) of 0.4 m/s and an
action potential duration at 90% repolarization (APD90) of 210–220 ms. We chose a conduc-
tion velocity of 0.4 m/s based on real human patient data (Yonsei AF ablation cohort data;
n = 1,980; mean CV = 0.43 ± 0.24 m/s) [19]. For AF initiation, we used a series of localized
stimulations that mimicked an experimental ramp pacing protocol [20]. Cells located near
the LA high septum were stimulated at cycle lengths of 200, 190, and 180 ms consecutively
(Straight Pacing Protocol). We applied the Runge-Kutta method with an adaptive time step of
Δt = 0.005–0.05 ms and a generalized finite difference scheme on the LA surface mesh [21].

B. DF generation and analysis algorithm
Using straight pacing (4560 ms), AF was induced and maintained, and we analyzed the spatio-
temporal variability of the DF in AF lasting longer than 280 seconds. The electrogram (EGM)
of the action potential (AP) for this process is shown in Fig 1A, and DF analysis time periods
are expressed as T1 to T9. To determine the DF, the power spectral density was obtained via
Fourier transform of the virtual action potential of each node, and the DF was defined as the
frequency of the highest power [8]. We mapped the DF for 6 seconds at every 30 seconds dur-
ing AF maintenance. To quantify the spatial distribution of the high DF area, we analyzed and
compared ten different sections of the LA as shown in Fig 1B: R1, septum; R2, anterior wall;
R3, LA appendage; R4, peri-mitral area; R5, posterior inferior wall; R6, posterior wall; R7–10,
left upper and lower and right upper and lower pulmonary veins. An example of DF maps for
the analysis time periods (T1–T9) is shown in Fig 1C–1K. We defined the “high DF area” as
the region with the highest 10% of DF. As the area of each LA section was different, we calcu-
lated the regional proportion of the high DF area in each of the ten 10 LA sections. Fig 2 shows
representative maps of a high DF (green) area (the highest 10% of the DF region), calculated
with 6 seconds of AP for each node during periods T1 to T9.

C. Virtual ablation for high DF area
For virtual ablations, the conduction block was implemented by adjusting the diffusion coeffi-
cient parameter. The ablated region was set to the non-conduction condition to block the elec-
trical conduction. An algorithm to detect the spatial distribution of the high DF area was
implemented using MATLAB1 (MathWorks Inc., Natick, Massachusetts, USA). Virtual abla-
tion was conducted at the end of each DF analysis period (T1–T9), and we observed the wave
dynamics to determine whether AF terminated or changed to atrial tachycardia within 30 sec-
onds after each ablation. The target of virtual ablation was the high DF area (10% highest DF
value); however, we also performed virtual ablations for the 15% and 20% highest DF areas.
Fig 3 shows examples of DF maps and the highest 10% DF ablation sites (green area). AP trac-
ing acquired from the LA roof top (red asterisk) shows different responses after virtual DF
ablation.

D. Statistical analysis
Data are represented as mean ± standard deviation. The Friedman test was used to test the spa-
tial variability of the DF values. A temporal coefficient of variation was used to assess the
degree of temporal variation. Results of the temporal coefficient of variation analysis were ana-
lyzed using the Kruskal-Wallis test to detect the difference between each section. An indepen-
dent-sample t-test was utilized to compare the mean temporal coefficient of variation among
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the four pulmonary vein (PV) areas, the LA appendage, and the peri-mitral area with that of
the other sections. A chi-square test was used to analyze the differences in the variables
between the trials with AF termination or AT conversion and those without AF change. For all
analyses, p-values of< 0.05 were considered to be statistically significant. All data were ana-
lyzed with SPSS 19.0 statistical software (IBM Corporation, Somers, NY).

Results

A. Spatial consistency of the high DF area
LA 3-D CT images obtained from 10 patients with persistent AF (age, 61.8 ± 13.5 years old;
80% male) were integrated into human AF modeling for DF analysis in this study. The

Fig 1. A. Electrogram (EGM) of action potential (AP) tracing for a total of 280 seconds and nine periods of DF analysis (T1–T9; 6 seconds in each
period).B. Ten anatomical sections of the LA geometry. Asterisk: the node where AP tracing in panel A was acquired.C~K. Spatiotemporal changes of
DF maps in a representative patient’s LA (T1–T9).

