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Abstract: SUMO modification is a vital post-translational regulation process in eukaryotes, in which
the SUMO protease is responsible for the maturation of the SUMO precursor and the deconjugation
of the SUMO protein from modified proteins by accurately cleaving behind the C-terminal Gly–Gly
motif. To promote the understanding of the high specificity of the SUMO protease against the SUMO
protein as well as to clarify whether the conserved Gly–Gly motif is strictly required for the processing
of the SUMO precursor, we systematically profiled the specificity of the S. cerevisiae SUMO protease
(Ulp1) on Smt3 at the P2–P1↓P1’ (Gly–Gly↓Ala) position using the YESS–PSSC system. Our results
demonstrated that Ulp1 was able to cleave Gly–Gly↓motif-mutated substrates, indicating that the
diglycine motif is not strictly required for Ulp1 cleavage. A structural-modeling analysis indicated
that it is the special tapered active pocket of Ulp1 conferred the selectivity of small residues at the
P1–P2 position of Smt3, such as Gly, Ala, Ser and Cys, and only which can smoothly deliver the
scissile bond into the active site for cleavage. Meanwhile, the P1’ position Ala of Smt3 was found to
play a vital role in maintaining Ulp1’s precise cleavage after the Gly–Gly motif and replacing Ala
with Gly in this position could expand Ulp1 inclusivity against the P1 and P2 position residues of
Smt3. All in all, our studies advanced the traditional knowledge of the SUMO protein, which may
provide potential directions for the drug discovery of abnormal SUMOylation-related diseases.
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1. Introduction

Post-translational modifications are an important mechanism for dynamic regulation
of cellular proteins in eukaryotes. Among them, the SUMO modification system is a
unique type, in which Small Ubiquitin-like Modifiers (SUMOs) are covalently conjugated
to the lysine residue of a wide variety of target proteins to regulate their subcellular
localization, activity, structure or stability [1–3]. The number of SUMO protein genes varies
among different organisms. Lower organisms such as yeast, Caenorhabditis elegans and
Drosophila contain a single SUMO gene in their genomes, whereas plants and vertebrates
possess several copies [4–8]. The reported SUMO proteins are all expressed as immature
precursors with C-terminal extensions of varying sequences (2–11 amino acids). Their
maturation requires the removal of C-terminal extensions by the SUMO-specific protease
to expose the diglycine motif (GG↓). Mature SUMO proteins are then conjugated stepwise
to target proteins through the SUMO activating enzyme, the conjugating enzyme and
ligase [9]. Upon finishing regulation, the SUMO modifier can be deconjugated from the
target proteins by the SUMO-specific protease [9]. Obviously, the SUMO-specific protease,
as an important regulator, maintains the balance of SUMO cycling by facilitating the
maturation and deconjugation of the SUMO protein, whereas its deregulation would lead to
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cellular dysfunction and result in various diseases including cancer [10], heart disease [11]
and neurodegenerative diseases [12]. Deciphering SUMO protease specificity benefits
the advance in the understanding of the SUMO regulation system, providing potential
directions for the drug discovery of abnormal SUMOylation-related diseases [13,14].

The Saccharomyces cerevisiae SUMO-specific protease Ulp1, as a representative model,
was first studied to dissect the substrate specific mechanism, revealing that recognition
of Ulp1 towards the SUMO protein Smt3 is achieved through an extensive interface in-
volving numerous hydrophilic interactions and salt bridges and that the catalytic triad
C580–H514–D531 enables the precise cleavage behind the conserved Gly–Gly motif in an
extremely tight and shallow active tunnel [15]. The structural explanation for the highly-
accurate cleavage behind the Gly–Gly↓ motif is that other residue substitutions at this
position would possibly provoke a steric clash with the narrow active tunnel, thus affecting
the cleavage efficiency. Despite being theoretically plausible, whether other motifs other
than di-Gly can be effectively processed by Ulp1 remains unknown due to lack of in vivo or
in vitro experimental results. In addition, a previous work reported that directly-expressed
human SUMO-1/3–AA, –GS, –GN, –GA mutants could also SUMOylate intracellular
proteins as efficiently as the wild-type SUMO protein [16]. This observation raised an inter-
esting question of whether the Gly–Gly motif could be regarded as an essential hallmark of
SUMO proteins. Besides the Gly–Gly (P2–P1) position, the P1’ position specificity (the first
residue after the Gly–Gly motif) is also noteworthy because this position plays a crucial
role in modulating the SUMO protease preference on divergent SUMO isoforms [17].

