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Abstract: The electrochemical detection of hydrogen peroxide (H2O2) has become more and more im-
portant in industrial production, daily life, biological process, green energy chemistry, and other fields
(especially for the detection of low concentration of H2O2). Metal organic frameworks (MOFs) are
promising candidates to replace the established H2O2 sensors based on precious metals or enzymes.
This review summarizes recent advances in MOF-based H2O2 electrochemical sensors, including
conductive MOFs, MOFs with chemical modifications, MOFs-composites, and MOF derivatives.
Finally, the challenges and prospects for the optimization and design of H2O2 electrochemical sensors
with ultra-low detection limit and long-life are presented.

Keywords: H2O2; MOFs; electrochemical detection; sensors

1. Introduction

Hydrogen peroxide (H2O2) is an indispensable component in living organisms as a
biological intermediary, and has been widely applied as an essential reagent in daily life,
industrial fields, medical treatment, and other sections. However, a high concentration of
H2O2 is corrosive and can cause serious injury when contacts with the skin, and accidental
ingestion of H2O2 can result in gas embolism in several organs, especially in heart, lung
and esophagus [1–4]. The strong oxidizing property of H2O2 can even be applied for the
preparation of explosives, which may threaten people’s lives [5,6]. More importantly, the
harm caused by low-concentration H2O2 should not be underestimated. Actually, trace
amounts of H2O2 produced in the cells can cause the induced oxidation of melanocytes,
resulting in the death of melanocytes, which is also the main cause of vitiligo [7]. Abnormal
production of H2O2 in mitochondria can cause reversible mitochondrial swelling, rupture
and cellular structural changes, which can induce diseases such as diabetes, Parkinson’s
diseases and cancers [8]. Therefore, it’s of great significance to detect low concentration
of H2O2.

For now, a great number of H2O2 detection approaches, such as electrochemical de-
tection [9], fluorescence [10], titration [11] and chromatography [12] have been employed
in detecting H2O2 concentration. However, traditional methods are no longer applicable
in many fields with the higher requirements for H2O2 detection. For instance, precision
data and low detection limit can be obtained through fluorescence detection, while high
detection cost and requirement of sample preparation remain a problem [13]. Compared
with fluorescence detection method, the colorimetric detection method itself has the ad-
vantages of low cost and fast detection speed. However, the raw materials can be easily
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denatured which makes it difficult to prepare [14]. In contrast, electrochemical detection
method has been widely used owing to its advantages of simplicity, rapidity, sensitivity and
economy [15,16]. Despite that, electrochemical H2O2 detection usually requires a higher
potential for direct reduction or oxidation on the surface of the bare electrode, resulting in
a less current response. Therefore, it is essential to improve the bare electrode or design
new electrode materials to increase the sensitivity of the H2O2 sensor and speed up the
response time for the detection of ultra-low concentration of H2O2 [17].

2. Research Status and Challenges

Hitherto, various strategies have been reported to modify the electrodes. Among
them, the most common one is to prepare the metal oxide modified electrodes. It has
been observed that the electrocatalytic materials containing Fe2O3 show excellent catalytic
performance, where the detection limit reaches 5 nmol, and they can be applied to detect
H2O2 both inside and outside the cells [18–20]. Apart from Fe2O3, Cu2O features high
specific surface area, good electrochemical activity and the potential to promote electron
transfer reactions at a lower overpotential, making it a favorable material for the devel-
opment of H2O2 sensors. Nevertheless, the catalytic activity is affected by the particle
size and the shape of the metal oxides. On the whole, the large particle size and irregular
morphology reduce the effective contact between the catalytic materials and the H2O2
molecules, resulting in incomplete catalytic activity and reduced catalytic effect [21,22].
Additionally, enzymes are often used to modify the electrodes due to their perfect selectivity
for H2O2. Horseradish peroxidase (HRP), as one of the most common H2O2 enzymes,
although has been extensively studied and used for manufacturing H2O2 sensors [23], its
application has been restricted by the complex immobilization process and the instability
during the detection [24]. Currently, precious metal nanoparticles (Pt, Ag, Ru et al.) have
been widely implemented in H2O2 detection technology due to their unique electronic
structure, prominent physical and chemical properties [25]. For instance, AuNCs (nanoclus-
ters) is an emerging nanomaterial that exhibits excellent performance and can improve the
sensitivity of H2O2 detection [26]. B. Patella and co-workers designed the rGO/Au-NPs
(nanoparticles)-based electrode through a three-electro deposition method to monitor H2O2
released by the human macrophages [27]. However, considering the scarcity of precious
metals, it is necessary to find and develop new materials with low cost and high catalytic
activity to replace precious metals [28,29].

