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� There is limited data on the mechanisms involved

in HDV-induced liver pathology.

� Our data indicate that both TNF-a and HDV anti-
gens play a relevant role in HDV-induced liver
damage.

� Pharmacological inhibition of TNF-a may offer an
attractive strategy to aid control of HDV-induced
acute liver damage.
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Chronic hepatitis delta constitutes the most severe
form of viral hepatitis. There is limited data on the
mechanism involved in hepatitis delta virus (HDV)-
induced liver pathology. Our data indicate that a
cytokine (TNF-a) and HDV antigens play a relevant
role in HDV-induced liver damage.
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Background & Aims: HDV infection induces the most severe form of human viral hepatitis. However, the specific reasons for
the severity of the disease remain unknown. Recently, we developed an HDV replication mouse model in which, for the first
time, liver damage was detected.
Methods: HDV and HBV replication-competent genomes and HDV antigens were delivered to mouse hepatocytes using
adeno-associated vectors (AAVs). Aminotransferase elevation, liver histopathology, and hepatocyte death were evaluated and
the immune infiltrate was characterized. Liver transcriptomic analysis was performed. Mice deficient for different cellular and
molecular components of the immune system, as well as depletion and inhibition studies, were employed to elucidate the
causes of HDV-mediated liver damage.
Results: AAV-mediated HBV/HDV coinfection caused hepatocyte necrosis and apoptosis. Activated T lymphocytes, natural
killer cells, and proinflammatory macrophages accounted for the majority of the inflammatory infiltrate. However, depletion
studies and the use of different knockout mice indicated that neither T cells, natural killer cells nor macrophages were
necessary for HDV-induced liver damage. Transcriptomic analysis revealed a strong activation of type I and II interferon (IFN)
and tumor necrosis factor (TNF)-a pathways in HBV/HDV-coinfected mice. While the absence of IFN signaling had no effect,
the use of a TNF-a antagonist resulted in a significant reduction of HDV-associated liver injury. Furthermore, hepatic
expression of HDAg resulted in the induction of severe liver damage, which was T cell- and TNF-a-independent.
Conclusions: Both host (TNF-a) and viral (HDV antigens) factors play a relevant role in HDV-induced liver damage. Impor-
tantly, pharmacological inhibition of TNF-a may offer an attractive strategy to aid control of HDV-induced acute liver damage.
© 2020 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
HDV, the only member of the genus Deltavirus, is a defective RNA
virus that requires the surface antigens of HBV (HBsAg) for viral
assembly and transmission.1

Approximately 5% of HBV carriers have been exposed to HDV,
with a total of 15–20 million patients worldwide, although
recent studies reported higher prevalence numbers.2,3 HDV
causes the most severe form of viral hepatitis with a twofold
higher risk of developing cirrhosis, a threefold higher risk of
developing hepatocellular carcinoma (HCC), and twofold
increased mortality in comparison with HBV monoinfection.2–4
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Hepatitis B.
Received 27 August 2019; received in revised form 12 February 2020; accepted 13
February 2020; available online 10 March 2020
* Equal contribution.
† These authors share senior authorship.
§ Current address: Centre for Immunobiology, Blizard Institute, QMUL, London, UK.
# Current address: Asklepios BioPharmaceutical, Inc. 20 T.W. Alexander, Suite 110.
RTP, NC 27709, USA.

