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Mechanisms of allergic diseases
Eosinophil responses during COVID-19
infections and coronavirus vaccination
Andrew W. Lindsley, MD, PhD, Justin T. Schwartz, MD, PhD, and Marc E. Rothenberg, MD, PhD Cincinnati, Ohio
Abbreviations used

COVID-19: Coronavirus disease 2019

RSV: Respiratory syncytial virus

S protein: Spike protein

SARS-CoV-1: Severe acute respiratory syndrome coronavirus 1

SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2

TLR: Toll-like receptor
Eosinophils are circulating and tissue-resident leukocytes that
have potent proinflammatory effects in a number of diseases.
Recently, eosinophils have been shown to have various other
functions, including immunoregulation and antiviral activity.
Eosinophil levels vary dramatically in a number of clinical
settings, especially following eosinophil-targeted therapy, which
is now available to selectively deplete these cells. There are key
coronavirus disease 2019 (COVID-19)-related questions
concerning eosinophils whose answers affect recommended
prevention and care. First, do patients with eosinophilia-
associated diseases have an altered course of COVID-19?
Second, do patients with eosinopenia (now intentionally induced
by biological drugs) have unique COVID-19 susceptibility and/
or disease course? This is a particularly relevant question
because eosinopenia is associated with acute respiratory
deterioration during infection with the severe acute respiratory
syndrome coronavirus 2, the causative agent of COVID-19.
Third, do eosinophils contribute to the lung pathology induced
during COVID-19 and will they contribute to
immunopotentiation potentially associated with emerging
COVID-19 vaccines? Herein, we address these timely questions
and project considerations during the emerging COVID-19
pandemic. (J Allergy Clin Immunol 2020;146:1-7.)

Key words: Coronavirus, COVID-19, eosinophils, immunopa-
thology, immunopotentiation, SARS, vaccines

Eosinophils normally account for only a small percentage of
circulating leukocytes (1%-3%), but their levels can vary in
various disease states.1-3 Their level is clinically relevant because
eosinophils are potent proinflammatory cells, primarily due to
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their preformed granules, which are packed with cytotoxic pro-
teins, including major basic protein (one of the most basically
chargedmolecules in the body), eosinophil peroxidase, and 2 RN-
Ases (eosinophil cationic protein and eosinophil neurotoxin). In
addition to their proinflammatory effects, evidence is emerging,
albeit primarily in mice, that eosinophils have pleotropic roles
as regulatory cells involved in protective immunity, including
antiviral responses and shaping diverse physiological responses,
such as organ development and metabolism. Although eosino-
phils are normally considered blood cells, they reside in various
tissues. Most notably, eosinophils reside in the gastrointestinal
tract, which is their primary residence, and the lung, where a pop-
ulation of regulatory eosinophils, which have unique features
compared with inflammatory eosinophils, has been identified.4

There are a number of diseases associated with eosinophil
expansion in which eosinophils are causally related to the
disease pathology, such as subsets of moderate and severe
asthma. Accordingly, a number of clinically approved biological
antibody-based precision therapies are now available that directly
target eosinophils, resulting in eosinophil depletion.5 These
drugs include those that neutralize the eosinophil growth and acti-
vating factor IL-5 (eg, mepolizumab and reslizumab) and drugs
that directly induce eosinophil depletion by antibody-dependent
cellular cytotoxicity (eg, the anti–IL-5 receptor drug benralizu-
mab).6 These drugs have remarkable beneficial effects in a
growing number of diseases, including asthma, hypereosinophilic
syndrome, and eosinophilic granulomatous polyangiitis
(formerly known as Churg Strauss syndrome), and additional
clinical indications are actively being pursued. As a result, there
is now an increasing number of patients with biological drug–
induced eosinopenia.7 Although patients with abnormally low
eosinophil levels (referred to as eosinopenia) might be considered
at risk for diseases normally controlled by eosinophils, there have
been no major side effects associated with these therapies to date.
In addition to biological drug–induced eosinopenia, eosinophil
depletion occurs in response to multiple triggers of acute inflam-
mation,8 including during sepsis, and multiple studies have
consistently shown that low eosinophil levels correlate with
poor outcome in critically ill patients.9
1
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There are now key coronavirus disease 2019 (COVID-19)-
related questions concerning eosinophils whose answers affect
recommended prevention and care. First, do patients with
eosinophilia-associated diseases have an altered course of
COVID-19? Second, do patients with eosinopenia have unique
COVID-19 disease features? This is a particularly relevant
question because eosinopenia has already been reported in
patients with acute respiratory deterioration during infection
with severe acute respiratory syndrome (SARS) coronavirus
(CoV) 2 (SARS-CoV-2), the causative agent of COVID-19.10