doi:10.1371/journal.pone.0160017.g001
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characteristics of the patients are summarized in Table 1. The variances of the high DF area in
the spatiotemporal distribution in each of the ten patients are shown for the ten different LA
regions (R1–R10) during each of the nine different time periods (T1–T9; Fig 4). In Fig 4, the
analysis time periods are marked from T1 to T9 on the x-axis, and the LA sections are repre-
sented from R1 to R10 on the y-axis. As the areas of each LA section are variable, we calculated
the proportion of high DF area (% High DF Area; 10% (highest DF area / regional area) × 100),
which is represented on the z-axis. Among the ten LA sections, the highest % High DF Area
section is marked with yellow bars in Fig 4. Based on the Friedman test results, there was no
spatial consistency in nine of the ten patients during the nine different time periods (p> 0.05,
separately). However, one patient (10%, Fig 4D) showed a relatively consistent section of %
High DF Area, mainly located in the pulmonary veins (R7–R10) during the time period (Fried-
man test, p = 0.027).

B. Spatiotemporal consistency of the high DF area in each LA section
The coefficient of variation (standard deviation / mean) was used to quantify the temporal vari-
ability for the regional proportion of the high DF area during the overall analysis time periods
(T1–T9) in each LA section for all patients (Fig 4K). There was a significant difference in the

Fig 2. Spatiotemporal changes of the high DF area (� the highest 10% DF region) in each analysis period (T1–T9). AP tracing was acquired at the
LA roof top, and the power spectrum of the fast Fourier transform analysis was obtained from the same AP tracing.

doi:10.1371/journal.pone.0160017.g002
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coefficient of variation for each LA section during the overall DF analysis of the time periods.
The average temporal coefficient of variation was 88.5 ± 27.7%. Comparison of the temporal
coefficients of variation among the ten LA sections (R1–R10) also showed significant differ-
ences (p< 0.001). The temporal coefficients of variation for the % High DF Area were signifi-
cantly higher in the four pulmonary vein areas (R7–R10), the LA appendage (R3), and the
peri-mitral area (R4) than in the other LA regions (101.5 ± 25.9% vs. 69.0 ± 16.8%, p< 0.001).

Fig 3. Examples of DFmaps (left side maps), the highest 10% DF ablationmaps (right side maps, green area) and AP tracings
acquired from the LA roof top (red asterisk) after virtual DF ablation. A. AF was terminated at 142.2 seconds (11.6 seconds after
virtual ablation of the high DF area).B. During DF ablation, AF changed into AT at 95.0 seconds (24.4 seconds after virtual ablation). C. The
wave dynamics of AF did not change during DF ablation.

doi:10.1371/journal.pone.0160017.g003
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C. Virtual ablation for the high DF area
Although the high DF area seemed to be highly variable spatially and temporally in the major-
ity of patients, we tested virtual ablation for the high DF area to examine whether the ablation
terminated or defragmented AF (changing to atrial tachycardia) within 30 seconds after abla-
tion. Virtual ablations were conducted on the 10%, 15%, and 20% highest DF sites in each time
period (T1–T9) for each patient (overall 270 cases of high DF ablation). Fig 3 shows represen-
tative examples of the outcomes after virtual DF ablation. After virtual DF ablation, AF is ter-
minated (Fig 3A), changed to organized atrial tachycardia (Fig 3B), or maintained (Fig 3C),
depending on the AF conditions. Table 2 compares the outcome of virtual DF ablation depend-
ing on the extent of ablation. In the 10% highest DF ablation, AF was changed to AT or
terminated in 40.0% of cases (36 of 90). In the 15% and 20% highest DF ablations, AFs were
terminated or defragmented in 56.7% (51 of 90) and 75.6% (68 of 90), respectively (p< 0.001).
It is unclear whether delayed AF termination or conversion to AT in 30 s was due to a DF site
ablation effect or co-incidental wave-dynamic changes; nevertheless, the extent of DF ablation
significantly affected the outcomes of virtual ablation.

We varied the CV between 0.5 and 0.6 m/s and simulated AF induction and DF ablation.
Although all induced AF lasted longer than 280 s at 0.4 m/s, AF was induced in 70% of cases
via the same pacing protocol, although the AF terminated spontaneously within 33.5 ± 27.5 s
at a CV of 0.5 m/s (p< 0.001 vs. 0.4 m/s). The AF induction rate was only 60% (six episodes)
and induced AF self-terminated in 15.2 ± 7.3 s at a CV of 0.6 m/s (p< 0.001 vs. 0.4 m/s; S1
Fig). In these conditions, DF ablation could be attempted in only ten episodes at 0.5 m/s and in
six episodes at 0.6 m/s. AF termination rates after DF ablation were significantly higher at CVs
of 0.5 m/s and 0.6 m/s than at 0.4 m/s. However, all of the AF episodes at higher CV conditions
were terminated itself without ablation (S1 Table). In the episodes in which DF ablation was
followed by AF termination, the baseline AF maintenance duration (without ablation) was
significantly shorter than in those without AF termination (73.7 ± 97.2 s vs. 231.5 ± 59.8 s,
p< 0.001). Therefore, DF ablation was more likely to terminate AF under easily terminating
AF conditions yet not under long-lasting sustained AF conditions.

