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Mild traumatic brain injury (mTBI) represents a significant challenge for the civilian and
military health care systems due to its high prevalence and overall complexity. Our earlier
works showed evidence of neuroinflammation, a late onset of neurobehavioral changes,
and lasting memory impairment in a rat model of mild blast-inducedTBI (mbTBI).The aim of
our present study was to determine whether acute treatment with the non-steroidal anti-
inflammatory drug minocycline (Minocin®) can mitigate the neurobehavioral abnormalities
associated with mbTBI, Furthermore, we aimed to assess the effects of the treatment
on select inflammatory, vascular, neuronal, and glial markers in sera and in brain regions
associated with anxiety and memory (amygdala, prefrontal cortex, ventral, and dorsal hip-
pocampus) following the termination (51 days post-injury) of the experiment. Four hours
after a single exposure to mild blast overpressure or sham conditions, we treated animals
with a daily dose of minocycline (50 mg/kg) or physiological saline (vehicle) for four con-
secutive days. At 8 and 45 days post-injury, we tested animals for locomotion, anxiety, and
spatial memory. Injured animals exhibited significantly impaired memory and increased anx-
iety especially at the later testing time point. Conversely, injured and minocycline treated
rats’ performance was practically identical to control (sham) animals in the open field, ele-
vated plus maze, and Barnes maze. Protein analyses of sera and brain regions showed
significantly elevated levels of all of the measured biomarkers (except VEGF) in injured
and untreated rats. Importantly, minocycline treatment normalized serum and tissue lev-
els of the majority of the selected inflammatory, vascular, neuronal, and glial markers. In
summary, acute minocycline treatment appears to prevent the development of neurobe-
havioral abnormalities likely through mitigating the molecular pathologies of the injury in
an experimental model of mbTBI.
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INTRODUCTION
Traumatic brain injury (TBI) is a prominent health concern world-
wide as it is one of the major causes of death and chronic disability
(Hyder et al., 2007). The mild form of traumatic brain injury
(mTBI) has become an especially significant challenge for the
civilian (Thurman et al., 1999) and the military healthcare sys-
tems (Hoge et al., 2008; Tanielian and Jaycox, 2008) due to its high
prevalence and the absence of serious acute symptoms following
injury. Blast-induced mTBI (mbTBI) was the most frequent form
of mTBIs sustained during recent military conflicts (Warden, 2006;
Terrio et al., 2009). There is currently no objective diagnosis for
mbTBI, a minimal understanding of its underlying pathologies,
and consequently a lack of specific, evidence based treatments.

Symptoms of blast-induced TBI (bTBI) include increased anx-
iety as well as memory impairment that may not be detectable
for weeks or months after the exposure (Ryan and Warden, 2003;
Okie, 2005; Nelson et al., 2009; Terrio et al., 2009; Cernak and

Noble-Haeusslein, 2010; Hoffer et al., 2010). The delayed onset of
neurobehavioral impairments suggests a lasting secondary injury
process involving distinct brain regions (Moser and Moser, 1998).
The ventral hippocampus (VHC) along with the prefrontal cortex
(PFC) and the amygdala (AD) are involved in mediating anxiety,
while the dorsal hippocampus (DHC) is involved in mediating
spatial learning and memory (Henke, 1990; Moser and Moser,
1998; Bremner, 2005, 2007). Using a rat model of bTBI, we found
that a single mild blast overpressure exposure results in increased
anxiety and memory impairment (Kovesdi et al., 2011; Kwon et al.,
2011). Importantly, the memory impairment was not detectable
within the first week of the exposure; it became significant 2 weeks
post-injury and persisted for at least 2 months after (Kovesdi et al.,
2011; Kwon et al., 2011).

Our immunohistochemical and proteomics analyses of these
animals showed evidence of neuronal and glial cell loss, gliosis,
and neuroinflammation at 2 months post-injury. In addition to
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an increased presence of microglia in the DHC and the VHC of
injured animals as well as increased tissue levels of interleukin-6
(IL-6) and interferon-gamma (IFNγ) in these brain regions. Neu-
roinflammation can adversely affect neuronal function by directly
causing neuronal cell death as well as increasing neuron vulnera-
bility to noxious factors like excitotoxins, which are also elevated
after injury (Arvin et al., 1996; Morganti-Kossmann et al., 2002;
Cacci et al., 2005; Floyd and Lyeth, 2007; Kochanek et al., 2008;
Agoston et al., 2009; Agostinho et al., 2010; Czlonkowska and
Kurkowska-Jastrzebska, 2011; Robel et al., 2011). Based on our
previous evidence linking neuroinflammation to neurobehavioral
abnormalities (Kovesdi et al., 2011), we hypothesized that anti-
inflammatory treatment may improve the functional outcome
in mbTBI.

To test our hypothesis, we selected the anti-inflammatory drug
minocycline for several reasons. Minocycline hydrochloride eas-
ily crosses the blood brain barrier (BBB), is well characterized,
safe, FDA approved, and has been used experimentally and clin-
ically (Macdonald et al., 1973; Saivin and Houin, 1988). Similar
to its tetracycline analogs, the side effects of minocycline treat-
ment are mild and include discoloration of the teeth, gastroin-
testinal irritability, and candidiasis (Fanning et al., 1977; Gump
et al., 1977). In humans, long-term treatment is generally safe
and is well tolerated up to 200 mg/day. In animals, the lethal dose
of minocycline is very high at 3600 mg/kg (Blum et al., 2004);
the “therapeutic” dosage utilized in animal experiments ranges
between 10 and 90 mg/kg with an average of 50 mg/kg for daily
treatments (e.g., Wells et al., 2003; Stirling et al., 2004; Festoff
et al., 2006; Li and McCullough, 2009; Abdel Baki et al., 2010;
Lee et al., 2010; Siopi et al., 2011; Wixey et al., 2011; Ng et al.,
2012).