Third, do eosinophils contribute to the lung pathology induced
during COVID-19 and will they contribute to adverse events
associated with emerging COVID-19 vaccines? Indeed,
eosinophil-associated lung pathology is known to occur following
certain viral infections (eg, respiratory syncytial virus [RSV]) and
importantly is a known complication in previous severe acute
respiratory syndrome coronavirus 1 (SARS-CoV-1) vaccination
studies (see Table I).11-17 On the basis of previous experience
with SARS-CoV vaccines, it is expected that COVID-19 vaccines
will need careful safety evaluations for immunopotentiation that
might increase infectivity and/or eosinophilic infiltration.18
EOSINOPHIL RESPONSES DURING RESPIRATORY

VIRUS INFECTIONS
The role of eosinophils in mucosal immune responses in the

respiratory tract has largely focused on the detrimental impact
that these cells can have in inflammatory responses due to their
potent proinflammatory function. However, preclinical studies
(mainly in mice) have shown that eosinophils are equipped with
an assortment of molecular tools that enable them to recognize,
respond, and orchestrate antiviral responses to respiratory
viruses.19 Human eosinophils express several endosomal Toll-
like receptors (TLRs), including TLR3, TLR7, and TLR9, that
detect viral microbe–associated molecular patterns.20-22 TLR7
enables eosinophils to recognize single-stranded RNA viruses
such as coronavirus, and stimulating this receptor in human eosin-
ophils triggers eosinophil cytokine production, degranulation, su-
peroxide and nitric oxide (NO) generation, and prolonged cellular
survival.21-23 Eosinophil-derived neurotoxin (EDN/RNAse2) and
eosinophil cationic protein (ECP/RNAse3) from human eosino-
phils reduce infectivity of RSV by a ribonuclease-dependent
mechanism.24,25 Both human and murine eosinophils produce
NO via inducible NO synthase, which can have direct antiviral ef-
fects on parainfluenza virus and RSV.23,26,27 Eosinophils are able
to produce extracellular traps composed of eosinophilic granule
proteins bound to genomic and mitochondrial DNA, and murine
eosinophils can release these DNA traps in response to RSVinfec-
tion in vitro,28 especially in oxidative lung tissue environments.29

Eosinophils are also capable of quickly mobilizing preformed
granule pools of TH1 cytokines, including IL-12 and IFN-g,
which are important for mounting effective antiviral immune
responses.30 In a murine model of allergic asthma, pulmonary
eosinophils upregulate MHC-I and CD86 in response to
influenza virus infection, where they can directly interact with
CD81 T cells and promote the recruitment of virus-specific
CD81 T cells into the lungs to enhance antiviral immunity.31