Compared to other proteases with an oligopeptide as a substrate, the property of
cleaving protein substates makes the substrate specificity characterization of the SUMO
protease more challenging [18,19]. The gel-electrophoresis-based in vitro method has
previously been applied to profile Ulp1 specificity on the P1’ position residue of Smt3,
in which Ulp1 and 20 protein substrates with arbitrary amino acids at the P1’ position
were individually purified and reacted, followed by quantitation using SDS-PAGE and
gel-scanning software [20]. Obviously, the diversity of substrates makes the mapping of one
or more sites technically difficult and time-consuming. Several in vivo methods have been
exploited to investigate the substrate specificity of peptide–substrate proteases in a high-
throughput manner, such as the phage display system [21], the bacterial display system [22]
and the yeast display system based analysis methods [18,23], whereas protein–substrate
proteases, like the SUMO protease, have never been reported in these systems.

In this study, our newly developed Yeast ER sequestration screening-based
protease–substrate specificity characterization (YESS–PSSC) system [18] was applied to
systematically profile the substrate specificity of the S. cerevisiae SUMO protease (Ulp1) at
the P2–P1↓P1’ (GG↓A) position of the SUMO protein (Smt3). Compared to conventional
gel-electrophoresis-based in vitro assays, the YESS–PSSC system largely reflected the prop-
erties of the SUMO protease in physiological status and could easily quantify the diversity
of substrates through a yeast surface display and flow cytometry technology. We experimen-
tally verified that the recognition of Ulp1 towards Smt3 depends on an extensive interacting
interface, so single residue mutations in Smt3 hardly affected Ulp1 cleavage efficiency. In
addition, a systematical characterization of residue specificity against Smt3 at the P1 and P2
positions, followed by a structural modeling analysis revealed that the Gly–Gly motif is not
strictly required for Ulp1 cleavage. Moreover, further exploration revealed the vital role of
Ala at the P1’ position of Smt3 for Ulp1 substrate specificity.

2. Results and Discussion
2.1. Verification of the YESS–PSSC System for Quantitatively Characterizing
Ulp1–Smt3 Specificity

Conventional gel-electrophoresis-based in vitro methods for studying the protease–
substrate specificity are always complicated and time-consuming due to the large number
of tested substrates [20]. In contrast, in vivo analytical platforms such as the YESS–PSSC
system, which is used for studying the substrate specificity of Ulp1 against Smt3, are par-
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ticularly attractive for their advantages on simplicity and high-throughput [18]. Based on
the YESS–PSSC concept, Ulp1 and the bi-epitope tag fused substrate cassette (Aga2-FLAG-
Smt3↓-HA) were simultaneously expressed under the control of a divergent promoter
(GAL1-GAL10), followed by being escorted into yeast ER for proteolytic reactions. The
proteolytic substrate part (Aga2-FLAG-Smt3↓) was then displayed on the cell surface for
fluorophore-conjugated antibody labelling and flow cytometry analysis (Figure 1A).
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evaluated first (Figure 1B). The Smt3 substrate cassette was displayed on the yeast cell 
surface with an efficiency of about 50–60%, which was slightly lower than the peptide–
substrate display system’s efficiency of 70% [18]. However, the clearly-separated cell pop-
ulation and the utter dual anti-FLAG-iFluor 647/anti-HA-FITC fluorescence intensities 
implied that the Smt3 substrate cassette was well-expressed, cell-surface-displayed and 
not interfered by the S. cerevisiae endogenous Ulp1. This might be because the substrate 
part was escorted into yeast ER through the ER signal peptide, while the endogenous Ulp1 
was usually localized in the nucleus, guided by its N-terminal nuclear-localization signal 

Figure 1. YESS–PSSC system for quantitatively characterizing Ulp1–Smt3 specificity. (A) Scheme of
YESS–PSSC system for substrate specificity analysis of Ulp1 against Smt3. Left: represents cells merely
expressing substrate part (Aga2-FLAG-Smt3-HA). Right: represents cells simultaneously expressing
Ulp1 and substrate part (Aga2-FLAG-Smt3-HA). (B) Flow cytometry analysis that characterizes
Ulp1–Smt3 specificity in YESS–PSSC system. Left: HZ1 corresponded to the result of (A) left. Right:
HZ2 corresponded to the result of (A) right.