* Corresponding authors. Address: Centro de Investigacion Medica Aplicada (CIMA),
Gene Therapy and Regulation of Gene Expression program, Avda Pio XII 55, 31008
Pamplona, Spain. Tel.: 34 948194700 ext 4024; fax: 34 948194717.
E-mail addresses: ggasegui@unav.es (G. Gonzalez-Aseguinolaza), raldabe@unav.es
(R. Aldabe).
HDV is commonly considered a non-cytopathic virus since
HDV viremia has no correlation with the extent of liver disease,
and HDV replication or HDAg expression in transgenic mice does
not cause liver damage.4–7 HDV-associated hepatic damage is
thus thought to be immune-dependent like in HBV and HCV
infection.8,9 It is known that in patients with HDV the frequency
of CD4+ T cells and natural killer (NK) cells in peripheral blood is
increased compared to in patients with HBV or HCV, while the
frequency of mucosal-associated invariant T (MAIT) cells is
decreased.10–12 Interestingly, circulating NK cells have an
immunoregulatory rather than cytolytic phenotype, and MAIT
cells are functionally impaired.11,12 Very recently, work by Kefa-
lakes et al.13 and Karimzadeh et al.14 showed a weak but positive
correlation between the ex vivo frequency of activated HDV-
specific CD8+T cells and liver inflammation, suggesting that
cellular responses against the virus might indeed be involved in
HDV-mediated liver damage.13,14 However, there are a number of
clinical studies showing that HDV-specific T cell response is very
weak or undetectable 15–18 and that there is no correlation be-
tween the magnitude of the T cell response and clinical out-
comes.15,18 Interestingly, the interaction between the infected
hepatocytes and the immune cells, as well as the immunologic
environment of the liver during HDV infection has not been
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Table 1. Histopathological study of liver samples 21 days after AAV-HBV-
or AAV-HBV/HDV injection and untreated wild-type animals.

Pathological finding

WT C57BL/6

Control AAV-HBV AAV-HBV/HDV

(n = 6) (n = 6) (n = 6)

Inflammatory foci (3/1) (3/1) (6/2-3)
Single cell necrosis (-) (-) (6/1-2)
Difuse Hepatocyte hypertrophy (-) (-) (6/2)
Increased mitosis (-) (-) (6/2-3)

The indicated values correspond to: (Number of mice affected/degree of severity).
The degree of severity was scored from 0 to 5. (-)=0.
AAV, adeno-associated virus.

A B

C D 

CD45 NucleiHDAg

Fig. 1. Coinfection with AAV-HBV and AAV-HDV induces significant histo-
logical changes in the liver. (A, B) Liver sections obtained 21 dpi were
analyzed by H&E staining. Piecemeal necrosis (blue arrow), intralobular infil-
tration (black arrows), acidophilic bodies (white arrows), as well as hepato-
cytes hypertrophy and sandglass hepatocytes can be detected. (C, D) H&E
staining and immunofluorescence for HDAg (red), CD45 (green) and nuclei
(blue) of a representative necrotic area in the liver of mice 21 days after AAV-
HBV and AAV-HDV injection. AAV, adeno-associated virus.
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elucidated, since the models available so far – immunodeficient
humanized mice,19,20 or mice not permissive to HBV coinfec-
tion21 – do not completely reproduce the characteristics of the
infection as it occurs in humans.

Recently, we developed a mouse model of HDV replication,
based on adeno-associated viral vector (AAV)-mediated delivery
of HBV and HDV replication-competent genomes to the liver,
that mimics most of the features of severe acute HDV infection in
humans, including the induction of liver inflammation and liver
injury, which is associated with the expression of genes involved
in the development of HCC, cirrhosis, fibrosis, and cell death.22

The aim of this work was to determine the role of host and
viral factors in HDV-mediated liver injury in this HDV-mouse
model.

Materials and methods
Recombinant AAV constructs
AAV-HBV and AAV-HDV vectors were constructed as described.22

As a control we used an AAV containing the luciferase gene
(AAV-Luc).22 The coding sequences for the S-HDAg was amplified
using the primers: 50-S-HDAg (50-tttttggatccaccatgagccggtcc-
gagtcggaggaagaacc-30), and 30-S-HDAg (50-aaaaaagatctctatggaaa
tccctggttacccctg-30). The coding sequence for L-HDAg was
amplified using the primers 50-S-HDAg and (50-ttttta-
gatcttcactggggtcgacaactctggggagaaaagggcggatcggcaggaaagagtatt
acccatggaaatccc-30). Site-directed mutagenesis was performed in
the L-HDAg coding sequence to edit the STOP codon (position
196) to a tryptophan codon. Amplification products were inser-
ted in the pAAV-MCS plasmid carrying the chimeric EAlb/AAT
promoter22 sequence to make the AAV-S-HDAg and AAV-L-HDAg
vectors. The AAV genomes were packaged in AAV serotype 8-
capsids (AAV8) as previously described.22

Depletion of NK cells and macrophages
Mice were NK-depleted by intraperitoneal (i.p.) administration of
500 lg of anti-mouse NK1.1 antibody (PK136, BioXcell) 2 days
before virus injection and every 48 h until 20 days post-infection
(dpi). Depletion levels of circulating NK cells were determined to
be �98% by flow cytometry on whole blood. Irrelevant mouse
immunoglobulin isotypes were used as controls (BE0085 clone
C1.18.4, BioXcell).