In recent years, numerous new materials have also been used for electrochemical de-
tection of H2O2, such as CNTs (carbon nanotube), graphene and metal organic frameworks
(MOFs) [30–32]. As we know, the electrical conductivity and catalytic performance can be
improved by the carbon coating method; when the graphene oxide nanoflake is covered
by nano-scale graphene, the subsequently synthesized graphene oxide/graphene compos-
ite material presents a better performance on H2O2 detection with high catalytic activity
and electrochemical stability [33]. Yu et al. [34] developed a novel/graphene (NiO/GR)
nanocomposite that exhibited high sensitivity to H2O2, the GR coating improved the
electrochemical stability and its anti-interference ability. MOFs have drawn increasing
interest and been applied to gas storage/separation [35–44], drug delivery [35–44], energy
storage/conversion [35–44] and multiphase catalysis [35–44] due to their tunable pore
sizes, diverse structures, and abundant functional designs [35–44]. Moreover, the ordered
arrangement of metal sites and organic ligands provide abundance of accessible catalytic
sites and confer intrinsic enzyme-mimetic properties to MOFs compared to other types of
nanozymes [45]. For example, Zhang [46] developed the new class of 2D conductive MOFs
films [Co3(HHTP)2]n by LB (langmuir-blodgeet) technology. The porous structures and
exposed Co active sites from the [Co3(HHTP)2]n had superior catalytic activity for H2O2.
In addition, some MOFs with mesh structures can be used as carriers for other materials to
form composite materials with new functions [46]. There have been several review reports
on the use of MOFs for H2O2 sensors [45,47–52], for example, Li et al. [45,47–52] classified
MOFs into four categories and reviewed the progress of MOFs in chemical sensors, includ-
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ing the detection of H2O2. Goncalves et al. [45,47–52] reviewed the development of MOFs
derivatives for sensors. However, most of these reports are not comprehensive enough to
introduce all of the types of MOFs-based H2O2 sensors. What’ more, instead of focusing on
H2O2 detection, variety of molecules are also included, which makes most of these reviews
not deeply explore the mechanism of MOFs for H2O2 sensing, as well as the design and
development of MOFs H2O2 electrochemical sensors. In this paper, based on the reviews
of the same topic, as well as the latest research progress, we found that MOFs can exert
more structural advantages in electrochemical detection of H2O2 (strong adsorption, faster
electron transport, and high conductivity) and become more competitive as a sensor. Here,
we deeply explore the detection mechanism of electrochemical H2O2 for different types of
MOFs, some bright ideas for the design and improvement of MOFs-based electrochemical
H2O2 sensors are proposed based on the recent research progress. Firstly, the sensing mech-
anism and working principle of MOFs-based H2O2 electrochemical sensors are distinctly
introduced. Secondly, as shown in Figure 1, we categorize the recent reported MOFs-based
H2O2 electrochemical sensors as: (1) conductive MOFs based H2O2 sensors; (2) chemically
modified MOFs based H2O2 sensors; (3) MOFs composites based H2O2 sensor; (4) MOF
derivatives based H2O2 sensors. Finally, problems and trends for future MOFs-based H2O2
electrochemical sensors are discussed. We hope that our perspectives will be useful for
future development of advanced MOF-based H2O2 sensors. In addition, the performance
of recently reported MOFs-based H2O2 electrochemical sensors are shown in Table 1. We
also summarized the following characteristics as the keys to develop MOFs-based H2O2
electrochemical sensors with excellent performance:

(i) Conductivity

High electrical conductivity is vital to electron transfer in the process of H2O2 splitting.
In general, the electrical conductivity of MOFs depends on the carrier mobility and internal
charge density. The π-conjugated structure forms a continuous conductive network to
facilitate the conduction of electrons. In addition, high-energy electrons or holes in metal
ions can induce high concentrations of loosely bound carriers, thereby increasing the
charge density. The direct connection between the metal nodes and the organic ligands can
effectively reduce the energy mismatches and further promote the charge delocalization
and electron transfer.

(ii) Activity

The catalyst activity is an important factor in the decomposition rate of H2O2. It is
mainly related to the intrinsic catalytic ability and the number of active sites of the catalyst.
Generally, the porous structure can not only increase the specific surface area, but also ex-
pose more active sites to improve the catalytic activity, thus further improve the adsorption
capacity, reduce the activation energy of the intermediate product transformation.

(iii) Selectivity

An ideal electrochemical sensor for H2O2 should have high selectivity. For example,
H2O2 samples may be mixed with other substances (glucose, ascorbic acid, ethanol, etc.),
and they will also undergo redox reactions. Therefore, the sensors should only respond to
H2O2 at a specific voltage.

(iv) Stability

The commercial H2O2 electrochemical sensors must possess excellent chemical and
structural stability in hostile acidic and alkaline environments. In specific cases, it may
suffer from changes in catalyst structure and reduced catalytic activity due to the particle
agglomeration during the long-time detection process. Therefore, in order to ensure the
accuracy of the test, especially in medical clinical applications, the requirement of high
stability need be met in the design of commercialized sensors.

(v) Low-cost
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Precious metal electrocatalysts (e.g., Pt, Au, Ag, Pd) have high catalytic activity, but
their scale-up application is limited by high cost, limited reserves, poor stability, low
sensitivity and selectivity. Alternatively, MOFs-based catalysts are commonly ligated with
transition metals, which have inherently good catalytic activity and can be feasibly prepared
by simple methods (hydrothermal method, ultrasonic method et al.). Thus, in order to
meet the goal of commercial development, the raw materials and preparation methods of
the H2O2 electrochemical sensors should follow the principles of low cost and low time
consumption.

(vi) Environmental-friendly

The concept of low-carbon green development is of great significance to the sustainable
development of human society. Specifically, the raw materials for the H2O2 electrochemical
sensors should be non-toxic and non-polluting. The preparation process should not produce
hazardous gases and solutions. What’s more, the catalysts must be non-hazardous to the
cells, in order to meet the medical detection requirements.
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Table 1. Recently reports of H2O2 electrochemical sensors.