Activated murine and human eosinophils also express MHC-II
molecules and costimulatory molecules and can function as
antigen-presenting cells for viral antigens, leading to T-cell
activation and cytokine secretion.32,33 IL-5 transgenic mice,
which constitutively overproduce IL-5 and have systemic
eosinophilia, have accelerated viral clearance during infection
with RSV.26 Conversely, mice genetically engineered to be
eosinophil-deficient have lower viral clearance of RSV than do
wild-type controls.26 Adoptive transfer of eosinophils from
Aspergillus fumigatus antigen–sensitized mice into the airways
of influenza virus–infected mice decreases viral titers and
increases virus-specific CD81 T cells in comparison to that of
animals who did not receive eosinophils.31 Interestingly, human
subjects with asthma were treated with the antieosinophil drug
mepolizumab (an anti–IL-5 humanized mAb) or placebo and
subsequently challenged with rhinovirus; mepolizumab-treated
patients demonstrated significant increases in their rhinovirus
viral titers in the upper airway, supporting an antiviral role for
eosinophils.34 Although these data substantiate the antiviral
potential of eosinophils, the clinical significance of eosinophils
in antiviral responses in human disease continues to remain
debatable. Patients with eosinophilic asthma have an increased
risk for viral-induced asthma exacerbations, and there is
mounting evidence that patients with eosinophilic asthma may
actually have reduced innate responses against respiratory
viruses.35-37 Importantly, biologic agents that decrease
pulmonary eosinophil levels reduce asthma exacerbations, and
patients with asthma treated with these agents have not been
reported to have increased viral infections.36,38-43 Rosenberg
et al44 suggested that eosinophils in the respiratory tract might
represent a ‘‘double-edged sword,’’ promoting antiviral responses
against some respiratory viruses that could become dysregulated
during allergic disease given their increased numbers and/or
activation status, ultimately resulting in an exaggerated host
response that can lead to host tissue damage. The growing number
of biologic agents that target eosinophils may be useful tools to
help clarify the role eosinophils have in different antiviral
responses. Taken together, although preclinical studies have
demonstrated antiviral activity for eosinophils, their clinical
relevance in immune responses to different respiratory viruses
remains unclear and needs further investigation.
EOSINOPHIL RESPONSE IN COVID-19
Rhinovirus, RSV, and influenza virus are common triggers of

viral-induced asthma exacerbations, whereas coronaviruses are
far less common triggers for acute asthma exacerbations.36,45-48

Asthma has not yet been identified as a major risk factor for
severity of SARS-CoV-1 infections.49 With regard to
SARS-CoV-2, Zhang et al10 recently reported that none of the
140 hospitalized patients with confirmed COVID-19 in a hospital
in Wuhan, China, reported asthma or comorbid atopic disease.
Another recent review of 548 patients admitted with COVID-19
to another hospital in Wuhan reported only 5 cases of asthma
(prevalence of 0.9%), markedly lower than the prevalence of
asthma within the adult population in Wuhan (6.4%).50

Leukocytosis, with increased absolute neutrophil counts, has
been associated with more severe presentations of
COVID-19.50-53 Interestingly, Zhang et al reported that more
than half the patients admitted with COVID-19 (53%) had eosino-
penia (defined as absolute eosinophil counts <0.023 109 cells/L)
on the day of hospital admission.10 Similarly, Du et al54 reviewed
the medical records of 85 fatal cases of COVID-19 and noted that
81% of the patients had absolute eosinophil counts below the
normal range (absolute eosinophil counts <0.02 3 109 cells/L)



TABLE I. SARS-CoV-1 murine vaccine studies

Study Vaccine type

SARS-CoV-1

antigen Adjuvant Booster rounds

Neutralizing

antibodies

Vaccine-induced

pathology

Deming

et al,11 2006

Recombinant

viral particle

S protein (VRP-S) None 13 (3-7 wk after first) Yes No

Nucleocapsid

(VRP-N)

None 13 (3-7 wk after first) No Yes, severe

(lymph 1 eos)

Du et al,12

2007

Subunit vaccine: S

protein RBD

RBD318-510-hFc* Initial: Freund’s

complete adjuvant

Boosters: Freund’s

incomplete

adjuvant

33 (every

3 wk 32, final at 12

mo)

Yes No

Yasui et al,13

2008

Recombinant

viral particle

Spike (S) None None Yes (9 d after

infection)

Yes, mild (neu)

Nucleocapsid

(nuc)

None None No (9 d after

infection)

Yes, severe (eos 1
neu)

Membrane (M) None None No (9 d after

infection)

No

Envelope (E) None None No (9 d after

infection)

No

Nuc 1 M 1
E 1 S

None None Yes (9 d after

infection)

Yes, severe (eos 1
neu)

Bolles et al,14

2011

DIV (formalin/UV) Whole virus 6 Alum 13 (2-3 wk after first) Yes (DIV 1 alum)

(4 d, after infection)

Yes; eos (4 d, after

infection)

Whole virus 6 Alum 13 (2-3 wk after first) ND Yes; eos 1 neu 1
mac (4 d after

infection)

Whole virus 6 Alum 13 (2-3 wk after first) ND Yes; eos 1 neu 1
mac (4 d after

infection)

Tseng et al,15

2012

DIV (formalin/UV) Whole virus 6 Alum 13 (4 wk after first) Yes (2 mo after

booster)

Yes; eos (2 d after

infection)