The display efficiency of the substrate cassette determined the efficacy of the YESS–PSSC
system. Considering that Smt3 is a globular-structure protein containing 101 residues [15],
the display efficiency of the Smt3 substrate cassette (Aga2-FLAG-Smt3-HA) was evaluated
first (Figure 1B). The Smt3 substrate cassette was displayed on the yeast cell surface with
an efficiency of about 50–60%, which was slightly lower than the peptide–substrate display
system’s efficiency of 70% [18]. However, the clearly-separated cell population and the
utter dual anti-FLAG-iFluor 647/anti-HA-FITC fluorescence intensities implied that the
Smt3 substrate cassette was well-expressed, cell-surface-displayed and not interfered by the
S. cerevisiae endogenous Ulp1. This might be because the substrate part was escorted into
yeast ER through the ER signal peptide, while the endogenous Ulp1 was usually localized in
the nucleus, guided by its N-terminal nuclear-localization signal (NLS) [24]. Subsequently,
we proceeded to evaluate Ulp1 activity towards the Smt3 substrate cassette in the YESS–PSSC
system. S. cerevisiae Ulp1 contains an N-terminal regulation domain (1–402) and a highly
conserved C-terminal protease domain (403–621), among which the C-terminal protease
domain is sufficient to recognize and cleave Smt3 with comparably high activity to full-
length Ulp1 [24]. The C-terminal protease domain was used in our studies to evaluate
its substrate specificity. In principle, if Smt3 was recognized and cleaved by Ulp1, the
C-terminal HA tag of the substrate cassette would be removed to generate the dominating
display of Aga2-FLAG-Smt3GG↓ on the cell surface, resulting in high anti-FLAG-iFluor 647
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and no–low anti-HA-FITC fluorescence intensities. However, if the substrate cassette was
not cleaved, the intact Aga2-FLAG-Smt3-HA would be displayed and labeled with both
high anti-FLAG-iFluor 647 and anti-HA-FITC fluorescence intensities. The stronger anti-
HA-FITC fluorescence intensity indicated a more inefficient cleavage. As expected, only
anti-FLAG-iFluor 647 fluorescence intensity was observed in the cells co-expressing Ulp1 and
the Smt3 substrate cassette, suggesting nearly 100% cleavage efficiency (Figure 1B). These
results collectively verified that the YESS–PSSC system is the proper system to study Ulp1
substrate specificity.

Not only can it be applied to characterize the substrate specificity of Ulp1, the
YESS–PSSC system also showed great potential in dissecting the substrate specificity of
other SUMO protease homologs as well as protein–substrate proteases, with several unique
advantages. Firstly, the in vivo proteolytic reaction enabled the evaluation of multiple
substrates without the need to purify the protease and substrates, so the process was time-
and labor-efficient [18,19]. Secondly, compartmentalizing the proteolytic reaction of pro-
tease in the endoplasmic reticulum (ER) through the ER signal peptide largely maintained
the physiological properties of proteases and substrates due to the existence of various
molecular chaperones in the ER [25]. Thirdly, the powerful secretory system of S. cerevisiae
enabled the proteolytic protein products to be quickly transported to the cell surface for
fluorophore-conjugated antibody labelling and flow cytometry analysis [26,27]. Besides,
the ER separated the proteolytic reaction from complex endogenous biological processes,
thus barely being disturbed by the endogenous regulating system.

2.2. Validation of the YESS–PSSC System by Mapping Ulp1 Residue Specificity at the P1’ Position
of Smt3

As the first residue after the substrate cleavage site as well as being extremely close to
the catalytic triad, proteases normally show high specificity at the substrate P1’ position.
As for Ulp1, its specificity for the P1’ position of Smt3 has previously been character-
ized through in vitro experiments, demonstrating that mutated Smt3 substrates with any
residues at this position can be efficiently cleaved by Ulp1 except Pro [20]. In our work,
this position was quantitatively characterized in vivo through the YESS–PSSC approach.
Substrate cassettes (Aga2-FLAG-Smt3GG↓X-HA, where X is an arbitrary amino acid) were,
respectively, co-expressed with Ulp1 and evaluated in the YESS–PSSC system, followed
by flow cytometry analysis. The results showed that Ulp1 effectively cleaved 19 types of
substrates with >95% activity except the Smt3–GG↓P substrate (Figure 2) which exhib-
ited both high anti-FLAG-iFluor 647 and anti-HA-FITC fluorescence signals. Our results,
similar to those of the gel-electrophoresis-based in vitro experiments, further verified the
accuracy of the YESS–PSSC approach in studying the substrate specificity of the SUMO
protease Ulp1 [20].



Int. J. Mol. Sci. 2022, 23, 12188 5 of 13Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. Mapping residue specificity of Ulp1 at Smt3 P1’ position. Ulp1-GAL1-GAL10-Aga2-FLAG-
Smt3GG↓X-HA (X is an arbitrary amino) cassettes are, respectively, expressed in YESS–PSSC sys-
tem, followed by direct flow cytometry analysis. (A) Representative flow cytometry results. (B) Data 
of A are presented as average cleavage efficiency (n = 3 independent experiments). 