Electrochemical Sensor Electrolyte Detection
Limit (µM) Linear Range Practical

Application Reference

Conductive MOFs basedH2O2 sensors

[Co3(HHTP)2]n 0.1 M NaOH 2.9 - - [2]
[Co3(HOB)2]n 0.1 M NaOH 0.00308 - - [36]

[Cu(adp)(BIB)(H2O)]n/GC 0.1 M KOH 0.068 0.1 µM–2.75 µM [53]
2D Co-MOF 0.1 M KOH 0.69 0.5 µM–832.5 µM [54]

FePc-CP NSs 0.1 M PBS 0.017 0.1–1000 µM
A549 live cells,
Orange juice

and beer
[55]

Co-MOF/TM 0.1 M PBS 0.25 1–13,000 µM A549 cells [56]
CuMOFs@FeP-pSC4-AuNPs 10 mM PBS 47 0.5–2.5 mM Cancer cells [57]

NENU5 0.1 M PBS 1.03 10–50,000 µM - [58]

CuCo-BDC/GO 0.1 M PBS 0.069 100 nM–3.5 mM Human serum
samples [59]

HKUST-1/GCE 0.1 M PBS 0.68 2 µM–3 Mm and
3–25 mM Milk sample [60]

MOF composites based H2O2 sensors

MIL-53-CrIIIAS/GCE 0.1 M NaOH 3.52 25–500 mM, - [54]
Ni(II)-MOF/CNTs

nanocomposites 0.1 M NaOH 2.1 0.01–51.6 mM [61]

MNPs@Y-1,
4-NDC-MOF/ERGO 0.1 M PBS 0.18 4–11,000 µM A549 cells [62]

Ni–MOF nanosheets/Hemin 0.1 M PBS 0.2 1–400 Human serum
samples [9]

GCE/GO/poly(CoTBIPc) 0.1 M PBS 0.6 2–200 µM - [3]
A-Ni1Mo0.5-MOFs@AAC PSB 0.185 - - [63]

CuCo-BDC/GO 0.1 M PBS 0.069 100 nM -3.5 mM Diluted human
serums [59]

CuMOF/MXene/GCE 0.1 M PBS 0.35 1 µM–6.12 mM Serum [64]

Cu-TCPP MOF/Cu5.4O 0.1 M PBS 0.13
0.0001- 0.59 mM

and
1.59–20.59 mM

Living cells [65]

Cu-MOF@S-Gr 0.1 M PBS 0.0113 ± 0.00004 0.1–3 µM Tap water [66]
Au–Pd@UiO-66-on-ZIF-L/CC 0.01 M PBS 0.0212 1 µM–19.6 mM A549 cells [67]

Cu@BDC(NH2)@2-MI 0.1 M PBS 0.97 10 µM–13.28 mM [68]

MnOx 0.2 M PBS 0.000232 0.000696–742 µM Human serum and
milk sample [69]

NCNT MOF CoCu 0.1 M PBS 0.206 0.05–3.5 mM Serum samples [70]

Ag-Bi BDC (s) MOF/GCE 0.1 M PBS 0.020.1 10 µM–5 mM and
5 mM–145 mM

THP-1 and AtT-20
cancer cells [71]

MOF derivatives based H2O2 sensors

AuPt/ZIF-8−rGO 0.1 M PBS 0.019 0.1–18,000 µM Human serum [72]

MOF-Au@Pt nanoflowers PBS 0.086 0.8 µM–3 mM Suspension of
living cell [32]

Co-NC RDCs 0.1 M PBS 0.143 0.001–30 mM [73]

MIL-101(Fe)@Fe3O4/NGCE 0.1 M PBS 0.15 0.001–0.01 mM Human blood
plasma [74]

Co (4%)–N/CNS 0.4 M PB 0.00618 1–500 µM and
500 µM–0.1 M Human serum [75]

Co-NPs/NCs 0.01 M PBS 0.12 10–2080 µM and
2080–11,800 µM

Human serum
sample [76]

Cu-MoO2-C PBS 0.16 0.25–6.25 mM [77]
ZnO@ZIF-8 0.1 M PBS 3 20–11,550 µM [78]

Co3O4@CNBs 0.01 M PBS 0.00232 10 nM–359 µM
HUVEC cells and
4T1, A549 cancer

cells
[79]
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3. Sensing Mechanisms and Working Principles of MOFs-Based H2O2
Electrochemical Sensor
3.1. Electrochemical Sensor Detection Principle

Generally, the electrochemical detection of H2O2 is achieved by applying a correspond-
ing voltage to the electrochemical sensor, followed by the oxidation or reduction of H2O2 on
the electrode surface. The electric charges of the redox process are captured by the electrode
and converted into an electrochemical signal. Qualitative and quantitative analysis of H2O2
can be obtained through the change in the peak voltage and current. The schematic diagram
of electrochemical detection of H2O2 is shown in Figure 2. Commonly, H2O2 detection is
performed under neutral or alkaline conditions, with certain differences in the reaction
mechanism. Specifically, the difference lies in whether the catalyst produces a reducing or
oxidizing effect on H2O2 during the detection: if the catalyst appears in an oxidized state,
the H2O2 is oxidized; and if the catalyst is in a reduced state, the H2O2 is reduced. We will
discuss the specific steps of H2O2 catalytic decomposition in the following sections.
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3.2. Detecting under Alkaline Condition

Under alkaline conditions, the catalytic decomposition of H2O2 mainly depends
on the redox changes of metal sites. In the first case, the catalyst combines with OH−

to form intermediates with higher valence state of the metal sites and electrons, then
the intermediates react with H2O2 to return to the original valence state, and H2O2 is
decomposed. The mechanism can be illustrated by the following equation [80]:[