Minocycline has been successfully used in various animal mod-
els of brain and spinal cord injuries as well as neurodegenerative
diseases like Huntington’s (Blum et al., 2004), where it was shown
to reduce tissue damage and inflammation, and improve neuro-
logical outcome (Yrjanheikki et al., 1999; Chen et al., 2000; Kriz
et al., 2002; Wu et al., 2002; Wells et al., 2003; Xu et al., 2004; Zemke
and Majid, 2004; Festoff et al., 2006; Marchand et al., 2009). Using a
rat model of mbTBI, we report that acute treatment with minocy-
cline mitigates the inflammatory response to injury and results in
normalized neurobehavior.

MATERIALS AND METHODS
EXPERIMENTAL GROUPS AND HOUSING CONDITIONS
Thirty-two male Sprague Dawley rats (Charles River Laborato-
ries, Wilmington, MA, USA) were used, weighing 245–265 g at
the beginning of the experiment. All animals were kept under
normal housing conditions (two rats/cage) in a reverse 12–12 h
light-dark cycle and provided with food and water ad libitum
for the entire length of the study. Following baseline behav-
ioral testing (described below), animals were assigned to one
of the following experimental groups: (1) sham saline treated
(sham-vehicle; n= 8) and (2) sham minocycline treated (sham-
mino; n= 8), which served as controls for (3) blast injured saline
treated (injured-vehicle; n= 8) and (4) blast injured-minocycline
treated (injured-mino; n= 8), respectively. All animals were han-
dled according to protocol approved by the Institutional Animal

Care and Use Committee (IACUC) at the Uniformed Services
University (USU).

BEHAVIORAL TESTS
Prior to injury, all rats underwent baseline behavioral assessments
for general locomotor activity by the open field (OF) test, and for
anxiety by the elevated plus maze (EPM). Rats were also trained
for five consecutive days in the Barnes maze (BM) for spatial learn-
ing and memory. The baseline test results (data not shown) were
used to create the aforementioned experimental groups with no
statistical significance among them. Following injury or sham, two
behavioral test sessions were conducted starting at 8 and 45 days.
The experimental schedule is illustrated in Figure A1 in Appendix.
Within each testing session, the behavioral tests were performed
on separate days in the following order: OF (day 1), EPM (day 2),
and BM (days 3–7). All behavioral tests were performed during
animals’ dark cycle.

Open field
Tests were performed using AccuScan’s infrared light beams
OF system (AccuScan Instruments, Inc.) at baseline and 1, 8,
and 45 days post-injury. The OF system is a 16.5× 16.5× 13
(L×W×H) inches clear Plexiglas arena with a perforated lid. The
system uses 16× 16 grid light beam arrays in the X and Y axes to
measure locomotor activity. The system detects beam breaks by the
animal and determines the location of the rat within the cage. Dur-
ing the 60 min testing period, horizontal activity (number of beam
breaks) and resting time (time spent with inactivity greater than or
equal to 1 s) were measured. Data for each animal were recorded
and analyzed automatically with Fusion 3.4 software (AccuScan
Instruments, Inc.). The horizontal activity and resting time are
presented as the average performance of all animals in each exper-
imental group ±standard error of the mean (SEM) at each of the
individual time points.

Elevated plus maze
The EPM is an ethologically relevant assessment of anxiety levels
in rodents (Carobrez and Bertoglio, 2005; Salzberg et al., 2007;
Walf and Frye, 2007). Tests were carried out prior to injury and at
9 and 46 days post-injury as described earlier in details (Kovesdi
et al., 2011). Briefly, rats were placed one by one in the center of
the maze facing one of the open arms. During the 5 min testing
session, each animal was allowed to explore the maze freely while
its movement was video-tracked. Time spent in the open and the
closed arms (seconds) was recorded for each animal using ANY-
maze 4.2 Software (Stoelting Company, Wood Dale, IL, USA). The
maze was cleaned with a 30% ethanol solution between each trial.
Data are presented as the average time (in seconds) spent in the
open vs. the closed arms of the maze in each experimental group
±SEM.

Barnes maze
Barnes maze represents a widely used and less stressful alternative
to the Morris water maze for assessing spatial memory in rodents
(Barnes, 1979; Maegele et al., 2005; Doll et al., 2009; Harrison
et al., 2009). Tests were carried out prior to injury (training ses-
sion), and at 10 and 47 days post-injury (Test Session I and II,
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respectively; Kovesdi et al., 2011). The maze is a circular platform
(1.2 m in diameter) that contains 18 evenly spaced holes around
the periphery. One of the holes is the entrance to a darkened escape
box that is not visible from the surface of the board. The position
of the escape chamber relative to the other holes and the testing
room remains fixed during all BM trials. On the first day of the
training session, each rat was placed in the escape box and cov-
ered for 30 s. The escape box was then removed with the animal
inside and moved to the center of the maze. The rat was allowed
to explore the maze for a few seconds after which it was returned
to its home cage. In the second and third trial (only day 1 of
the BM training session has three trials), the same rat was placed
under a start box in the center of the maze for 30 s. The start box
was removed and the rat was allowed to explore freely to find the
escape box. Training sessions ended after the animal had entered
the escape box or when a pre-determined time (240 s) had elapsed.
If the animal had not found the escape box during the given time
period, it was placed in the escape box for 1 min at the end of
the trial. During the baseline BM session, animals were trained
until their daily latency time averaged 10 s. The two post-injury
BM test sessions were run for five consecutive days; every rat was
tested twice per day as described above. In each trial, the latency
to enter the escape box was measured and recorded using ANY-
maze 4.2 Software (Stoelting Company, Wood Dale, IL, USA). The
escape box and the maze were cleaned with a 30% ethanol solution
between each trial and animal. Data are presented as the average
latency times of two daily trials per animal per experimental group
±SEM.