2.3. Single Mutation of Smt3 in the Smt3–Ulp1 Interacting Interface Would Not Affect Ulp1 
Recognition Specificity 

The crystal structure of the Ulp1–Smt3 complex revealed that the Ulp1–Smt3 inter-
acting interface could be roughly described as six structural motifs of Ulp1 interacting 
with the exposed β sheet and C-terminal strand of Smt3 [15] (Figure 3A). Several con-
servative sites in the Ulp1 motif were, respectively, mutated to identify the essential roles 
of central regions such as motif 2, motif 3 and motif 5 in maintaining Ulp1–Smt3 recogni-
tion specificity [15]. In our work, the key residues of Smt3 interacting with Ulp1 in every 
motif were mutated to nonpolar amino acids to explore the significance of each site for 
Ulp1–Smt3 recognition specificity. Guided by the structural analysis, R64G, R68G, G69A, 
R71G, D82G, E94G, Q95G, I96G and G98A mutations were, respectively, introduced to 
eliminate the major salt bridge or/and hydrogen bond contact with Ulp1. 

Figure 2. Mapping residue specificity of Ulp1 at Smt3 P1’ position. Ulp1-GAL1-GAL10-Aga2-FLAG-
Smt3GG↓X-HA (X is an arbitrary amino) cassettes are, respectively, expressed in YESS–PSSC system,
followed by direct flow cytometry analysis. (A) Representative flow cytometry results. (B) Data of A
are presented as average cleavage efficiency (n = 3 independent experiments).

2.3. Single Mutation of Smt3 in the Smt3–Ulp1 Interacting Interface Would Not Affect Ulp1
Recognition Specificity

The crystal structure of the Ulp1–Smt3 complex revealed that the Ulp1–Smt3 interact-
ing interface could be roughly described as six structural motifs of Ulp1 interacting with the
exposed β sheet and C-terminal strand of Smt3 [15] (Figure 3A). Several conservative sites
in the Ulp1 motif were, respectively, mutated to identify the essential roles of central regions
such as motif 2, motif 3 and motif 5 in maintaining Ulp1–Smt3 recognition specificity [15].
In our work, the key residues of Smt3 interacting with Ulp1 in every motif were mutated to
nonpolar amino acids to explore the significance of each site for Ulp1–Smt3 recognition
specificity. Guided by the structural analysis, R64G, R68G, G69A, R71G, D82G, E94G, Q95G,
I96G and G98A mutations were, respectively, introduced to eliminate the major salt bridge
or/and hydrogen bond contact with Ulp1.
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Figure 3. Analysis of Ulp1 against Smt3I mutants. (A) Interface of Ulp1–Smt3 in the complex
structure (PDB,1euv). The motif and corresponding residues in Smt3 have been labeled with different
colors. (B) Evaluation of Ulp1 cleavage against different Smt3 variants in YESS–PSSC system.
Cleavage activity of Ulp1 against Smt3I substrates are presented as average cleavage efficiency (n = 3
independent experiments).

The mutated Smt3I cassettes (Aga2-FLAG-Smt3I GG↓A-HA, where Smt3I represents
the Smt3 interface mutation) were, respectively, co-expressed with Ulp1 in the YESS–PSSC
system. Flow cytometry analysis showed that the wild-type Smt3 and eight mutated Smt3I

substrates were all cleaved by Ulp1 with more than 98% efficiency except the Smt3I–G98A
mutant whose cleavage efficiency was 94.65%, indicating that a single mutation in Smt3
had almost no effect on its interactions with Ulp1 (Figure 3B). This can be explained by the
recognition of Ulp1 towards Smt3 being dependent on an extensive interface consisting of
multiple residues, thereby the influence caused by a single mutation could be neglected.
It is worth noting that the Smt3–G98A mutation, a position that is usually considered
highly-conserved in SUMO proteins (GG98th↓A), exhibited a cleavage efficiency that was
about 5% lower than the wild-type Smt3 and other mutations. This confirmed that Gly98
is indeed important for the recognition and cleavage of Ulp1 against Smt3, and, more
importantly, it also implied that the Gly–Gly motif is not strictly required for the Ulp1
cleavage of Smt3. Therefore, we further characterized the specificity of Ulp1 against the
conserved Gly–Gly motif (P2-P1↓ position) of Smt3.