Macrophage depletion was achieved by intravenous (i.v.)
administration of 100 ll clodronate-loaded liposomes (Clodlip
BV) 2 days before virus injection and every 4 days until 20 dpi.

TNF-a inhibition and analysis
Mice received i.p. 9 mg/kg etanercept (EnbrelTM, Pfizer) 2 dpi and
every other day until 20 dpi, as previously described.23 Intra-
hepatic and serum tumor necrosis factor (TNF)-a levels were
determined using Mouse TNF-a Uncoated ELISA kit (Invitrogen).

Further methodology may be found in the Supplementary
materials and methods.

Results
The severity of HDV-induced liver damage correlates with the
number of apoptotic hepatocytes
In our previous work, we showed that the co-administration of
C57BL/7 WT mice with recombinant AAV vectors carrying
replication-competent HDV and HBV genomes resulted in the
development of liver damage that was not observed in animals
JHEP Reports 2020
having received AAV-HBV alone. Apart from an increase in liver
aminotransferase levels, clear histological changes were
observed.22 To confirm this finding, a blinded pathological
analysis was performed. It revealed that all mice receiving AAV-
HBV/HDV, but no control animal or animals receiving AAV-HBV
alone, developed hepatic lesions that were characterized by
diffuse hepatocyte hypertrophy, inflammation with piecemeal
necrosis, and focal/multifocal single cell necrosis, the severity of
which was scored and represented in Table 1, with representa-
tive images shown in Fig. 1. All these features have been
observed in biopsy specimens of patients with chronic HDV
infection.24,25 Additionally, liver sections stained with hemato-
poietic cell marker CD45 and HDAg revealed that necrotic areas
are characterized by low levels of HDAg expression (or
completely absent, data not shown) and the presence of non-
nucleated CD45+ cells (Fig. 1D).
2vol. 3 j 100098
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Fig. 2. Coinfection with AAV-HBV and AAV-HDV induces hepatocyte death. (A) Liver sections obtained 21 dpi were analyzed by IHC for activated Caspase 3.
Individual data points and mean values ± standard deviation are shown (control (AAV-Luc) and AAV-HBV n = 4–5; AAV-HBV/HDV n = 13). Significant differences
were determined by one-way ANOVA followed by Bonferroni multiple-comparison test. ****p <0.0001. (B) a-Casp3 stainned cells are homogenously distributed in
the liver of AAV-HBV/HDV-treated mice. (C) The number of apoptotic hepatocytes per liver area correlates positively with ALT serum levels 14 (n = 4) and 21 days
(n = 13) post AAV-HBV/HDV co-administration. The Pearson correlation coefficient r was calculated assuming a bivariate Gaussian distribution. The dashed lines
represent the 95% confidence band for the best fit line (solid line). (D) Liver sections obtained 21 dpi were analyzed by double immunofluorescence for a-Casp3
and HDAg expression, cells expressing both HDAg and a-Casp3 where indicated by white arrows. a-Casp3, activated caspase 3; AAV, adeno-associated virus; ALT,
alanine aminotransferase; dpi, days post infection; IHC, immunohistochemistry.
Furthermore, liver sections of animals having received AAV-
HBV/HDV or AAV-HBV were analyzed by immunohistochem-
istry (IHC) for the presence of activated Caspase 3 (a-Casp3) in
hepatocytes 21 dpi. As shown in Fig. 2A, the number of positive
cells was significantly higher in animals administered with AAV-
HBV/HDV than in the AAV-HBV group or in control animals. a-
Casp3-positive hepatocytes were homogeneously distributed in
the liver of AAV-HBV/HDV-coinfected mice (Fig. 2B). We
observed a close correlation between the number of a-Casp3
positive cells and aminotransferase levels at 14 and 21 dpi
(Fig. 2C). Importantly, immunofluorescence analysis showed that
the majority (98%) of a-Casp3 positive cells express HDAg
(Fig. 2D).