(adp)(BIB)CuI I −OH2

]
+ OH− �

[
(adp)(BIB)CuI I I −OH

]
+ H2O + e− (1)[

(adp)(BIB)CuI I I −OH
]
+ 1/2H2O2 →

[
(adp)(BIB)CuI I −OH2

]
+ 1/2O2 (2)

The other situation is that H2O2 is adsorbed by catalysts, then the catalysts are reduced
as the cathode. After that, the pre-adsorbed H2O2 is decomposed by electron transfer with
the catalyst. The mechanism can be illustrated by the following equation [80]:

MIL− 53− CrI I I + e− → MIL− 53− CrI I (3)

MIL− 53− CrI I + H2O2 → MIL− 53− CrI I I + H2O + O2 (4)

3.3. Detecting under Neutral Condition

It has been reported that the catalytic decomposition of H2O2 occurs in the presence
of ferrous (Fe2+) and ferric (Fe3+) ions. The generation of reactive hydroxyl radicals (HO·)
is based on the classical Haber Weiss mechanism/Fenton-type reaction [81–84]. The results
show that ferrous ions have better catalytic decomposition activity for H2O2 in the pH
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range of 3–4, while ferric ions have better catalytic activity at a neutral pH. The reactivity
study of ferric ions show that the coordinated ferrous ions catalyze the decomposition of
H2O2 more effectively than the free ferric ions at the neutral pH [82]. In this case, the ferric
ions are first reduced into ferrous, and then the ferrous ions are oxidized by H2O2 to turn to
ferric ions. The electrochemical mechanism of general Fe-MOFs based materials in neutral
media are as follows [85]:

Fe3+ + e− → Fe2+ (5)

Fe2+ + H2O2 → Fe3+ + HO− + HO− (6)

O· + e− → HO− (7)

HO− + H+ 
 H2O (8)

4. Design and Synthesis of MOFs Based H2O2 Sensor

MOFs are a kind of porous polymer materials connected by metal ions through organic
bridge ligands, which combine the advantages of inorganic, organic porous materials and
porous hybrids [86–89]. The structural diversity makes some MOFs possess the multi-
channel structures which can enhance the electrolyte transport capacity and further increase
the electrical conductivity. Furthermore, the reactants can be easily trapped and adsorbed
by various active sites and high specific surface areas, thus the conversion of the reaction is
facilitated [90]. Therefore, MOFs have great prospect for the preparation of H2O2 sensors.
In the following sections, some reliable ideas to flexibly apply MOFs materials to the design
of H2O2 sensors are expounded.

4.1. Conductive MOFs Based H2O2 Sensor

Ionic conduction and electron conduction occur along with the H2O2 decomposition
in the process of detection. However, the conversion efficiency between electrical and
chemical energy will be reduced if the conductive orbit cannot be effectively constructed,
and leading to decreasing adsorption and catalytic capacity [91]. In general, the formation
of conductive network requires coordination interaction between metal ions and organic
ligands. Ligands with π-conjugated structures can form a continuous conductive network
to facilitate electron conduction. High concentration of loose carriers formed by high-energy
electrons or holes in metal ions can increase charge density [91]. The direct connection
between metal nodes and organic ligands (such as N, O, S-based ligands) can effectively
reduce the energy mismatch, further promoting the charge delocalization and electron
transport [92–94]. Based on the charge transfer mode, the conductive mechanism of
conductive MOFs can be divided into three types as follow: charge transfer “through
space”, through-bond conduction and through-guest conduction [95].

Aromatic hydrocarbons are a class of compounds with conjugated structures, such as
2,3,6,7,10,11-hexaiminotriphenylene (HITP), 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP)
and benzenehexol (HOB). These π-conjugated aromatic systems are capable of cooperating
with metal nodes to dominate the conduction process. The π-π interaction between the
systems and metals facilitates both “through-bond” and “through-space” electronic conduc-
tion [96,97]. Our group [36] designed the 2D [Co3(HOB)2]n conductive MOF nanosheets
with abundant nanoscale channels. HOB and Co2+ ions were coordinated at the water-air
interface to form a single-layer nanosheets with high structural order through LB method
(Figure 3a). [Co3(HOB)2]n nanosheets were arranged in a long-range order, and then the
π-π stacks in the internal pores were formed by original growth on the FTO (fluorine-doped
tin oxide) glass. Meanwhile, the coordination of Co-O reduced the energy mismatch, facili-
tated the charge delocalization and electron transport. The counterion pair generated from
electrostatic interactions leads to the feasible electronic adjustment and migration [98,99].
More importantly, the porous structure for proton transport and the exposed metal sites
equip the 3-layer nanosheets with excellent reducibility to H2O2 with a LOD (limit of
detection) of 3.08 nM (Figure 3b), and it possesses the lowest detection limitation among
the current non-precious metal conductive MOFs based H2O2 sensors. It could also be
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concluded that the common drugs and ion concentration had no impact on H2O2 detection.
Noticeably, the activity of [Co3(HOB)2]n exhibited almost no attenuation after 1000 CV
cycles (Figure 3c). Park [80] et al. reported a Co-based 2D conductive MOF, Co-HAB. The
high conductivity (1.57 S cm−1), porosity and high density of redox active sites of Co-HAB
provided a possibility for ion storage and energy conversion, which may improve the
catalytic activity when used for H2O2 reduction. At the same time, excellent chemical
and thermal stability increase the utility of sensors. This offers a bright future for the
preparation of H2O2 sensors with low detection limit.
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diagram for the synthesis of the FePc-CP NSs; (e) Determination of H2O2 in commercial orange juice
and beer [55]. Copyright 2019, ACS.