MILD BLAST INJURY
On the day of the injury all rats (average weight ∼300 g) were
transferred to Walter Reed Army Institute of Research (Silver
Spring, MD, USA) as described in detail (Kamnaksh et al., 2011).
Sixteen rats were exposed to whole body mbTBI as described
earlier (Long et al., 2009; Kovesdi et al., 2011; Kwon et al.,
2011). Briefly, rats were anesthetized with 4% Isoflurane for 6 min
in an induction chamber (Forane, Baxter Healthcare Corpora-
tion, Deerfield, IL, USA), placed in an animal holder within the
shock tube in a transverse prone position, and exposed to whole
body blast overpressure (20.6± 3 psi) while wearing chest pro-
tection. The other 16 rats were similarly anesthetized, placed
in the shock tube, but were not exposed to blast overpressure
(sham). Following blast injury or sham, rats were moved back
to their home cages and transported back to the USU animal
facility.

PHARMACOLOGICAL TREATMENT
Four hours after injury or sham, rats received a total volume
of 0.25 ml/100 g body weight of either physiological saline alone
(vehicle) or 50 mg/kg of clinical grade minocycline (Minocin®,
Triax Pharmaceuticals, Italy) dissolved in saline (mino) intraperi-
toneally (i.p.). Animals received minocycline or saline for four
consecutive days at identical times each day. Our minocycline
dosage and treatment paradigm was based on previous studies
using rodent models of various neurological conditions where
minocycline was administered i.p. at an average dose of 50 mg/kg
(see Table A1 in Appendix).

TISSUE COLLECTION AND PROCESSING
At the completion of the last behavioral test session (51 days post-
injury or sham), animals were placed inside an induction chamber
saturated with Isoflurane and deeply anesthetized until a tail pinch
produced no reflex movement. Anesthesia was maintained using
a mask/nose cone attached to the anesthetic vaporizer and blood
was collected (1.5 ml) from a tail vein; serum was prepared as
described earlier (Kwon et al., 2011). For measuring tissue levels
of protein markers, rats were decapitated and brains were immedi-
ately removed and placed on ice. The amygdala (AD), PFC, VHC,
and DHC were dissected, frozen, and stored at−80˚C until use as
described earlier (Kwon et al., 2011).

Protein measurements
Sample preparation, printing, scanning, and data analysis of
serum and brain regions were performed using Reverse Phase
Protein Microarray (RPPM) as described earlier (Kovesdi et al.,
2011; Kwon et al., 2011). Briefly, frozen brain tissues were pul-
verized in liquid nitrogen, the powder was transferred into a
lysis buffer (Thermo Fisher, Waltham, MA, USA) with protease
and phosphatase inhibitors (Thermo Fisher), sonicated, cen-
trifuged, and the supernatants aliquoted and stored at −80˚C.
Protein concentrations were measured by BCA assay (Thermo
Fisher). Blood samples were centrifuged at 10,000× g for 15 min
at 4˚C; supernatants were aliquoted, flash-frozen, and stored
at−80˚C.

Tissue samples were diluted in print buffer and then subjected
to an 11-point serial 1:2 dilution and transferred into Genetix 384-
well plates (X7022, Fisher Scientific, Pittsburg, PA, USA) using
a JANUS Varispan Integrator and Expanded Platform Worksta-
tion (PerkinElmer, Waltham, MA, USA). Plates were transferred
into an Aushon 2470 Arrayer (Aushon Biosystem, Billerica, MA,
USA) to be printed on ONCYTE Avid (brain samples) or ONCYTE
Nova (serum samples) single-pad nitrocellulose coated glass slides
(Grace Bio-Labs, Bend, OR, USA; Gyorgy et al., 2010).

Primary antibodies (Table A2 in Appendix) were diluted to
10× the optimal Western analysis concentration in antibody incu-
bation buffer as described earlier (Gyorgy et al., 2010). The pri-
mary antibody solution was incubated overnight at 4˚C with a
cover slip. The following day slides were washed and then incu-
bated with an Alexa Fluor® 635 goat anti-mouse (Cat# A-31574),
goat anti-rabbit (Cat# A-31576), or rabbit anti-goat IgG (H+ L;
Cat# A-21086) secondary antibodies from Invitrogen at 1:6000
dilution in antibody incubation buffer for 1 h at room tempera-
ture. After washing and drying, fluorescent signals were measured
by a Scan Array Express HT microarray scanner (Perkin Elmer,
Waltham,MA,USA) using a 633 nm wavelength laser and a 647 nm
filter.