AAV-HDV/HBV-infected livers have a significant leukocyte
infiltrate, which is composed of activated CD4+ and CD8+ T
cells, NK cells, and inflammatory macrophages
We observed the presence of a significant inflammatory infiltrate
in the liver of animals receiving AAV-HBV/HDV.22 Since HDV-
induced hepatic damage in patients is thought to be immune-
dependent,2–4 the inflammatory infiltrate present in the livers of
AAV-HBV/HDV-treated mice was characterized. Animals were
treated with AAV-Luc, AAV-HBV or AAV-HBV/HDV and sacrificed
21 days later. Intrahepatic leukocytes (IHL) were isolated, coun-
ted and analyzed by flow cytometry. We observed a significant
increase in the number of CD45+ cells infiltrating the liver in the
AAV-HBV/HDV group in comparison to AAV-Luc control animals
or animals having received AAV-HBV alone (Fig. 3A). Phenotypic
analysis of the infiltrate revealed a significant increase in B cells,
JHEP Reports 2020
NK cells, CD4+ T cells, CD8+ T cells and macrophages (proin-
flammatory macrophages in particular), while natural killer T
(NKT) cell numbers were lower (Fig. 3B–D). The increase in CD4+

T cells, CD8+ T cells and macrophages was confirmed by the
immunohistochemical analysis of liver sections (Fig. S1A–C).
Furthermore, both CD4+ and CD8+ T cells showed a clear acti-
vation phenotype evidenced by the expression of CD44 and
CD25 (Fig. 3C, D). Although not significant, we also detected an
increase in the number of infiltrate cells in AAV-HBV-injected
animals in comparison to AAV-Luc controls that was associated
with an increase in macrophages, CD4+ and CD8+ cells (Fig. 3).

In summary, activated T lymphocytes, NK cells, and proin-
flammatory macrophages account for the majority of the im-
mune cells infiltrating HDV-replicating livers. Thus, cells from
both the innate and the adaptive arms of the immune system are
activated in hepatitis delta infection and may have a role in HDV-
induced pathogenesis.

Neither T cells, macrophages, nor NK cells are necessary for
the induction of liver damage by HDV
In order to determine the role of the different immune cells
found in damaged HDV-livers, recombination activating gene 1
(Rag1) knockout (KO) mice lacking T−, B−, MAIT, and NKT cells
were injected with AAV-HBV/HDV, and aminotransferase levels
were measured 7, 14 and 21 days after injection. As shown in
Fig. 4A, in both groups aminotransferase levels increased with
time as previously observed. Therefore, none of these cells are
essential for the induction of liver damage. To determine the role
of NK cells and macrophages in HDV-induced liver pathology, we
3vol. 3 j 100098
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plotted. Significance levels were determined by one-way ANOVA followed by Bonferroni multiple-comparison test. *p <0.05; **p <0.01; ***p <0.001; ****p <0.0001.
AAV, adeno-associated virus; NK, natural killer; NKT, natural killer T.
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performed depletion experiments. NK cells were depleted from
Rag1 KO mice by i.p. administration of 500 lg of anti-NK1.1
antibody 2 days before virus injection and then every 48 h un-
til 20 dpi. Macrophage depletion was achieved in C57BL/6 WT
mice by i.v. administration of clodronate-loaded liposomes 2
days before virus injection and subsequently every 4 days until
20 dpi. Neither NK elimination in mice lacking T, B, and NKT cells
nor macrophage elimination in WT mice prevented liver damage
(Fig. 4B, C). Interestingly, macrophages and NK cells seemed to
have a protective role, since transaminitis was higher in
macrophage-depleted mice on day 14 and in NK-depleted mice
on day 21 than in control animals (Fig. 4B, C). The analysis of HDV
genome and antigenome levels by quantitative reverse-
transcription PCR (RT-qPCR) revealed no significant differences
among WT, Rag1 KO and depleted mice (Fig. S2A). Longer-term
studies showed that 40–45 days after AAV-HBV/HDV injection,
aminotransferase levels decrease in correlation with a significant
reduction in the number of HDV antigen-positive cells and HDV
genomes both in WT and Rag1 KO (Fig. S3).