(reduced 1 alum)

Beta propiolactone–

inactivated virus

(BPV)

Whole virus 6 Alum 13 (4 wk after first) Yes (2 mo after

booster)

Yes; eos (2 d after

infection)

(no difference 1
alum)

Subunit vaccine: Full-

length S protein

Spike (S) 6 Alum 13 (4 wk after first) Yes (2 mo after

booster)

Yes; eos (2 d after

infection)

(reduced 1 alum)

Chimeric virus-like

particle (VLP)

Spike (S) 6 Alum 13 (4 wk after first) Yes (2 mo after

booster)

Yes; eos (2 d after

infection)

(no difference 1
alum)

Iwata-Yoshikawa

et al,16 2014

UV-inactivated whole

virus (UV-V)

Whole virus 6 Alum 13 (6-7 wk after first) Yes (before infection

and 3 d and 10

d after infection)

Yes; eos, lymph

Whole virus 6 TLR agonists 13 (6-7 wk after first) Yes (before infection

and 3 d and 10

d after infection)

No

Honda-Okubo

et al,17 2015

Subunit vaccine:

Partially truncated

S protein

SpikeDTM

(SDTM)

6 Alum 13 (3 wk after first) Yes (3 d after

infection)

Yes, severe eos (6

d after infection)

SpikeDTM

(SDTM)

6 Advax1 13 (3 wk after first) Yes (3 d after

infection)

Yes, mild eos (6

d after infection)

SpikeDTM

(SDTM)

6 Advax2 13 (3 wk after first) Yes (3 d after

infection)

No

DIV, Double-inactivated whole virus; eos, eosinophil; lymph, lymphocyte; mac, alveolar macrophage; ND, not done; neu, neutrophil; RBD, receptor-binding domain; SDTM, Spike

protein-transmembrane domain deleted; UV, ultraviolet light; VRP, virus replicon particle; VV, vaccinia; V, virus.

Alum, Aluminum salts; TLR agonist [LPS, poly(I:C), poly(U)]; Advax1, delta inulin microparticles; Advax2, delta inulin microparticles and CpG.

*Fusion protein of SARS-CoV-1 RBD (193 amino acids long) and Fc domain of human IgG1.
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at the time of admission. Lymphopenia has also been a common
finding in patients with COVID-19,10,50,55,56 and blood eosinophil
counts correlated positively with lymphocyte counts in both
severe and nonsevere cases.10 Liu et al57 also noted eosinopenia
at the time of initial presentation in a small cohort of patients
who were treated with lopinavir. Notably, eosinophil levels
improved in all patients before discharge, suggesting that resolu-
tion of eosinopenia may be an indicator of improving clinical sta-
tus. The pathophysiology for eosinopenia in COVID-19 remains
unclear but is likely multifactorial, involving inhibition of
eosinophil egress from the bonemarrow, blockade of eosinophilo-
poiesis, reduced expression of chemokine receptors/adhesion fac-
tors,8,58 and/or direct eosinophil apoptosis induced by type 1 IFNs
released during the acute infection.59 Importantly, no eosinophil
enrichment into the pulmonary tissue has been observed in sam-
ples from patients with COVID-19 at early stages of disease60

or in postmortem analyses.61 Moreover, postmortem analysis of
lung tissue from a patient who died fromCOVID-19 demonstrated
signs of acute respiratory distress syndrome that was dominated
by mononuclear inflammatory infiltrates, mostly lymphocytes.62

Consequently, consistent with SARS-CoV-1, asthma or other
allergic comorbidities do not seem to increase the risk for poor
outcomeswith SARS-CoV-2 infections given the current evidence
available. Conversely, multiple studies have identified older age,
male sex, hypertension, coronary heart disease, and diabetes as
being consistent risk factors for severe COVID-19.10,50,54-56

The mechanisms for the male predominance of COVID-19
severity are not known, but it is notable that allergic lung
responses to RSV have increased severity in male mice by a
thymic stromal lymphopoietin (TSLP)-dependent mechanism,
and eosinophil-associated diseases such as eosinophilic
esophagitis and hypereosinophilic diseases have a predilection
for males.63 Taken together, although the current data are limited,
there is little indication that eosinophils have a protective or
exacerbating role during SARS-CoV-2 infection. Eosinopenia,
however, may serve as a prognostic indicator for more severe
COVID.
VACCINE-INDUCED IMMUNOPATHOLOGY LINKED