Coordination bonds composed of metals and organic ligands with matched energy
levels and good orbital overlap can generate long-distance charges transfer path, which
is beneficial for improving the charge transfer [100]. Liu [55] reported an advanced FePc
(iron phthalocyanine) -based diyne-linked (−C≡C−C≡C−) conjugated polymers 2D NSs
(nanosheets) (FePc-CP NSs) (Figure 3d). It has been demonstrated that the high reduction
activity of the catalyst for H2O2 detection (LOD was 0.017 µM) is mainly attributed to the
following points: (1) FePc is beneficial to promote the cleavage of O-O bonds between
O2 and peroxide and thereby accelerates the decomposition of H2O2; (2) diyne-linked
(−C≡C−C≡C−) conjugated structure enhances the conductivity; (3) highly exposed heme-
like active centers in layered pore junctions increase catalytic activity. FePc-CP NSs accu-
rately detected H2O2 in beer and orange juice with a recovery of 95.8~107% (Figure 3e),
this showed that the FePc-CP NSs had the potential to detect the H2O2 in food. Since then,
we can conclude that long-range ordered nanochannels formed by the accumulation of 2D
π-conjugates can realize the electrolyte transport. This approach to creating the charge trans-
port by using covalent bonds of extended coordination polymers in porous frameworks
provides a unique platform for the development of high sensitive H2O2 sensors.

Apart from the above mentioned, improving the concentration of proton carriers is a
key factor to construct highly conductive and stable MOFs. The most effective strategy is
to introduce the Lewis acid particles [101,102], molecules or counter ions [103,104] and the
incorporation of proton-related substituents (–NH2, –SO3H, –COOH, –OH, –SH, etc.) in the
ligands [105,106]. The increasing number of these guest molecules and proton carriers will
form a hydrogen bonding network and enhance the conductivity [107,108]. Zhang [109]
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and coworkers bridged Cu2+ with BIB and adp2− to form a 2D propagation network with
channel structure. The 2D layer channel structure was further connected by the hydrogen-
bond interactions, and then a 3D supramolecular architecture ([Cu(adp)(BIB)(H2O)]n) was
formed. [Cu(adp)(BIB)(H2O)]n performed a high reduction for H2O2 with a low LOD (0.068
µM) and an excellent linear range (0.1 µM to 2.75 µM), which could be attributed to the
electronic transport effect. Throughout the redox reaction, the channels and hydrogen-bond
acted as transport corridors. Protons and electrons were transferred in an ordered manner.
Consequently, the adsorption energy of the active sites for electrolytes and intermediates
was decreased. Judging from the electron transfer, it was a two-step reaction. Firstly,
[Cu(adp)(BIB)(H2O)]n reacts with OH− and then Cu2+ is oxidized to Cu3+; secondly, H2O2
molecules react with Cu3+ and then they are reduced to form O2 due to the strong oxidizing
from Cu3+.

Conductive electrical system consisted of metal ions and ligands with π-conjugate
structure solve the serious poor conductivity issue for H2O2 electrocatalysts; furthermore,
the porous structure is conducive to promoting the mass transfer, and improving the
catalytic rate of H2O2 decomposition. Still, the high price of organic ligands remains a large
obstruction on the pathway to large-scale commercialization.

4.2. Chemically Modified MOFs Based H2O2 Sensor

Chemical modification is a feasible and effective way to introduce desired functions
into MOFs materials. In general, MOFs can be functionally modified by their metal sites
and/or organic linkers. For example, through the hybridization with conducting polymers,
the electrical conductivity of the material can be improved [45,110].

Combining MOFs with conductive species can improve electronic conductivity, cat-
alytic activity, and expand applications. The most common method is to combine the
active component with carbon-based materials such as carbon nanotubes and ketone black
carbon [111]. POMs (polyoxometalates), with internal unconventional molecular struc-
ture, stable physical/chemical properties and redox state, have shown superb activity
in fabricating electrocatalysis. When they are used to prepare MOFs, the latest material
POM-based MOFs (POMOFs) performed high specific surface and exposed more active
sites [29,112,113]. However, the low conductivity reduces the catalytic activity of POMOFs
as catalysts, resulting in low sensitivity and high detection limits when applied for H2O2
detection. Wang et al. [58] developed POM-based MOF (NENU5 (polyoxometalate-based
metal-organic framework)) grown in situ on KB by adopting a facile and feasible one-step
solution method (Figure 4a). The low detection limit (1.03 µM) of NENU5-KB-3 for H2O2 is
mainly attributed to the high conductivity of KB and the high catalytic activity of NENU5. It
also had a wide linear range from 10 µM to 50 mM and a high sensitivity of 33.77 µA mM−1.
More notably, the residual current decreased by ~9% after continuous testing in 30 µM
H2O2 for 4 h. It indicated NENU5-KB-3 had good structural stability and stable catalytic
activity. Furthermore, drug resistance results have revealed that the successive addition of
0.2 mM AA, 0.2 mM APAP, 0.2 mM DA and 0.2 mM glucose exerted no influence on H2O2
detection, representing excellent stability and high selectivity.