AAV-HBV/HDV-induced liver damage is independent of IFN-a
and IFN-c but it is significantly reduced by anti-TNF-a
treatment
In our previous work, we observed upregulated expression of
type I and type II interferons (IFNs) and TNF-a.22 The evaluation
of transcriptional changes by microarray analysis in the livers of
AAV-HBV/HDV-coinfected mice (GEO accession number:
GSE98342) revealed a highly significant activation of the
expression of genes associated with IFN-c and TNF-a signaling
pathways, with Z scores of 11.25 and 9.50.

In order to determine the relevance of the expression of the
different cytokines in HDV-induced liver damage, AAV-HBV/HDV
JHEP Reports 2020
was administered to C57BL/6 WT, Ifnar/Ifnbr KO, Ifngr KO, and
mitochondrial antiviral signaling protein (Mavs) KO (inwhich the
IFN-b response to HDV replication is blunted) mice and alanine
aminotransferase (ALT) levels were analyzed 7, 14 and 21 dpi. ALT
levels progressively increased above the normal range in all
groups, with no significant differences among them (Fig. 5A).
Moreover, the typical pattern of liver degeneration, mitotic fig-
ures, and Councilman bodies was present to a similar degree in
all groups (data not shown). These data indicated that IFN-a and
IFN-c were not required for the observed hepatic damage.
Furthermore, contrary to what has been reported for a mouse
model of hepatitis A infection,26 MAVS was dispensable for HDV-
induced damage. The analysis of HDV genome and antigenome
levels by RT-qPCR revealed some differences between the
groups. Lower levels of HDV genomes were detected in the Ifnar/
Ifnbr KO and Ifngr KO mice, while higher levels were found in
Mavs-deficient mice in comparison to WT animals 21 dpi
(Fig. S2B); however, as observed, these differences did not have a
major impact on the magnitude of liver damage.

In order to determine the role of TNF-a in HDV-induced liver
damage, AAV-HBV/HDV-injected mice received a dose of 9 mg/kg
of the TFN-a inhibitor (etanercept),23 starting 2 days after vector
injection and then every other day for 21 days. As shown in
Fig. 5B, while no differences in aminotransferase levels were
observed on days 7 and 14, on day 21 the animals receiving anti-
TNF-a treatment presented significantly lower liver enzyme
levels in circulation. Animals were sacrificed on day 21 and the
TNF-a concentration was determined by ELISA in the liver and in
serum. TNF-a levels were significantly higher in AAV-HBV/HDV
animals than in controls, and the levels were only slightly
lower in the livers but not in the serum of Etanercept-treated
animals (Fig. 4C, D). However, the hepatic mRNA expression of
4vol. 3 j 100098
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Fig. 4. The levels of ALT increased beyond the physiologic range in AAV-
HBV/HDV-coinfected WT and Rag1 KO mice. (A) Eight-week-old wild-type
(n = 6) and Rag1 KO mice (n = 4) were coinfected with AAV-HDV and AAV-HBV.
(B) Rag1 KO mice underwent NK depletion with a-NK1.1 antibody (n = 7–8)
while (C) depletion of macrophages in wild-type mice was achieved admin-
istering clodronate-loaded liposomes (lip-clodronate) (n = 4–5). Peripheral
blood was collected every 7 days after vector injection and ALT concentration
in serum was measured. Individual data points and mean values ± standard
deviation are shown; significant differences between groups at each time point
were determined by nonparametric one-way ANOVA (Kruskal-Wallis test)
followed by Bonferroni multiple-comparison test. The dotted line represents
the ALT upper limit of normal (ULN, 50 U/L). **p <0.01; ***p <0.001. AAV, adeno-
associated virus; ALT, alanine aminotransferase; KO, knockout; NK, natural
killer.
Tnfa and TNF-a-induced genes such as Il6, Il1b and Icam1 were
significantly downregulated in Etanercept-treated animals
(Fig. S4A−D). The analysis of apoptotic hepatocytes, determined
as a-Casp3 positive cells, revealed a significantly reduced num-
ber of positive cells in Etanercept-treated mice in comparison to
the untreated coinfected group (Fig. 5E). Again, there was a
strong correlation between apoptotic cells and aminotransferase
levels (Fig. S4E). No differences in the number of HDV genome/
antigenome levels were observed, indicating that anti-TNF-a
treatment does not affect HDV replication (Fig. S2C). Taking
together all these data support a role of TNF-a in HDV-induced
liver damage.