TO CORONAVIRUSES
Following the outbreak of the SARS epidemic in late 2002,

investigators raced to develop candidate SARS-CoV-1 vaccines.
Diverse strategies were tested, including the use of attenuated or
inactivated whole CoV particles, DNA-based vaccines,
recombinant viral particles, and recombinant subunit vaccines.64

Sera from patients convalescing from SARS revealed robust
antibody titers against the spike protein (S protein) and the
nucleocapsid protein.65 Vaccine candidates that induced
neutralizing antibodies targeting the S protein demonstrated
efficacy in blocking viral replication,66 a concept later
confirmed by passive antibody transfer studies.67,68

Unfortunately, anti–SARS vaccine–associated pathology emerged
in early ferret (hepatitis69 and pulmonary eosinophilia15,69),
cynomolgus monkey (TH2-type immunopathology with
eosinophils15,70), and mouse (pulmonary eosinophilia)11 studies.
SARS-CoV-1–driven, eosinophil-associatedTH2 immunopotentia-
tion also occurredwith reinfection (greenmonkeymodel), suggest-
ing that immune enhancement of CoV-associated disease may be
relevant in future outbreaks of heterologous CoVs.71 Eosinophil-
associated disease enhancement following exposure after
vaccination is unfortunately not a new phenomenon. Historical
reports from the 1960s link administration of a candidate
formalin-inactivated RSV vaccine to severe, eosinophil-
associated pulmonary disease following natural infection. This
severe eosinophilic pulmonary disease hospitalized most study
participants and led to at least 2 deaths.72-74 Memories of such
disease enhancement postvaccination strongly influenced
subsequent RSV F protein subunit vaccine development and
trial design.75 The development of a safe and efficacious
SARS-CoV-2 vaccine will require the development of vaccine
candidates that take into account the risk of similar vaccine-
associated immunopathology.

In the decade following these early observations, a series of
mouse studies (see Table I) evaluated the factors driving the
observed TH2-skewed vaccine immunopathology. Two
independent studies using recombinant viral particles
(Venezuelan equine encephalitis virus or vaccinia) used isolated
SARS structural proteins to investigate the source of
immunopathology.11,13 Nucleocapsid protein vaccination was
implicated as a major driver of vaccine-associated pulmonary
eosinophilia, although passive transfer of anti– nucleocapsid pro-
tein antibody was not sufficient to drive enhanced TH2 disease,
suggesting a possible role for anti–nucleocapsid protein–specific
T cells.11 TH2-mediated disease enhancement was also linked to
age, as vaccination of aged mice (>12 months old) with double-
inactivated SARS-CoV-1 led to increased morbidity/mortality
and accentuated eosinophilic pulmonary disease.14 Follow-up
studies comparing vaccination strategies, vaccine preparations
(whole virus/virus-like particles vs subunits vs subunit frag-
ments), boosting strategies and timing, and the inclusion of
alum versus other adjuvants (TLR agonists) have yielded variable
results. In early studies, chimeric recombinant virus–like particle
vaccines displaying only the SARS S protein did not induce
eosinophilia.11,13 In contrast, isolated S protein subunit vaccines
(SpikeDTM [SDTM]) appeared capable of TH2 immunopotentia-
tion.15-17 S protein–derived fragments containing just the
receptor-binding domain have also been proposed as vaccine
antigens, but these vaccine formulations have required more
aggressive use of adjuvants and more boosters (3-4 times more)
than other approaches.64 Investigations into the TH2
immunopotentiation capacity of these compounds have been
limited but reassuring, with 1 study showing no evidence of pul-
monary eosinophilia in postchallenge animals12 and a follow-up
study showing balanced TH1/TH2 cytokine induction following
vaccination.76 Some investigators have implicated the inclusion
of the TH2-skewing adjuvant alum in causing the immunopoten-
tiation, and subsequent studies have shown that the inclusion of
TH1-skewing adjuvants with both whole virus and subunit
vaccine candidates has attenuated or blocked the development
of pulmonary eosinophilia with SARS-CoV-1 challenge.16,17

Alternatively, contaminating exogenous proteins from serum-
containing media (ie, BSA) in vaccine preparation or viral stocks
may explain the observed TH2 skewing in certain experiments;
however, the absence of eosinophilic infiltrates in mock-
vaccinated control animals makes this possibility less likely.
Overall, the SARS-CoV-1 vaccination literature documents
recurrent, postvaccination disease enhancement in diverse vac-
cine preparations and across multiple animal models; however,
this side effect declines with the use of more tightly defined anti-
gens (S protein receptor-binding domain peptide) and the use of
TH1-skewing adjuvants.