Data from the scanned images were imported into a Microsoft
Excel-based bioinformatics program developed in-house for
analysis (Gyorgy et al., 2010). The linear regression of the log–
log data was calculated after the removal of flagged data, which
include signal to noise ratios of less than 2, spot intensities in
the saturation range or noise range, or high variability between
duplicate spots (>10–15%). The total amount of antigen is deter-
mined by the y-axis intercept (Y -cept; Gyorgy et al., 2010). Data
is reported as the mean Y -cept±SEM.
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Corticosterone assay
Serum corticosterone (CORT) levels were measured with Cay-
man’s Corticosterone EIA Kit according to the manufacturer’s
instructions (Cayman Chemical, Ann Arbor, MI, USA). Each sam-
ple was diluted 1:500 and measured in triplicate (Kwon et al.,2011).
Data is reported as the mean concentration (in pg/mg)±SEM.

STATISTICAL ANALYSIS
All data were analyzed using Graph Pad Instat software (GraphPad
Software, Inc., La Jolla, CA, USA). Statistical significance was veri-
fied by one-way analysis of variance (ANOVA), followed by Tukey
post hoc test for multiple comparison. Differences with a p value
of <0.05 were considered significant.

RESULTS
BEHAVIORAL TESTS
One day following blast exposure, injured rats showed reduced
horizontal activity and slightly increased resting time in the OF
compared to sham animals, but the differences were not statisti-
cally significant (Figure 1A). At 8 days post-injury, the horizontal
activity of injured-vehicle animals further decreased. On the other
hand, injured-mino rats had a similar horizontal activity to ani-
mals in the two sham groups. The horizontal activity of animals

in all groups was the lowest at 45 days after injury. Similarly,
animals in all experimental groups spent more time resting with
injured-vehicle animals spending significantly more time resting
than animals in the other three groups (Figure 1B).

During the first EPM testing performed 9 days after exposure,
injured-vehicle animals spent less time in the open arms and more
time in the closed arms of the maze than animals in the other three
groups (Figures 2A,B). However, the difference at this time point
was not statistically significant. At 46 days after injury, the differ-
ences in the time spent in the open and closed arms of the maze
became significant between injured-vehicle and injured-mino ani-
mals. At this later time point, injured-vehicle animals barely spent
any time in the open arms of the maze and practically spent all of
their time in the closed arms of the maze (Figures 2A,B). By con-
trast, injured-mino animals spent a comparable amount of time to
animals in the two other groups did in the open and closed arms
of the maze.

In order to assess time-dependent changes in spatial memory,
we performed two tests in the BM at two different time points.
Test Session I started at 10 days after injury and lasted for 5 days.
Injured-vehicle animals performed poorly during the first 2 days of
the test (Figure 3A). They required approximately twice as much
time as animals in the other experimental groups to find the escape

FIGURE 1 |The effect of injury and minocycline treatment on basic locomotor activities at different time points after mbTBI. (A) Horizontal activity
(number of beam breaks), and (B) Resting time (seconds) were measured in Open field. Data are presented as mean±SEM. *p < 0.05 for injured-vehicle vs.
sham-mino rats.

FIGURE 2 |The effect of injury and minocycline treatment on anxiety levels at different time points after mbTBI. (A) Time spent in the open arms
(seconds), and (B) time spent in the closed arms (seconds) were measured for all animals in the elevated plus maze. Data are presented as mean±SEM.
*p < 0.05 for injured-vehicle vs. sham-vehicle rats.
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FIGURE 3 |The effect of injury and minocycline treatment on
spatial memory at different time points after mbTBI. Latency
(seconds) to find and enter the escape box was measured for five
consecutive days in the Barnes maze starting at (A) 10 days, and (B)

47 days after injury or sham. Data are presented as the average of
the 2 daily trials per animal in each experimental group ±SEM.
*p < 0.05, **p < 0.01, and ***p < 0.001 for injured-vehicle vs.
sham-vehicle rats.

box. While their performance improved slightly on the second day
of testing, injured-vehicle animals still required significantly more
time to find the escape box compared to their sham group. On
the third day of testing, their performance became roughly similar
to animals in the other experimental groups. By contrast, the per-
formance of injured-mino animals was very similar to uninjured
(sham) animals; their measured latency times to locate and enter
the escape box were almost identical on days 11 through 14. They
found the escape box with slightly improved efficiency every day.

During Test Session II (beginning at 47 days post-injury), the
performance of injured-vehicle animals was significantly worse
than sham-vehicle animals on all five testing days (Figure 3B).
While their performance slightly improved on each subsequent
testing day, injured-vehicle rats still needed significantly more
time to find the escape box, even on the last day of testing. Con-
versely, injured-mino animals performed similar to animals in the
two control groups (sham-vehicle and sham-mino). Their perfor-
mance during Test Session II was similar to that in Test Session I;
they required about the same time to find the escape box on each
testing day.

PROTEIN ANALYSES
Select protein marker levels were measured in the serum and dis-
sected brain regions of animals in all four experimental groups.
Injury without minocycline treatment caused a significant increase
in the serum levels of all biomarkers measured (Figure 4). Both
inflammatory markers, CRP and MCP-1, were significantly ele-
vated in injured-vehicle animals; minocycline treatment resulted
in normal or near normal (i.e., sham) sera levels in the injured-
mino group. Claudin 5 levels were also elevated following blast
injury in the vehicle-treated group, but were reduced to sham
levels in injured-mino animals. Similarly, neuronal and glial loss
and/or damage markers like NSE, NF-H, Tau, S100β, and GFAP
were all significantly elevated in the sera of injured-vehicle animals.
Minocycline treatment resulted in a significant reduction in serum
levels of all of the markers except for GFAP. Lastly, serum CORT
levels were also significantly increased in injured-vehicle rats, but
minocycline treatment resulted in significantly lower serum CORT
levels in injured-mino animals.