Conductive substrates such as carbon cloth, FTO, ITO [112–114], etc. are also often
used as supports for MOFs. They can improve the conductivity while exposing more active
components, greatly improving the catalytic activity. Xia [56] and coworkers synthetized
Co-MOF nanosheets array supported on Ti mesh (Co-MOF/TM). Co-MOF was synthesized
by coordination of Co2+ with terephthalic acid. With notable properties of large surface
area, good stability, high porosity, and rich unsaturated Co2+ sites, Co-MOF/TM exhibited
outstanding catalytic performance with a low detection limit (0.25 µM). The catalytic activity
can be attributed to the appearance of electronic defects on the surface of the nanosheets
arising from the interaction between the Ti lattices and the Co-MOF. The sensor also showed
good utility for monitoring the release of H2O2 from A495 cells. Compared with most
MOFs, Co-MOF had a lower cost in both raw materials and the preparation process.



Molecules 2022, 27, 4571 10 of 22

The prospective availability of free space in MOFs permits another method of inducing
conductivity, namely the introduction of guests (electron donors or acceptors). In some
cases, they are complementary to the charge transfer of MOFs junctions or nodes. This
approach not only enables the manufacture of conductive MOFs, but also allows their
conductive properties to be modulated by specific stimuli without destroying their struc-
ture [95]. Hu et al. [57] assembled the petal-like nanonetwork structures by embedding the
combination of pSC4-AuNPs and FeP on the surface of CuMOFs (Figure 4b). On the basis
of maintaining the original catalytic activity, selective functionalization and well-defined
configurations of CuMOFs, FeP (guest) and pSC4-AuNPs (body) were interlinked to form
a nanonetwork structure for synergistic electron transfer to overcome the drawback of
poor conductivity. The dual metallic active sites from the CuMOFs@FeP-pSC4-AuNPs
increased the peroxidase activity, electrocatalytic activity and provided good thermal and
storage stability. From which, it realized specific recognition of cancer cells by the signal
output from the electronic transfer generated of H2O2 decomposition, providing potential
applications for clinical cancer detection (Figure 4c).

Transition metal elements are crucial components to build active adsorption sites in
MOFs structures. Among them, Ni, Co and Fe show high activity in the kinetics of H2O2
decomposition [53,115]. Ni ion has become an important non-precious metal ion for the
detection of H2O2, and the substantial coordination number makes it easy to coordinate
with organic ligands [116]. It is worth noting that the dispersion of unsaturated metal
sites in MOFs plays an important role in the kinetic activity of H2O2 decomposition [117].
Therefore, the introduction of another metal can produce more active sites to improve the
electrochemical properties. In general, the synergistic interaction of two or more substances
effectively improves electrocatalytic performance. This optimizes the electronic structure,
reduces kinetic barriers and improves the charge transfer between the host metal atoms and
the dopants during catalysis [118–120]. Li et al. [63] reported a new bimetals MOF (A(B)-
Ni1Mo0.5-MOFs@AAC) by the liquid-phase and hydrothermal methods. Mo exhibited
a strong hydrogen binding capacity and had a higher activity in the decomposition of
H2O2 [121]. What’s more, the introduction of Ni-Mo bimetals enhanced the stability of
the frameworks, and contributed to the catalytic performance (Figure 4e). Therefore, the
A(B)-Ni1Mo0.5-MOFs@AAC exhibited an outstanding detection performance for H2O2
with a high sensitivity (0.277µA µM−1) and a noteworthy low detection limit of 0.185 µM.
The establishment of bimetallic MOFs offers a new and simple idea for designing H2O2
sensors with high structural stability and excellent catalytic activity.

Today, widely reported MOFs such as MIL (materials of institut lavoisier)-53(Fe),
Fe-NH2-MIL-88, MIL-68(Fe), and MIL-100(Fe), etc. all exhibit salient H2O2 decomposi-
tion properties. The narrow pore channels from the 3D block crystal structure restrict
the diffusion rate of the substrate, and they further reduce the accessible active site in
the 3D native crystal [46,122]. The special structure of 2D nanomaterials, such as large
specific surface area, thin thickness and high surface volume, can expose more active
sites on the surfaces, thus reducing the mass transfer resistance and diffusion potential
barrier [123–126]. Wang et al. [127] synthesized a 2D bimetallic MOF nanosheets (2D Co-
TCPP (tris (1-chloro-2-propyl) phosphate) (Fe)) with a thickness of less than 10 nm for the
first time through a surface activity-assisted approach (Figure 4f). The highly exposed
active sites enabled 2D Co-TCPP(Fe) to exhibit excellent H2O2 catalytic decomposition
activity with a detection limit of 0.15 × 10−6 M. In addition, the sensor was successfully
used for the real-time monitoring of H2O2 secreted by living cells. The synthesis of 2D
Co-TCPP(Fe) offers a versatile method for developing 2D bimetallic MOF nanosheets in
high yields, which can be applied to a variety of areas.
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Figure 4. (a) Schematic illustration of the synthesis procedure for NENU5-KB composites [58];
Copyright 2018, Wiley. (b) Schematic illustration of the electrocatalytic reaction of H2O2 catalyzed
by CuMOFs@FeP-pSC4-AuNPs; (c) CV responses of H2O2 with different cells [57]; Copyright 2021,
Elsevier. (d) SEM image of Ni–MOFs [9]; Copyright 2019, Elsevier. (e) DPV curves of A(B)-NixMoy-
MOFs@AAC sensors [63]; Copyright 2020, Royal Society of Chemistry. (f) Scheme showing the
surfactant-assisted bottom-up synthesis of 2D MOF nanosheets [127]. Copyright 2017, ACS.