TABLE II. Eosinophil responses related to COVID-19

Issue Likely significance

Atopy-related eosinophilia Atopy does not appear to have an exacerbating role in COVID-19

Eosinophil antiviral activity The antiviral activity of eosinophils is unlikely involved in COVID-19 because the antiviral activity of

eosinophils has not yet been observed in humans

Biological drug–induced eosinopenia There are no data to date substantiating any risk for infections following depletion of eosinophils

COVID-19–associated eosinopenia The eosinopenia associated with COVID-19 is likely a secondary phenomenon and not directly contributing

to the disease course

Lung eosinophilia associated with

immunopotentiation by SARS vaccines

Vaccine candidates must demonstrate the absence of eosinophil-associated disease enhancement before

widespread deployment

FIG 1. SARS-CoV immunity. The structural proteins of the SARS-CoV viral particle are shown and putative

TH1- vs TH2-mediated immune responses detailed. The Spike (S) glycoprotein mediates binding of the virus

to the angiotensin-converting enzyme-2 protein and subsequent fusion/entry into host cells. Sera from

convalescing patients have revealed that anti–nucleocapsid protein and anti–S protein antibodies predom-

inate the humoral immune response to SARS-CoV-1 but that only anti–S protein antibodies (especially

those targeting the receptor-binding domain region) are neutralizing and protective. Beneficial antiviral re-

sponses appear to be linked to TH1-skewed immunity, whereas TH2 immunopotentiation in multiple animal

model systems is associated with vaccination-enhanced disease, leading to pulmonary eosinophilia. To

date, these potentially adverse consequences have been observed only in animal model systems following

virus challenge with certain vaccine formulations (see Table I). Various SARS-CoV-2 vaccine candidates are

currently under development (see box), which should be scrutinized for safety before widespread deploy-

ment. CTL, Cytotoxic T lymphocyte; ssRNA, single-stranded RNA.
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Conclusions
There are emerging eosinophil-related considerations

concerning COVID-19 (Table II). Although current data are
limited, there is little supportive evidence that patients with
eosinophil-associated diseases will have an altered course of
COVID-19, provided that they are not immunosuppressed from
concurrent medications or by their primary disease process.
Likewise, though preclinical studies have provided compelling
experimental evidence that eosinophils have potential antiviral
activity, there is no evidence that patients with eosinopenia
induced by the recently approved antieosinophil therapeutics
have increased susceptibility to viruses. Whether the acquired
eosinopenia associated with COVID-19 is directly contributing
to the disease course has not yet been determined, but it is notable
that pulmonary eosinophilia is not part of the lung pathology so
far attributed to SARS-CoV-2. It will be important however to
assess the presence of eosinophils and the deposition of their
granule products in the lung of a large cohort of patients with
COVID-19, to control for exposure to glucocorticoids, and to
determine the role of eosinophils in the COVID-19 lung
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pathology. Finally, and likely most importantly, there is consider-
able concern about whether SARS-CoV-2 exposure postvaccina-
tion would cause eosinophil-associated lung pathology through
immunopotentiation (see Fig 1). Although these concerns mainly
have been derived from murine studies using vaccine candidates
from the original SARS-CoV-1 virus, similar responses have also
been seen in other species (eg, ferrets and monkey studies); it is
also notable that SARS-CoV-1 and SARS-CoV-2 share more
than 80% identity. Although the ongoing COVID-19 outbreak
places new emphasis on the critical need for an effective
SARS-CoV-2 vaccine, safety must be a central focus for any vac-
cine designed for general use. Current clinical reports show that
most (up to 81%) patients with COVID-19 have mild disease,77

and therefore, trials of vaccine candidates must rigorously
demonstrate the absence of eosinophil-associated disease
enhancement before widespread deployment.
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