Longer-term studies showed that 45 days after AAV-HBV/HDV
injection, as described previously in WT and Rag1 KO mice,
aminotransferase levels decrease in correlation with a significant
reduction in the number of HDV antigen-positive cells and HDV
JHEP Reports 2020
genomes, as in Ifnar/Ifnbr KO and Mavs KO mice, as well as in
mice treated with etanercept for the duration of the study
(Fig. S3).

The role of HDV antigens in liver damage
Since the cellular components of the immune system could be
excluded from playing a role in HDV-induced liver damage, a
potential implication for viral components was suspected. To
explore this hypothesis, AAV vectors expressing S-HDAg or
L-HDAg under the control of the same promoter that controls
HDV genome transcription in AAV-HDV were produced (Fig. 6A).
Transient expression of both antigens was detected, with
maximum levels observed 7 days after vector injection (Fig. 6B).
The injection of AAV-L-HDAg or AAV-S-HDAg resulted in a sig-
nificant aminotransferase elevation in both groups (Fig. 6C).
Interestingly, the dynamics of ALT increase differed substantially:
mice injected with AAV-L-HDAg showed a sharp increase by day
7 and returned to normal levels by day 14, correlating with the
disappearance of antigen expression which was only detected on
day 7. The AAV-S-HDAg group showed a different pattern: while
the highest levels of S-HDAg expression were observed on day 7
and had disappeared by day 21, ALT elevation was higher on day
14 than on day 7. We performed IHC to detect a-Casp3 in he-
patocytes, and found apoptotic cells in the livers of AAV-S-HDAg
and AAV-L-HDAg on days 14 and 7, respectively, concomitant
with the peak of aminotransferase elevation (Fig. 6D). Next, to
determine if liver damage was associated with an antigen-
specific T cell response, Rag1 KO mice received AAV-S-HDAg or
AAV-L-HDAg and ALT levels were analysed on days 7, 10 and 14.
Like in WT animals, a clear ALT elevation was observed (Fig. 6E).
Thus, our data suggest that HDAgs themselves but not the
cellular immune response against them play a major role in
HDV-induced liver damage.

Since we have previously demonstrated that TNF-a plays a
role in HDV-induced liver damage, we analyzed the expression of
TNF-a in the liver of mice injected with AAV-HDAg. A significant
elevation of TNF-a but not IFN-b (strongly induced after AAV-
HBV/HDV infection) was observed in both S-HDAg- and
L-HDAg-expressing animals (Fig. S5). However, etanercept
treatment failed to ameliorate liver damage associated with
HDAg expression, indicating that HDAg-induced liver damage is
TNF-a-independent (Fig. 6F).
Discussion
HDV infection causes the most severe form of viral hepatitis;
patients with HDV present with high levels of ALT, aspartate
aminotransferase (AST) and gamma-glutamyltransferase, and
low prothrombin levels, all of which are indicative of liver
damage.12,27,28 The mechanisms involved in the pathogenesis of
the disease remain unresolved.2,28 HDV, similar to HBV and HCV,
is a non-cytopathic virus and the viruses share pathogenic sim-
ilarities, characterized by chronic inflammation, hepatocyte
injury and progressive fibrosis.8,9 For this reason, it has been
assumed that the liver damage observed in HDV-infected pa-
tients, as it has been described for HBV and HCV, is also caused
by components (cells, cytokines) of the host immune system.
However, so far, the interaction between the infected cells and
the immune system of the host has not been characterized, and
the same holds true for the potential role of viral factors.