4.3. MOF Composites Based H2O2 Sensor

Metal nanoparticles are a kind of economic, stable, simple to prepare nanomaterials,
which have similar enzyme action to specific molecules [128,129]. In particular, “d” electron
orbitals of precious metal nanomaterials are not filled, the surface may become easier to
adsorb reactants. The moderate strength facilitates the formation of intermediate “active
compounds” with high catalytic activity and excellent properties such as high temperature
resistance, oxidation resistance and corrosion resistance [130,131]. Moreover, the active
sites on their surface give them properties similar to those of biological enzymes [128,129].
Since MOFs have a permanent porous structure, the advantages of nanoparticles and MOFs
can be utilized by introducing specific nanoparticles into MOFs to form a more stable
material [132]. Shazia et al. [67] obtained a bimetallic MOF (Au-Pd@UiO-66-on-ZIF (zeolite
imidazolium ester skeleton structure material) -L/CC) by introducing Au nanoparticles
into Pd@UiO-66-on-ZIF-L/CC (Figure 5a). Electrochemical test results showed that the
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introduction of Au nanoparticles increased the adsorption sites of H2O2, and the syner-
gistic effect between Au nanoparticles and Pd improved the catalytic performance (LOD
was 21.2 nM), anti-interference, reproducibility, repeatability and stability of H2O2 sensor.
Meanwhile, real-time in situ detection of H2O2 was achieved by culture of human ade-
nocarcinoma alveolar basal epithelial cells (A549 cells) on Au-Pd@UiO-66-on-ZIF-L/CC,
suggesting that the sensor has potential applications in cancer pathology (Figure 5b,c). Li
et al. [62] prepared MNPs (magnetic nanoparticles) @Y-1, 4-NDC-MOF/ERGO (M = Ag,
Cu) ternary composites by cation exchange strategy and electrochemical reduction. The
embedding of metal nanomaterials improved the catalytic activity of the material, while
the fast electron transfer effect of ERGO increased the electrical conductivity. What’s more,
the size tunability and selectivity (Figure 5d,e) of MOFs provided the material with high
selectivity to H2O2. The material had potential applications in detecting the release of
H2O2 from cells. The interaction between the active component and the supporter plays
a pivotal role in the catalytic reaction. On the one hand, uniform dispersion of metal
nanoparticles can effectively increase the specific surface area while the unity of metal
nanoparticles will minimize the specific surface area and surface energy, resulting in a
severe loss of structural properties [131]. In order to increase the catalytic activity by
loading more metallic nanoparticles, suitable carriers (crystals with high chemical stabil-
ity, large specific surface area and high porosity) are preferably selected to disperse and
immobilize metal particles [133,134]. Based on the large specific surface area, sufficient
pore capacity and excellent crystallinity of MOF-67, Wang et al. [32] uniformly dispersed
Au@Pt bimetallic nanoflowers on its surface. Compared with the single metal materials,
Au@Pt with core-shell structure of bimetallic nanoflowers showed abundant active sites,
good electrical conductivity, and better H2O2 catalytic activity. The large specific surface
area of the MOFs material provides more loading sites for more nanoparticles, thus further
enhancing the catalytic effect. They have been proven to be a powerful electrochemical
sensing platform with promising applications in biomedical monitoring and environmental
analysis. In addition, some researchers have improved electrocatalytic performance by
combining MOFs with 2D materials such as graphene or black phosphorus nanosheets to
form novel composites. Cheng et al. [64] combined Mxene with MOFs to form a new 3D
flower-like Cu-MOF/Mxene/GCE (glassy carbon electrode) material by taking advantage
of Mxene’s high electrical conductivity and large specific surface area (Figure 5f). Owing
to the large specific surface area of MXene, Cu-MOF was evenly dispersed on the surface,
and the metal sites of MXene and Cu-MOF improved the catalytic ability of H2O2. The
electrochemical tests showed that Cu-MOF/Mxene/GCE had a wide linear range of 1 µM
to 6.12 mM at −0.35V with a detection limit of 0.35 µM. The material was also used to
measure H2O2 in milk and serum with good recovery.
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Figure 5. (a) Schematic diagram of the synthesis of Au–Pd@UiO-66-on-ZIF-L on CC; (b) Fluores-
cence spectra of A549 cells grown on Au–Pd@UiO-66-on-ZIF-L/CC stained by Calcein-AM (green)
and PI (red); (c) Amperometric responses of the Au–Pd@UiO-66-on-ZIF-L/CC electrode to H2O2

secreted from living A549 cells under drug stimulation at 0.6 V [67]; Copyright 2021, Royal Soci-
ety of Chemistry. (d) Particle size distributions of AgNPs in AgNPs@Y-1,4-NDC-MOF/ERGO and
(e) CuNPs in CuNPs@Y-1,4-NDC-MOF/ERGO [62]; Copyright 2018, Elsevier. (f) The fabrication of
the electrochemical sensor for the detection of H2O2 [64]. Copyright 2021, Wiley.