Tissue levels of 13 selected protein biomarkers (Figure 5;
Table A3 in Appendix) were determined in the AD, PFC,VHC, and
DHC of animals in the various experimental groups. We found
significantly elevated levels of all three inflammatory markers
(CRP, MCP-1, and TLR9) in the brains of injured-vehicle ani-
mals (Figure 5). Importantly, minocycline treatment of injured
animals resulted in normal or near normal levels of these inflam-
matory markers; tissue levels of these markers in all four brain
regions of injured-mino rats were not statistically different from
those of sham-vehicle or sham-mino animals. NSE, S100β, and
GFAP similarly showed injury-induced increases in all four brain
regions. Minocycline treatment normalized their tissue levels
with the exception of GFAP in the PFC, where GFAP levels of
injured-vehicle and injured-mino animals were practically the
same.

Some of the protein biomarkers that were analyzed showed
brain region-dependent increases in response to injury. Of the
vascular markers, tissue levels of FLK-1 (Figure 5), Claudin 5
and AQP4 (Table A3 in Appendix) were significantly elevated in
the VHC following injury; FLK-1 and AQP4 levels were also ele-
vated in the DHC and the AD, respectively. Similarly, neuronal and
glial markers showed brain region-specific increases to injury. For
instance, all three markers (NF-H, Tau, and MBP) showed injury-
induced increases in the VHC but not in the PFC. Minocycline
treatment of injured animals significantly reduced the tissue levels
of all of the markers with the exception of Tau, which was not
significantly reduced in the AD. Interestingly, VEGF did not show
any significant changes in response to injury in any of the analyzed
brain regions.

DISCUSSION
Minocycline is an FDA approved, semisynthetic, second-
generation tetracycline drug that exhibits anti-inflammatory
and/or neuroprotective effects in various experimental models of
CNS disorders. These include focal and cerebral ischemia (Yrjan-
heikki et al., 1998; Xu et al., 2004), TBI (Sanchez Mejia et al.,
2001), amyotrophic lateral sclerosis (Zhu et al., 2002), Parkinson’s
disease (Wu et al., 2002), kainic acid treatment (Heo et al., 2006),
Huntington’ disease (Chen et al., 2000; Du et al., 2001; Wu et al.,
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FIGURE 4 |The effect of injury and minocycline treatment on serum
levels of selected markers in the different experimental groups. Serum
levels of 8 protein markers were assayed by RPPM; CORT levels were
assayed by ELISA. Protein values are expressed as y -axis intercept (Y -cept)

and CORT values are expressed as pg/ml. Data are presented as
mean±SEM. *p < 0.05, **p < 0.01, and ***p < 0.001 for injured-vehicle vs.
sham-vehicle rats. #p < 0.05, ##p < 0.01, and ###p < 0.001 for injured-vehicle vs.
injured-mino rats.

2002; Wang et al., 2003), multiple sclerosis (Brundula et al., 2002;
Popovic et al., 2002), Alzheimer’s disease (Choi et al., 2007), and
spinal cord injury (Wells et al., 2003; Stirling et al., 2004; Fes-
toff et al., 2006; Table A1 in Appendix). Minocycline’s ability to
improve outcome in distinct types of CNS disease models may
stem from its ability to find multiple targets in different biochem-
ical cascades that play a role in the development of the above-
mentioned diseases. Previous studies indicated that minocycline
acts as a pleiotropic molecule; it can reduce the release of various
chemokines and cytokines (Sanchez Mejia et al., 2001; Bye et al.,
2007), lipid mediators of inflammation, matrix metalloproteinases
(MMPs), and nitric oxide (NO; Stirling et al., 2005). Minocy-
cline can also inhibit microglia activation (Yrjanheikki et al., 1998,

1999; Tikka and Koistinaho, 2001). The inhibition of microglial
inflammatory responses has been reported in various neurodegen-
erative diseases (Yrjanheikki et al., 1999) including Huntington’s
(Chen et al., 2000; Popovic et al., 2002; Wu et al., 2002); addi-
tional anti-inflammatory actions may be through the impediment
of molecules like cyclooxigenase-2 (Patel et al., 1999; Yrjanheikki
et al., 1999). Minocycline exerts its neuroprotective effects (Kriz
et al., 2002; Wells et al., 2003; Stirling et al., 2004; Zemke and Majid,
2004; Marchand et al., 2009) through the repression of poly (ADP-
ribose) polymerase-1 activity (Alano et al., 2006), which plays a
central role in caspase-independent apoptosis (Susin et al., 1999;
Zhang et al., 2002; Cao et al., 2003; Du et al., 2003), and the sup-
pression of caspase-1 and caspase-3 expression (Chen et al., 2000)
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FIGURE 5 |The effect of injury and minocycline treatment on the
levels of protein markers in various brain regions in the different
experimental groups. Tissue levels of 9 protein markers were measured
in the AD, PFC, VHC, and DHC of rats by RPPM. Protein values are

expressed as y -axis intercept (Y -cept) and data are presented as
mean±SEM. *p < 0.05, **p < 0.01, and ***p < 0.001 for injured-vehicle
vs. sham-vehicle rats. #p < 0.05 and ##p < 0.01 for injured-vehicle vs.
injured-mino rats.

and cytochrome c release from the mitochondria (Zhu et al., 2002).
Moreover, minocycline has been shown to sequester excess Ca2+

released after injury (Antonenko et al., 2010), and block the injury-
induced decrease of soluble alpha amyloid precursor protein in
the attenuation of diffuse axonal injury (Siopi et al., 2011). Based
on all of these findings, we were compelled to test the effects of
minocycline in our rat model of mbTBI.