We have recently demonstrated that co-infecting mice with 2
AAV vectors carrying replication-competent genomes of HBV and
5vol. 3 j 100098
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HDV resulted in hepatic replication of HDV, formation of HDV
infectious particles and, very importantly, in the development of
significant liver damage evidenced by aminotransferase eleva-
tion and profound histological alterations.22 Furthermore, tran-
scriptomic analysis revealed the upregulation of pathways
associated with liver damage, necrosis, inflammation etc.22 Here,
histopathology and IHC analysis revealed the presence of
necrotic and apoptotic hepatocytes, whose numbers positively
correlated with aminotransferase levels.

As observed in patients, in this mouse model a significant
inflammatory infiltrate is detected in the liver.12,29 The pheno-
typic characterization of the hepatic immune infiltrate in AAV-
HBV/HDV-coinfected C57BL/6 WT mice revealed a composition
of activated CD4+ and CD8+ T cells, proinflammatory macro-
phages, and NK cells. For a number of viral infections, the acti-
vation of a specific T cell response is crucial for the elimination of
the virus as well as for the induction of tissue damage. However,
in AAV-HBV/HDV-injected mice, the absence of T cells did not
result in reduced aminotransferase levels, which indicated that T
cells alone play no role in HDV-induced liver damage in mice.
Our results contradict recent publications suggesting a role for
HDV-specific CD8+ T cells in HDV-induced liver pathology.13,14

Kefalakes et al. showed a very weak positive correlation be-
tween AST levels and activated HDV-specific CD8+ T cells in
circulation in a small number of chronically HDV-infected pa-
tients. However, circulating T cells might not reflect what is
JHEP Reports 2020
happening in the liver, and the cytolytic capacity of these cells
has yet to be characterized. In fact, our results are in agreement
with several studies showing that the HDV-specific T cell im-
mune response is very weak in HDV-infected patients. Further-
more, Landahl et al. have demonstrated that evenwhen the HDV-
specific T cell response is amplified in vitro there is no correlation
between the magnitude of the T cell response and clinical out-
comes or presence or absence of HDV in the circulation.15–18

It is also possible that, in the absence of T cells, other cells
such as NK cells are sufficient for the induction of liver damage;
to test this hypothesis, NK cells were depleted in Rag1 KO mice
that were subsequently injected with AAV-HBV/HDV. Again, no
difference was observed between depleted and control groups.
On the contrary, NK depletion increased liver damage, suggesting
a protective role for this cell subset, which is in accordance with
its regulatory function described in patients.11 Similar results
were obtained when macrophages were eliminated: their
depletion caused an exacerbation of the hepatic damage during
the initial phase of the infection. This is in line with a previous
report in which Kupffer cells were shown to contain the pa-
thology in HBV-transgenic mice rather than worsen it, possibly
by removing dying infected hepatocytes.30 Altogether, our data
indicate that the cellular components of the immune system do
not play a major role in HDV-related liver damage. Our results
are in accordance with the weak adaptive immune response
against HDV antigens and the dysfunctionality of innate immune
6vol. 3 j 100098
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cells (such as NK and MAIT cells) that has been observed in
HDV-infected patients.10–14