4.4. MOF Derivatives Based H2O2 Sensor

MOFs are often treated as self-sacrificing metal-organic precursors by post-treatment
or high-temperature pyrolysis to construct well-defined heteroatom-doped carbonaceous
microstructures with specific surface properties. A variety of typical 3D MOFs such as
Prussian Blue, MOF-5, ZIF-67, and HKUST (Hong Kong university of science and tech-
nology, also called MOF-199)-1 are widely used as precursors or templates to build novel
energy storage structures [135–140]. Furthermore, it has been reported that the carbon
hybridization of transition metal oxides can not only improve the electrical conductivity of
the catalyst, but also effectively prevent the aggregation of the catalyst. Therefore, transition
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metal oxides are often used as precursors for MOF derivatives [141–143]. Firstly, transition
metal oxides are often used to provide active sites for enzyme-free detection and improve
the activity of catalysts. Secondly, in situ formed CNT framework can improve the elec-
tronic conductivity, which is beneficial to the mass transfer of target molecules. Thirdly, the
encapsulated carbon shell can effectively immobilize the oxidized nanoparticles, thereby
inhibiting their aggregation. Qin’s [144] group successfully pyrolyzed the MOFs and fabri-
cated hollow frameworks of Co3O4/n-doped carbon nanotubes (Co3O4/NCNTs) in air. It
indicated that Co3O4 nanoparticles supplied active sites for the enzyme-free detection of
H2O2, and the in situ formed carbon nanotube framework enhanced the electronic conduc-
tivity and accelerated the mass transfer of target molecules (Figure 6a). The encapsulated
carbon shell could potently immobilize the oxidized nanoparticles, thus inhibiting their
aggregation (Figure 6b). The established hollow frameworks exhibited excellent bifunc-
tional detection capability with high sensitivity and low detection limitation for H2O2
(87.40 µA (mmol/L)−1 cm−2, 1 mmol/L) and glucose (5 mmol/L) (Figure 6c). This pro-
vides an effective idea for the establishment of non-enzymatic sensors with multifunctional
detection for biological applications. In addition to the Co3O4/NCNTs hollow frameworks,
Cui et al. [145] successfully synthesized hollow mesoporous CuCo2O4 (meso-CuCo2O4)
microspheres and utilized them in both H2O2 sensors and glucose biofuel cells (GFCs) for
the first time (Figure 6d,e). Meanwhile, the nitrogen adsorption-desorption isotherm of
meso-CuCo2O4 was a type IV isotherm, confirming the existence of mesoporous structure
and the intrinsic high specific surface area. On this basis, the inherently high catalytic
activity of mesophase Cuco2o4 exhibits high sensitivity and low detection limit (3 nM)
for H2O2 (Figure 6f). This further demonstrates that tunable porous structure can be con-
structed through MOFs template sacrificial method. Meanwhile, more metals active sites
can be loaded with the increased surface area. It should be noted is that the calcination
temperature needs to be preciously controlled, in order to prevent the potential issues of
agglomeration and resulting reduced catalytic activity.
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Figure 6. (a) Typical SEM images of Co3O4/NCNTs; (b) Typical TEM images of Co3O4/NCNTs;
(c) Amperometric responses of Co/NCNTs and Co3O4/NCNTs with the addition of the same con-
centration H2O2 [144]; Copyright 2020, Elsevier. (d) Nitrogen adsorption-desorption isotherm of
meso-CuCo2O4. Insets, respectively, show the crystal structure and distribution of pore size of meso-
CuCo2O4; (e) SEM image of meso-CuCo2O4; (f) Current-time curve of different H2O2 concentrations
on CuCo2O4/CPE in 0.2 M NaOH electrolyte at +0.5 V. Insets a and b respectively were response
time of addition H2O2 and current-time curve for a low concentration H2O2 [145]. Copyright 2018,
Elsevier.
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5. Conclusions and Outlook

In summary, we listed the advantages and disadvantages (such as conductivity, cat-
alytic activity, stability, selectivity cost and environmental friendliness) of conducting
MOFs, chemically modified MOFs, MOFs composites and MOF derivatives (Figure 7). We
consider that the ideal electrochemical sensors for H2O2 need to have the features of high
conductivity, excellent catalytic activity, high selectivity, long-time stability, low cost, and
environmental friendliness.
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(i) Ultra-low detection limit

In order to reduce the detection limit of the sensor, it will be crucial to improve the
electrocatalytic activity of the catalyst. Correspondingly, the following strategies can be
adopted to improve it: a. Constructing a hollow porous structure not only helps to increase
the specific surface area to expose more active sites, but also gives more 3D electron transfer
channels; b. Establishing a conductive network improves the conductivity of the catalyst
and facilitates electron transfer; c. Composite strategy of coalescing conductive materials
or materials with high activity for the decomposition of H2O2 enhances conductivity and
catalytic activity.

(ii) Long-term stability

It remains a huge challenge to achieve the long-term monitoring of H2O2 with sensors
without any decrease in activity. In general, catalyzing over a long period of time can lead to
the structural changes of materials and deactivation of catalytic sites. To solve this problem,
catalysts can be grown directly on highly corrosion-resistant conductive substrates (such as
GR nanosheets, conductive glass, Ni foam, etc.)

(iii) Large-scale production

Large-scale production of cheap and efficient H2O2 electrochemical sensors is of great
significance for practical applications. However, the development process from basic
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research to commercialization is seriously hindered by the high price of some raw materials,
synthesis processes and few synthesis methods. Therefore, new synthesis methods such as
electrospinning, spray drying and Langmuir-Blodgett are needed to achieve precise control
and mass production of electrocatalysts.

Overall, the development of highly sensitive and tolerant electrochemical sensors for
H2O2 is an important and challenging topic in the field of detection. Even in the near future
biological enzymes are also currently the best choice for detecting H2O2, but this is beyond
the scope of this review. We hope that this review can provide some meaningful inspirations
for the design and fabrication of MOFs based H2O2 electrochemical sensors. It is no doubt
that the development of H2O2 electrochemical sensors with comprehensive performance
and low cost will make significant contributions and breakthroughs in biological, medical
and other fields.
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