Table 1. Patients Characteristics.

Age 61.8 ± 13.5

Male % 80%

Persistent AF, % 100%

CHA2DS2-VASc score 11.5 ± 2.2

Heart Failure, % 0%

Hypertension, % 20%

Age>75 years old, % 20%

Age 65–74 years old, % 10%

Diabetes, % 30%

Previous Stroke, % 20%

Previous TIA, % 0%

Vascular Disease, % 30%

LA dimension (mm) 48.4 ± 7.9

EF (%) 59.2 ± 11.8

E/Em 11.5 ± 6.1

TIA, transient ischemic attack; LA, left atrium; EF, ejection fraction; E/Em, the ratio of early diastolic mitral

inflow velocity (E) to early diastolic mitral annular velocity (Em).

doi:10.1371/journal.pone.0160017.t001
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Discussion
In this study, we evaluated the spatiotemporal stability of DF during AF in an in-silicomodel-
ing of 3-D entire LA mapping. Spatiotemporal consistency of the high DF area was observed in
only 10% of the AF models using the atrial geometries of patients. DF areas were temporally

Fig 4. A-J. Variance of regional proportions of the high DF area (% High DF Area) in the ten LA sections (R1–R10) during the nine DF analysis periods
(T1–T9) among ten patients. Yellow bars represent the highest % High DF Area among the ten LA sections. The% High DF Area represents the regional
proportion of the highest 10%DF area (the highest 10% DF area / area of each LA section). R7–R10 represents the four pulmonary veins. The high DF
area was consistently located in the pulmonary vein area in each patient (Panel 4D).K. The coefficients of variation from the overall analysis of the
periods (T1–T9) in each region for all patients.

doi:10.1371/journal.pone.0160017.g004

Table 2. Outcome of Virtual Ablation for High DF Area depending on Extent of Ablation Area.

Definition Percentage of DF ablation Area

10% ablation 15% ablation 20% ablation

N (%) N (%) N (%)

AF maintenance 54 (60) 39 (43) 22 (24)

AF changed to AT 35 (39) 50 (56) 64 (71)

AF termination 1 (1) 1 (1) 4 (4)

90 (100) 90 (100) 90 (100)

AT, atrial tachycardia

doi:10.1371/journal.pone.0160017.t002
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variable, particularly in the PV, LA appendage, and peri-mitral areas. Virtual ablation for the
high DF area was moderately effective in the defragmentation of AF.

A. Rotor represented by DF in the in-silicomodel
Stable rotors have been considered as a mechanism of AF initiation and maintenance anatomi-
cally or functionally for the past few decades [5,6,22–28]. Large amounts of experimental evi-
dence and in-silico validations have supported the role of stable rotors in AF [6,26,27]. The
rotor area in the LA exhibits a dominant peak in the frequency spectra in experimental models
of AF [22], and the high DF area is used to localize the source of AF in clinical settings [23]. In
our recent in-silico study, the area of the highest DF coincided with the stable rotor center, and
virtual ablation targeting the stable rotor was effective in terminating AF or changing AF to
atrial tachycardia [29]. However, we found that the spatiotemporal stability of the high DF area
was maintained in only a limited number of patients in the current study. As rotors often
meander on the atrial wall, high DF sites corresponding to meandering rotors would meander
as well. Despite this spatiotemporal variability of the high DF area, high DF area ablation was
nevertheless effective in the termination or defragmentation of AF.

B. Spatiotemporal variability of DF
Many experimental studies have shown that rotors are a very likely source of AF, and the cen-
tral areas of rotors exhibit high DF [30]. In the current study, DF ablation in each time period
induced significant changes in AF maintenance. “Moreover, the temporal variation of the high
DF area was more significant in the pulmonary veins, LA appendage, and peri-mitral areas,
which are known to frequently harbor AF sources [31–33]. Therefore, the main hurdle for
rotor or DF ablation might be the mapping technique for migratory sources of AF. AF wave
dynamics and the spatiotemporal consistency of DF are very much dependent on the charac-
teristics of ion currents [13] or the degree of substrate remodeling.