During our pilot studies we followed a reported treatment
schedule of 90 mg/kg of minocycline administered i.p. twice on
the first day, 50 mg/kg twice per day for 2 subsequent days, and

50 mg/kg once per day for three additional days (Lee et al., 2003;
Teng et al., 2004; Festoff et al., 2006; Yune et al., 2007). However, we
found that this treatment caused substantial weight loss likely due
to gastrointestinal problems (i.e., diarrhea). Based on these pre-
liminary findings, we decided to modify the treatment paradigm
by lowering the dose to 50 mg/kg once per day for four consec-
utive days. Our conservative treatment schedule caused light and
transient diarrhea, and animals recovered and gained weight nor-
mally from the third day post-injury until the termination of the
experiment on day 51 (data not shown).
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Consistent with our previous findings, injured rats had reduced
horizontal activity and a somewhat higher resting time than sham
animals in the OF 1 day after injury (Kwon et al., 2011). Interest-
ingly, all of the rats, independent of injury and treatment, showed
gradually decreasing horizontal activities during the two subse-
quent OF sessions. There are two plausible explanations for this
behavior. Rodents actively explore new areas, but inadvertently
become less active on subsequent exposures to the same environ-
ment, a process called habituation (Pitkänen et al., 2006). We also
observed on numerous occasions in other experiments that the
horizontal activity of naïve rats in the OF at baseline is higher than
it is 24 h later. We believe that since the OF represents a novel envi-
ronment for the rats, they actively explore it (Bolivar et al., 2000;
Daenen et al., 2001). However, repeated testing may cause the
animals to habituate to the OF and in turn spend less time explor-
ing and more time resting. Another possible explanation may be
aging, especially during the last OF session, as young rodents have
higher motor activity levels than more mature rodents (Sprott and
Eleftheriou, 1974; Ingram et al., 1981; Gage et al., 1984; Lamberty
and Gower, 1993). The effects of aging have also been observed as
decreases in distance traveled in the EPM over time in both, sham
and blast injured animals (Kovesdi et al., 2011).

Epidemiological studies have indicated that soldiers frequently
develop neurobehavioral abnormalities like increased anxiety and
memory impairments in mbTBI (Belanger et al., 2007; Brenner
et al., 2009). Anxiety affects rehabilitation, psychosocial adjust-
ment, and cognition in humans (Kersel et al., 2001; Rapoport et al.,
2005). The EPM is a simple behavioral assay for evaluating the
anxiety responses of rodents (Pellow et al., 1985) and studying the
brain sites (limbic regions, hippocampus, amygdala; Silveira et al.,
1993; Gonzalez and File, 1997) and the mechanisms underlying
anxiolytic behavior (GABA, glutamate, serotonin, hypothalamic–
pituitary–adrenal axis neuromodulators; Handley and Mithani,
1984; Pellow et al., 1985; Rodgers et al., 1992; Silva and Bran-
dao, 2000; Korte and De Boer, 2003; Overstreet et al., 2003;
Cortese and Phan, 2005). Rodents naturally prefer dark, enclosed
spaces, and demonstrate an aversion to open spaces and a fear of
heights (Barnett, 1975). Despite these natural inclinations, non-
anxious rodents possess exploratory behaviors that cause them
to investigate the open arms of the maze while more anxious
rats remain in the closed arms of the maze for longer periods
of time.

We previously found increased anxiety in our rodent model of
mbTBI (Kovesdi et al., 2011). As our current EPM data illustrates,
acute minocycline treatment prevented the increase in anxiety fol-
lowing blast overpressure. The time spent in the closed arms of
the maze by injured-mino rats was indistinguishable from that
of the two sham groups at both testing time points. Conversely,
injured-vehicle animals showed signs of increased anxiety early
on; they spent less time on the open arms of the maze than ani-
mals in the other three experimental groups. While the difference
was not statistically significant at this early time point, injured-
vehicle animals barely spent any time outside of the closed arms
of the maze 46 days after the injury. Even though there is very
little information available about the effects of minocycline on
anxiety, especially in brain injury, minocycline treatment reduced
anxiety in the EPM in models of cardiac arrest/cardiopulmonary

resuscitation and fragile X syndrome (Bilousova et al., 2009; Neigh
et al., 2009).

Current treatments of increased anxiety are mostly sympto-
matic (Tenovuo, 2006; Silver et al., 2009), and patients frequently
experience side effects from the use of drugs like benzodiazepines
(Rickels et al., 1991; Baldwin et al., 2005). Acute minocycline treat-
ment may provide an alternative to the use of these drugs. Inter-
estingly, injured-mino animals also had lower serum CORT levels
than injured-vehicle animals at 51 days after the injury. While
serum CORT levels have been used as indicators of stress (Dunn
et al., 2004), the correlation between serum CORT levels and
anxiety is rather complex and likely involve multiple regulatory
pathways.