It is known for some individuals that a strong innate immune
response against a viral infection can lead to tissue damage and
chronic disease rather than to viral clearance, as in the case of
HCV.31–33 The transcriptomic analysis of the liver in our model
revealed a strong induction of pathways activated by IFN-c and
TNF-a in AAV-HBV/HDV- in comparison to AAV-HBV-treated
animals. Furthermore, a strong activation of the type I IFN
pathway was previously reported by us and other groups
working with different mouse models, as well as in vitro in hu-
man hepatic cell lines.19,22,34 In our previous work, we demon-
strated that the induction of type I IFN by HDV required the
activation of the MAVS signaling pathway. We further observed
that the activation of this response had no effect on viral repli-
cation – in line with the low efficacy of pegylated-interferon-a,
the only licensed therapy for chronic HDV infection35—but its
role in liver damage remains unknown. In fact, MAVS has
recently been implicated in HAV-induced liver injury.26 To
determine the role of such a cell-intrinsic antiviral response in
the liver pathology observed in AAV-HBV/HDV-infected mice,
liver injury was analyzed in Ifnar/Ifnbr KO, Mavs KO and Ifngr KO
mice; our study revealed no differences with wild-type mice,
indicating that the activation of type I and type II IFN responses
plays no role in HDV-induced liver damage. However, when mice
JHEP Reports 2020
were treated with etanercept, a drug used for the treatment of
rheumatoid arthritis, psoriatic arthritis and plaque psoriasis, that
competitively inhibits the interaction of TNF-a with its receptor,
we observed for the first time a significant reduction in liver
damage. We also observed that the levels of this cytokine were
higher in the liver and in the peripheral blood of animals having
received AAV-HBV/HDV in comparison to the rest of the groups.
Interestingly, TNF-a levels are higher in HDV patients and there
is a close correlation between TNF-a and the severity of the
disease.36 Thus, taken together, these data indicate that TNF-a is
involved in HDV-induced liver damage and suggest that anti-
TNF-a might be a possible treatment aimed at attenuating liver
damage in patients with chronic HDV infection and/or that it
might be useful in cases of fulminant hepatitis associated with
HDV infection. Studies to determine the source of TNF-a are
ongoing.

However, anti-TNF-a treatment does not completely abrogate
ALT elevation; in fact, while significant differences were
observed on day 21, ALT levels on day 14 were very similar,
indicating that other mechanisms are involved in HDV-induced
liver damage. Since our results strongly contradict the hypoth-
esis of a cellular immune response, we analyzed the role of HDV
components. For this purpose, we produced AAV vectors
expressing HDV antigens under the control of the same liver-
specific promoter that controls the replication of the HDV
7vol. 3 j 100098
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genome in our model. We observed that the expression of both
S-HDAg and L-HDAg in hepatocytes of WT and Rag1 KO mice
resulted in an increase in liver aminotransferases. This supported
the idea of HDAg-induced liver damage without T cell involve-
ment, as described previously in HepG2 cells expressing HDAg in
an inducible manner.37 L- or S-HDAg expression caused a severe
pathology, with high serum ALT levels and histological alter-
ations as described in AAV-HBV/HDV mice. Analysis of the mRNA
extracted from the livers of these animals revealed a significant
expression of Tnfa, however anti-TNF-a did not ameliorate
antigen-induced liver damage, indicating a different mechanism
of action.

Our findings are in contrast to those previously published on
transgenic (Tg) mice expressing HDAgs, in which no histopath-
ologic changes were observed in the liver for 18 months.6 One
possible explanation for this difference could be that the syn-
thesis of transgenes is regulated by hepatocytes in Tg mice (to
prevent expression beyond safe levels), alternatively, during the
generation of the transgenic lineage, mice more resistant to the
detrimental effects of antigen expression might be selected.
JHEP Reports 2020
Similarly, in HDV-Tg mice carrying a replication-competent HDV
dimeric RNA expressed under the control of a universal tran-
scriptional promoter no liver damage was observed.7 However,
in these animals HDAg expression was mainly detected in the
epithelial cells of bile ducts, but only a few hepatocytes
expressed high antigen levels, which might explain the absence
of hepatocyte cell death. Interestingly, while no liver damage was
observed in these animals, in muscle, where maximal replication
of HDV RNA occurred, mild atrophy was detected.7 More ex-
periments are required to determine the exact mechanisms by
which HDAgs exert their cytotoxicity.

In conclusion, our data point towards a bimodal mechanism
for HDV-induced liver damage, in which both cellular and viral
factors are implicated. Our hypothesis is that during the initial
steps of viral infection, the cytotoxic effect of HDAg expression is
associated with the initial death of hepatocytes. However, when
the infection advances, host factors like TNF-a are implicated in
the death of hepatocytes. Interestingly, blocking the activity of
this cytokine represents a potential strategy to ameliorate HDV-
induced damage in patients.
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