Spatiotemporal instability of the DF site was relatively high in our models, and few episodes
of AF were terminated by virtual DF site ablation (1–4%). Although the spatiotemporal insta-
bility of the DF site can be affected by the degree of electrical remodeling (ion current states) or
critical mass (atrial size, presence of linear ablation, or PV isolation), the extreme spatiotempo-
ral instability of AF may preclude the development of AF ablation strategies based on focal
ablation in the atrium.

Although there have been clinical reports of successful rotor-guided ablation in humans AF
[34], there is a degree of controversy regarding the limitations of the spatiotemporal resolution
of rotor mapping [35] and reproducibility [36]. In the TOPERA mapping studies [37], the
majority of patients had a history of AF ablation and the electroanatomical substrates were dif-
ferent from those of de novo ablation [37–38]. The recent RADAR-AF trial failed to prove the
superiority of DF-guided ablation outcomes compared to those of conventional ablation [39],
and AF termination rates with DF-guided ablation were very low in clinical conditions [40].
However, sequential electrogram acquisition may raise concerns about DF stability, and high
DF sites have been reported to be spatiotemporally unstable in clinical settings [10–11,41]. An
alternative is that DF assessment in clinical conditions can differ greatly due to bipolar electro-
gram characteristics; therefore, DF computation using standard methods may not always accu-
rately summarize the local rate of activation [42].

We observed reductions of AF induction rate and AF maintenance duration with slightly
increased CV (0.5 and 0.6 m/s). It is because the wavelength of activation fronts was not suffi-
cient to sustain the reentry and the wavefronts eventually die out by running into the area of
refractoriness. Therefore, AF seems to be terminated mostly due to itself and not due to
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ablation. The ablation potentially changes the wavefront dynamics rather than directly affect-
ing AF termination or conversion to AT.

C. Clinical implications of virtual DF ablation
Computer simulations have been increasingly utilized in the many fields of clinical medicine.
The strengths of computer simulation modeling are the predictability of outcome after certain
interventions and the ability to define the best strategy after reversible trials and errors [43–
45]. Therefore, personalized AF simulation modeling might be effective in determining the
proper target for AF ablation as a part of precision medicine. Ganesan et al. [46] demonstrated
stable AF rotors using Shannon entropy mapping in bipolar electrograms, and Haissaguerre
et al. [47] mapped the AF driver domain via non-invasive panoramic mapping with a body-
surface electrode array. However, given that the spatial resolutions and rotor detection algo-
rithms differ among clinical studies, the definitions of rotors and outcomes of AF rotor ablation
have not been consistent despite its evident role in the maintenance mechanism of AF. There-
fore, in-silico detection of DF and virtual ablation can be valuable in determining the target for
AF termination [48] or predicting the risk of arrhythmia [49] in a personalized heart model.
Although our current in-silico AF model is an oversimplified homogeneous simulation inte-
grating patient-specific anatomy, we will likely be able to reflect atrial histology [50] and deduct
patient-specific wave-dynamics via machine learning techniques [51] in the future, creating a
simultaneous entire atrial mapping system.

D. Limitations
Although we adopted patient-specific LA geometry, our 3-D in-silicomodel was a structurally
homogeneous LA model. Hansen et al. [52] recently suggested a 3D full-thickness atrial model
including the endocardium and epicardium; however, the current study was conducted using a
simple surface mesh model. Thus, bi-atrial application, thickness variation, fiber orientation,
and regional pathology or local electrophysiology could all affect wave propagation. However,
wave propagation in the monolayer model was reported to be similar to that in a bilayer model
except for the area of abrupt change of fiber orientation [53]. Additionally, the ionic current
properties were spatially uniform in the current model, and spatial heterogeneity in the ionic
current properties would have affected the wave dynamics. As the sections of the LA were
divided manually based on a clinical ablation strategy, the size and shape of each LA section
was not uniform.

Conclusion
Although DF may localize rotors, its spatiotemporal consistency was observed in only 10% of
AF cases. The Most temporally variable high DF areas were located on the pulmonary vein, LA
appendage, or peri-mitral areas. Although the high DF area changed spatiotemporally, virtual
ablation for high DF areas remains effective in the defragmentation of AF, including AF termi-
nation or changing into AT.

Supporting Information
S1 Fig. Self-limited AF episodes at higher CVs (upper panel) and outcomes of 10% DF abla-
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S1 Table. Outcomes of virtual ablation for high DF area for CV 0.5 m/s and CV 0.6 m/s.
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