Consistent with available epidemiological data and our pre-
vious studies, the memory impairment associated with mbTBI
develops over several weeks after the insult (Kovesdi et al., 2011;
Kwon et al., 2011). Importantly, the deficit persists for at least
2 months post-injury (Kovesdi et al.). Given that 2 months in
the lifespan of a rat roughly translates into several human years
(Quinn, 2005), the observed memory impairment mirrors the
chronic condition that manifests in humans reasonably well. The
BM has been extensively used to study spatial learning and mem-
ory in rats (Barnes, 1979), and is considered a less anxiogenic
alternative to the Morris water maze since it does not involve
swimming (Pompl et al., 1999; Miyakawa et al., 2001; Deacon and
Rawlins, 2002; Holmes et al., 2002). BM has been applied to studies
of TBI; rodents with hippocampal damage show impaired perfor-
mance in the maze, supporting the spatial nature of the task (Fox
et al., 1998; Paylor et al., 2001; Deacon and Rawlins, 2002; Raber
et al., 2004). In BM animals are presumed to learn the location of
an escape hole using spatial reference points that are either fixed
in relation to the maze (extra-maze cues) or are fixed on the maze
itself in relation to the escape hole (proximal cues). It is impor-
tant to note that during our acclimation and baseline behavioral
testing, all animals were exposed to the maze and were trained to
“learn” the task of locating and entering the escape box.

Early signs of the memory deficit were detected in the first test-
ing session. Injured-vehicle animals required approximately twice
as long to locate the escape box on the first day of testing, while
injured-mino animals performed similar to the uninjured shams.
On the second day of testing, injured-vehicle rats still needed more
time than the other groups. During the last 3 days of testing,
injured-vehicle rats relearned and remembered the task, requir-
ing about the same amount of time as the other groups. However,
during the second testing session, injured-vehicle rats performed
poorly on all five testing days with only minor improvements in
their speed from day to day. Conversely, injured-mino rats per-
formed as well as sham animals did throughout. A similar effect
was found in a study by Siopi et al. (2011) where acute treatment
with minocycline significantly improved recognition memory; the
effects lasted for up to 13 weeks in a mouse closed head injury
model. There are currently no effective treatments in clinical use
for memory impairment. Existing therapies predominantly tar-
get symptoms associated with mood disorders (e.g., depression)
that can also improve memory performance (Tenovuo, 2006; Sil-
ver et al., 2009). Therefore, acute minocycline treatment has the
potential to offer a potentially effective alternative.
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The observed neurobehavioral impairments implicate the AD,
PFC, VHC, and DHC due to their involvement in mediating anx-
iety and memory (Henke, 1990; Moser and Moser, 1998). In our
earlier works we found indications of inflammation, axonal, glial,
and neuronal damage in these brain regions (Kovesdi et al., 2011;
Kwon et al., 2011). The neuroinflammatory response to various
brain insults has been suggested as a potential link between injury
and altered behavior, including increased anxiety. As reported ear-
lier, blast can trigger a systemic inflammatory process even when
the body is fully protected and only the head is exposed (Cer-
nak et al., 2011). It is crucial to note that the similarities and
the dissimilarities between mbTBI and other better-characterized
forms of closed head injuries are currently not known with regards
to their primary and secondary injury mechanisms. Neverthe-
less, it has been hypothesized that the different types of TBIs
may share pathological components like neuroinflammation, neu-
ronal and glial cell loss, and axonal injuries (Agoston et al.,
2009).

In our current study, we found that minocycline treatment
normalized significantly elevated sera levels of the inflammatory
markers CRP and MCP-1 following exposure to mild blast. CRP
and MCP-1 levels are routinely monitored in clinical settings and
are used as an indicator of inflammation (Berman et al., 1996;
Glabinski et al., 1996; Du Clos, 2000; Lobo et al., 2003). CRP
is a component of the acute phase response to injury (Du Clos,
2000) and its expression is stimulated by the release of cytokines
(Okamura et al., 1990); elevated CRP serum levels may reflect
a combination of systemic as well as neuronal inflammation.
Increased levels of MCP-1 are associated with neurological dys-
function after traumatic axonal injury in rats (Rancan et al., 2001),
and are detected in the cerebrospinal fluid in diseases related
to neuroinflammation such as stroke, meningitis, and multiple
sclerosis (Mastroianni et al., 1998; Losy and Zaremba, 2001; Sin-
dern et al., 2001; Chen et al., 2003; Sorensen et al., 2004). MCP-1
has also been suggested to regulate vascular permeability during
CNS inflammation (Tekstra et al., 1999;Stamatovic et al., 2003,
2006).

While tissue levels of Claudin 5 did not significantly change
except in the VHC, serum levels were significantly increased in
injured-vehicle animals. Claudin 5 is a part of the tight junction
complex in brain endothelial cells that contribute to the forma-
tion of the BBB (Morita et al., 1999; Liebner et al., 2000); increased
serum levels suggest that there may be vascular damage in mbTBI
that results in the release of Claudin 5 into systemic blood. Impor-
tantly, minocycline treatment normalized Claudin 5 sera levels
indicating that vascular changes may be secondary to the inflam-
matory process or that minocycline possesses cytoprotective effects
that also extend to endothelial cells.