2.4. Characterizing Residue Specificity of Ulp1 against Smt3 at P1 and P2 Positions

To explore the residue specificity of Ulp1 against Smt3 at the P1 and P2 positions
(the conserved Gly–Gly motif), a series of mutated Smt3P–GX1↓A and –X2G↓A substrates
(where X is an arbitrary amino acid, and Smt3P represents the Smt3 P1 or P2 mutation)
were constructed and analyzed in the YESS–PSSC system. It needs to be emphasized that
we mutated each Gly into larger amino acids because these two sites are both located in the
narrow active tunnel of Ulp1 (Figure 4B) [15]. At the P1 position, Ulp1 presented a high
activity of 94.65% against the Smt3P–GA↓A substrate, which is only slightly lower than the
99.48% cleavage efficiency against the wild-type Smt3–GG↓A substrate. Comparably, when
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replacing Gly at the P1 position with residues that have bulky side chains, the cleavage
efficiency of Ulp1 against the Smt3P1 substrate gradually decreased, showing a cleavage ef-
ficiency of 46.07%, 29.04%, 8.60% and 2.59% for Smt3P–GS↓A, Smt3P–GC↓A, Smt3P–GT↓A
and Smt3P–GW↓A substrates, respectively (Figure 4A). Other residue substitutions were
not analyzed because it could be speculated that amino acids having bulkier side chains
than Thr could possibly provoke steric hindrance, preventing Smt3P from entering the
substrate tunnel. At the P2 position, Ulp1 cleavage efficiency against the Smt3P–AG↓A,
Smt3P–SG↓A and Smt3P–CG↓A substrates were, respectively, measured to 99.39%, 99.42%
and 96.98% (Figure 4A). Similar to that of the P1 position, Ulp1 presented no detectable
cleavage against Smt3 with Thr or Trp at the P2 position (Figure 4A). Based on these results,
three dual-mutation substrates, including Smt3P–AA↓A, Smt3P–SA↓A and Smt3P–CA↓A,
were further constructed to explore whether Ulp1 could accept dual mutations at the
Gly–Gly motif. No detectable cleavage was observed on these substrates, even though
each single-mutated substrate could be efficiently cleaved by Ulp1 with high efficiency
(Figure 4A), implying the significance of the role of the smallest residue Gly at the P1 or P2
position for Ulp1 cleavage.
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The C-terminal Gly–Gly motif is highly-conserved in all reported SUMO proteins
from yeast to human, whereas our work suggested that Ulp1 was sufficient to cleave
mutated substrates with preferential activity of Gly > Ala > Ser > Cys at the P1 position
and Gly = Ala = Ser = Cys at the P2 position. These findings further supported the previ-
ous observation that a SUMO protein with similar residue substitutions at the Gly–Gly
motif, such as directly-expressed human SUMO-1/3–AA, –GS and –GA mutants, could
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also undergo endogenous SUMOylation as effectively as the wild-type SUMO-1/3–GG
protein [16]. These results together indicated that the Gly–Gly motif is not strictly required
for SUMO precursor activation and SUMO protein modification.

2.5. Structural Modeling to Explore the Possible Mechanism of the Substrate Specificity of Ulp1

A clear correlation was observed between the residue size at the P1 and P2 positions
and the cleavage efficiency. Therefore, structural modeling of the Ulp1–Smt3P complex was
performed to prompt the molecular understanding of the Ulp1-unique substrate specificity
of Smt3 at the P1 and P2 positions (GG↓A motif). In the Ulp1–Smt3 complex, the Ulp1
catalytic triad C580–H514–D531 and residues W448, S513 and W515 jointly constructed
a tight and shallow active tunnel, resembling a tapered structure wrapping around the
Gly–Gly motif of Smt3 (Figure 4B–D). The side-chain-free diglycine motif retained extra free
space, enabling the C-terminal tail to be able to flexibly pass through the active tunnel and,
finally, place the P1–P1’ target bond above the active site without encountering any steric
hindrance in the tunnel (Figure 4C,D). However, this changed when the Gly was replaced
with residues possessing bulky side chains. When Gly at the P1 position was replaced with
Ala, the side chain from Ala occupied more space in the Ulp1 substrate tunnel but still did
not cause a significant blockage. Comparably, the -CH2OH side chain of Ser occupied the
entire cavity and formed a serious conflict with the side chains of Ulp1–S513, –W448 and
–C580, causing inefficient movement in the P1–P1’ peptide bond (GS↓A) in the active site
for cleavage. Besides, the interaction also limited the orientation of S513 in the channel,
thus greatly impairing the activity of Ulp1 against the Smt3P–GS↓A substrate (Figure 4C).
For other residues with even bulkier side chains, such as Thr and Trp, the substrates could
not even be docked in the substrate tunnel.

Different than at the P1 position, Ulp1 retained more free space at the P2 position to
accommodate amino acids with certain side chains. Smt3P2 substrates with the substitution
of Ala, Ser and Cys could all be easily introduced into the Ulp1 substrate pocket (Figure 4D).
In the simulated structures, Gly and Ala could smoothly enter the substrate tunnel and
retained some free space due to their small side chains. Ser and Cys have slightly bulkier
side chains which almost occupied the cavity though this was without obvious conflict
with the residues in the tunnel. Because of the ability of free orientation, these substrates
could all be effectively cleaved by Ulp1. Comparably, when the P2 position was mutated to
Thr, its large side chain group filled the substrate tunnel, making Thr difficult to move to
the correct position for substrate cleavage. The bulky side chain of Thr may evoke obvious
steric conflict to Ulp1 channel residues like S513 and W448 as well as to the catalytic residue
H514 (Figure 4D).

Overall, the structural analysis indicated that it is the special taper-resembling active
pocket of Ulp1 that conferred the distinguishing selectivity against residues of Smt3 at the
P1 and P2 positions, in which only small amino acids without steric conflict with the Ulp1
substrate tunnel could flexibly adjust in the tunnel and approximate the active sites for
proteolytic cleavage.

2.6. Gly in P1’ Position Expands Inclusivity of Ulp1 against Smt3

The structural analysis of the Ulp1–Smt3 complex indicated that extra moving space
in the substrate tunnel was required to enable the P1–P1’ target peptide bond (GG↓A) to
flexibly approach the nucleophilic residue C580 for cleavage. During this process, the side
chain group of Ala at the P1’ position might form obvious steric hindrance between the Ulp1
catalytic residues of H514 and C580, thus affecting Ulp1 catalytic efficiency (Figure 5A). In
the wild-type Smt3, the Gly–Gly motif in the substrate tunnel retained enough space to
alleviate the obstruction through rotation or adjustment, so the C-terminus of Smt3 and
the P1’ Ala were able to approach the catalytic pocket. Although, in the mutant Smt3P

substrates along with gradually-enlarged residues at the P1 and P2 position, such as Ala,
Ser and Cys, the moving space in the substrate tunnel became limited, and the C-terminal
tail was less flexible. Therefore, it was more difficult to decrease the steric hindrance of
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the P1’ position Ala from rotating. Based on this analysis, it can be speculated that the P1’
position Ala to Gly mutation may help expand Ulp1 inclusivity against the Smt3 residue
at P1 and P2 positions because the side-chain-free Gly itself is highly-flexible, and P1 or
P2 residues do not require more moving space to guarantee the high flexibility of the
C-terminal tail.
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Figure 5. P1’ position Gly expands residue inclusivity of Ulp1 against P1 and P2 position of Smt3.
(A) The substrate pocket structure of Ulp1–Smt3 and Ulp1–Smt3P1P1’ complex at P1 and P1’ position.
Blue is P1 position Gly; green is P1’ position Ala; and brown is P1 position Ser. (1) The first
conformation of Smt3–GG↓A substrate’s target peptide bond between P1–P1’ position (GG↓A)
requires enough flexibility to approach nucleophilic residue C580 for cleavage. (2) The second
conformation of Smt3–GG↓A substrate’s P1’ position Ala side chain extension may cause obstruction
in Ulp1 catalytic residues H514 and C580 ability to affect cleavage efficiency. (3) P1 position amino
acids with longer side chains, like Ser, would limit flexibility of C-terminal tail in the tunnel, which
may prevent P1’ position Ala from rotating to remove the steric hindrance in Ulp1 catalytic residues,
and the P1–P1’ peptide bond was not close to catalytic residue C580. Therefore, Ulp1 cleaving
efficiency was affected. (4) P1’ position Gly has high flexibility and does not form hindrance to Ulp1
catalytic residues H514, C580 and D531. (5) P1 or P2 position residues, like Ser, do not require a
huge free space to guarantee high flexibility of P1’ position Gly. (B) The residue specificity of Ulp1
on Smt3P when P1’ position was Ala or Gly. P2P1↓P1’ position residue in wild-type Smt3 is GG↓A.
(C) Verification of cleavage position in Smt3P substrates when P1’ was Gly. P2P1|P1’P2’ position
residue in wild-type Smt3 is GG↓AT. Cleavage efficiency of Ulp1 against corresponding substrates is
presented as average cleavage efficiency of three independent experiments.

To verify this speculation, Ulp1 specificity against the P1 and P2 sites of Smt3 when
Smt3’s P1’ position was Ala or was mutated to Gly (Smt3P–XX↓A/G) was simultaneously
characterized. When Ala was at the P1’ position, the cleavage efficiency of Ulp1 against the
substrates Smt3P–GS↓A and Smt3P–GT↓A was 46.0% and 2.3%, respectively (Figure 5B).
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In comparison, when Gly was at the P1’ position, Ulp1 cleavage efficiency against the
substrates Smt3P–GS↓G and Smt3P–GT↓G was increased to 99.1% and 94.88%, respectively.
However, Ulp1 could not cleave the Smt3P–GI↓G substrate, indicating that this is a syn-
ergistic effect that the P1 site could only accommodate for amino acids with side chains
that are less bulky than Ile, even when P1’ is Gly (Figure 5B). The specificity against the P2
position was also expanded. Compared to the fact that Ulp1 could only cleave substrates
with a P2 residue smaller than Thr when Ala was in the P1’ position, the cleavage efficiency
of Ulp1 against the Smt3P–TG↓G and Smt3P–WG↓G substrates was increased to 99.26%
and 98.67%, respectively (Figure 5B). Not surprisingly, Ulp1 became able to accept more
dual-mutations at P1–P2 positions when the P1’ position was Gly. The cleavage efficiency
against the Smt3P–AA↓G substrate could be increased to 99.0% (Figure 5B), and Ulp1
also presented a good cleavage efficiency of 54.32% and 44.46% against the dual-mutation
substrates Smt3P–AS↓G and Smt3P–SA↓G, respectively, which were not able to be cleaved
when the P1’ position was Ala (Figure 5B). These results verified our speculation that the
P1’ position Gly could expand Ulp1 inclusivity against the P1 and P2 positions of Smt3.

The effective cleavage of Ulp1 against bulky residues at the P1–P2 position, especially
in the Smt3P–WG↓G substrates, was somewhat surprising, and the concern arose that the
cleavage site might be shifted from Smt3P–WG↓GT to Smt3P–WGG↓T (the original P2’
residue of Smt3 is Thr). To validate whether the cleavage sites of Smt3P substrates were
shifted when P1’ was Gly, we mutated the original P2’ position Thr to Pro to generate the
Smt3P–XX↓GP substrates. Pro was proven to be the blocking residue when it is at the P1’
position. If the cleavage site is not shifted, Ulp1 should show similar cleavage efficiency
against both the Smt3P–XX↓GP and Smt3 P–XX↓GT substrates. Otherwise, Smt3P–XXG↓P
substrates would not be cleaved by Ulp1 at all. As shown in Figure 5B,C, Ulp1 showed a
similar high-cleavage efficiency of approximately 99% against the Smt3P–GSGP, –GTGP and
–AAGP substrates compared to that of the Smt3P–GSGT, –GTGT and –AAGT substrates,
indicating that the cleavage site was still between P2P1↓GP/T in these substrates. The
Smt3P–ASGT substrate showed a similar cleavage efficiency of 60% compared to that
of the Smt3P–ASGP substrate, concluding that the cleavage site was also unshifted. In
contrast, the Smt3P–TGGP and –WGGP substrates were almost unable to be cleaved
while the Smt3P–TGGT and –WGGT substrates were fully cleaved, indicating that the
cleavage site shifted from XX↓GP/T to XXG↓P/T in these substrates. One interesting
observation was that the cleavage efficiency of the Smt3P–SAGP substrate had clearly
decreased compared to that of the Smt3P–SAGT substrate, indicating a possible wobbling
cleavage site in the Smt3P–SAGP substrate. Altogether, these results implied that a Gly
at the P1’ position could expand the residue inclusivity of Ulp1 against the P1 position of
Smt3P from Gly > Ala > Ser > Cys to Gly = Ala = Ser = Cys = Thr. The expanded inclusivity
of Ulp1 against huge residues in the P2 position of Smt3P might be attributed to the shifted
cleavage site from the original P1–P1’ to the P1’–P2’ position.

A previous work demonstrated that the SUMO P1’ position residue is involved in
discriminating the activity of the human SUMO protease SENP1 on SUMO 1, SUMO 2
and SUMO 3 isoforms [17]. Despite the fact that a detailed mechanism is unclear, the
special significance of the P1’ position residue in the SUMO protein is worth being further
explored. Here, our results revealed the essential role of the residue Ala at the P1’ position
of Smt3 in maintaining Ulp1 specificity in the P1 and P2 sites of Smt3, that is, restricting
only small amino acids with free space in the Ulp1 substrate tunnel can be flexibly rotated
to decrease the steric hindrance of Ala in the active residues H514 and C580 and helping
the P1–P1’ target peptide bond approach the nucleophilic residue C580 for cleavage. The
P1, P2 and P1’ residues of Smt3 collectively conferred Ulp1’s unique specificity for the Smt3
precursor process. This unique mechanism, applied by the Ulp1–Smt3 complex, may help
guarantee that all SUMO proteins are accurately cleaved behind the GG↓motif because the
C-terminal fragment of the wild-type SUMO protein rarely contains the other small amino
acids that we characterized here, such as Ala, Ser and Cys, which reflects the wisdom of
the eukaryotes in evolving the SUMO system.
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3. Materials and Methods
3.1. Vector Construction

Genes encoding Saccharomyces cerevisiae SUMO protease Ulp1 (403–621) and SUMO
protein Smt3 were amplified from EBY100 (Ura+, leu−, trp−) genome. Smt3I and Smt3P

mutants (including Smt3–XG↓A, Smt3–GX↓A, Smt3–XX↓A and Smt3–GX↓G, Smt3–XG↓G,
Smt3–XX↓G) were obtained using Smt3 as a template. Then, Ulp1 protease and the diver-
gent substrates were cloned into previously published centromeric vector pESD to generate
Ulp1-GAL1-GAL10-Aga2-FLAG-Smt3X-HA expression cassettes (Figure 1). The detailed
construction principle can be referred to in a previous publication [18].

3.2. YESS–PSSC Analysis

Recombinant plasmids containing Ulp1 and its divergent substrates were transformed
into S. cerevisiae strain EBY100 competent cells and then plated on YNB-Galactose-CAA
selective plates (6.7 g/L YNB, 5 g/L casamino acids, 20 g/L glucose and 15 g/L agar).
Transformed cells were cultivated in YNB-Glucose-CAA medium to an OD600 of 4.0–5.0,
followed by induction with an initial OD600 of 0.5 in YNB-Galactose-CAA medium. After
induction for 8 h at 30 °C, approximately 106 cells were harvested by centrifugation and
washed once with 200 µL cell washing Buffer A (1× PBS buffer, 0.5% bovine serum albumin
(BSA) and 1mM ethylenediaminetetraacetate (EDTA), pH 7.4) and twice with 200 µL cell
washing Buffer B (1X PBS buffer, 0.5% BSA, pH7.4). The washed cells were then incubated
with 0.1 µM anti-HA-FITC antibody and 0.1 µM anti-FLAG-iFlor647 antibody (GenScript,
Nanjing, China) for 15 min in dark, followed by being washed twice with 1× PBS buffer
to completely remove the unbound antibodies. Subsequently, the antibody-labeled cells
were resuspended in 400 µL 1× PBS buffer for the fluorescence analysis using Beckman
Coulter CytoFLEX Flow Cytometer (Beckman Coulter, USA). The anti-FLAG-iFluor 647
and anti-HA-FITC fluorescent intensity were, respectively, detected with the APC channel
(660/20 nm BP) and FITC channel (525/40 nm BP). The cleavage efficiency was calculated
as: [Normalized cleavage efficiency] = ([Cells exhibiting only iFluor 647 fluorescence
signals]/([Cells exhibiting only iFluor 647 fluorescence signals] + [Cells exhibiting both
iFluor 647 and FITC fluorescence signals]) × 100%.

3.3. Structure Modeling

The X-ray crystal structure of Ulp1 protease domain in complex with Sumo protein
(Smt3) was downloaded from protein data bank (PDB: 1euv). Structural modeling of Smt3
mutants was performed using the ZDOCK program in Discovery Studio (DS) software [28],
setting the angular step size parameter (6◦) and RMSD Cutoff (6.0 Å) to get ZDOCK scores
and clustering results for these conformations. The RDOCK protocol was then used to
refine and reorder the poses of docking structure.

4. Conclusions

Here, we utilized the YESS–PSSC strategy to profile the substrate specificity of the
SUMO protease Ulp1. Through combining structural modeling analyses, we systematically
deciphered the residue specificity of the S. cerevisiae SUMO protease Ulp1 against the
P2, P1 and P1’ positions of Smt3 and demonstrated that the Gly–Gly motif at the P2–P1
positions is not strictly required for Smt3 precursor activation. Furthermore, based on
further structural analysis and experimental verification, we preliminarily revealed that the
P1, P2 and P1’ residues of Smt3 collectively maintained Ulp1’s accurate cleavage behind
the Gly–Gly motif of Smt3. These results might promote the further understanding of the
substrate recognition of other SUMO proteases and facilitate the design and discovery of
the inhibitor for the treatment of abnormal SUMOylation-associated diseases.
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