Elevated serum levels of neuron- and glia-specific proteins have
been found clinically as well as experimentally in various forms
of TBI (Povlishock and Christman, 1995; Povlishock and Pettus,
1996; Buki and Povlishock, 2006). Increased serum levels of large
neuron-specific molecules also point toward a vascular pathol-
ogy; heightened BBB permeability is required for the release of
large proteins like NF-H from the brain parenchyma and into
systemic circulation. In a large animal model of blast TBI, the
temporal pattern of serum NF-H levels correlated with clinical and

pathological outcomes (Gyorgy et al., 2011). In our current study,
minocycline treatment significantly reduced sera levels of NSE,
NF-H, Tau, and S100β after injury, but not GFAP, an astroglia-
specific intermediate filament (Missler et al., 1999) indicative of
brain damage.

Consistent with our behavioral and serum data, we found
that minocycline treatment prevented or mitigated injury-induced
increases of the selected inflammatory markers CRP, MCP-1, and
TLR9 in all four brain regions. TLR9 is member of the toll-
like receptor family (Aderem and Ulevitch, 2000; Akira et al.,
2001; Takeda and Akira, 2005; Mishra et al., 2006; O’Neill, 2006;
Casanova et al., 2011) involved in the induction and the regula-
tion of the inflammatory response in TBI (Hua et al., 2007, 2009)
as well as other disorders involving neuroinflammation (Prat and
Antel, 2005) and ischemic brain damage (Hua et al., 2007, 2009;
Doyle et al., 2008; Gao et al., 2009; Marsh et al., 2009).

Of the vascular markers only FLK-1 and AQP4 tissue levels
increased in response to the injury; minocycline treatment miti-
gated the effect of injury on FLK-1 levels but showed no effect on
the tissue levels of AQP4. Increases in AQP4 were only detected in
the AD and in the VHC while FLK-1 was in the VHC and the DHC.
Elevations in AQP4 expression can contribute to the formation as
well as the resolution of edema (Kimelberg, 1995; Papadopoulos
et al., 2002; Amiry-Moghaddam and Ottersen, 2003; Neal et al.,
2007). The pathology of severe bTBI includes the development
of rapid and malignant brain edema (Ling et al., 2009; Ling and
Ecklund, 2011) probably involving AQP4 (Neal et al., 2007). How-
ever, we currently have no information about water imbalance in
mbTBI; if present, it is likely limited to the early phase following
injury.

FLK-1 is a membrane-bound tyrosine kinase that mediates
the effects of VEGF in the CNS (Sondell et al., 2000; Ogunshola
et al., 2002; Rosenstein et al., 2003). Activation of FLK-1 stimu-
lates various intracellular signal transduction pathways including
the PI3K/Akt pathway that mediates the neuroprotective func-
tion of VEGF (Gerber et al., 1998; Wu et al., 2000; Kilic et al.,
2006). VEGF/FLK-1 up-regulation following TBI seems to per-
form an important endogenous cytoprotective mechanism (Skold
et al., 2006; Lee and Agoston, 2009). Interestingly, we did not
detect changes in the abundance of VEGF in any of the analyzed
brain regions following injury. A potential explanation for this
negative finding is the relatively late testing time point (51 days
post-injury). In a previous study using another model of TBI,
we observed significant increases in VEGF tissue levels in the
hippocampus (Lee and Agoston, 2009, 2010); the increases were
limited to a few days after the injury.

The tissue levels of NSE, NF-H, Tau, S100β, GFAP, and
MBP similarly increased in response to the injury, however,
increases were brain region-specific. We measured significant
injury-induced increases in sera levels of these proteins indica-
tive of neuronal and glial cell losses. Thus, the detected increases
in the tissue levels of these proteins are likely compensatory in
nature and can be a part of the repair mechanism (Fawcett, 2009).
Importantly, in all cases where injury resulted in an increase in the
tissue levels of these markers, minocycline treatment mitigated
the effect and tissue levels of these markers were restored to levels
measured in sham animals.
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CONCLUSION
Our study demonstrates that acute minocycline treatment sub-
stantially improve the neurobehavioral outcome in a rodent
model of mbTBI likely through mitigating the neuroinflamma-
tory response to injury. The strength of our study lies in combining
neurobehavioral tests performed at two different time points after
injury with determining changes in serum and brain tissue levels
of protein biomarkers. The limitations of the current study are
the limited types of neurobehavioral and a single terminal time
point of proteomics analyses. Based on these promising results,

additional neurobehavioral testing shall be performed in future
studies along with obtaining blood at several clinically relevant
time points for protein assays. Nevertheless, our findings provide
a rationale for exploring the viability of using acute minocycline
treatment in mbTBI.
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APPENDIX

Table A1 | List of animal models of various diseases, dose of minocycline treatment and the observed effects of the treatment.

Animal model of disease Dose Effect Reference

Acute spinal cord injury

(mouse)

1 and 24 h (50 mg/kg, i.p.), then 25 mg/kg

dose every 24 h for the next 5 days

Improved both hindlimb function and strength after

injury and reduced lesion size

Wells et al.

(2003)

Amyotrophic lateral

sclerosis (mouse)

1 g/kg in a custom made rodent diet Delayed the onset of motor neuron degeneration,

less activation of microglia was detected at early

symptomatic stage (46 weeks) and at the end

stage of disease in the spinal cord

Kriz et al.

(2002)

Cervical spinal cord injury

(rat)

1 h (90 mg/kg), then for 3 days after injury Failed to improve functional and histological

recovery.

Lee et al.

(2010)

Closed head injury

(mouse)

5 min (90 mg/kg, i.p.), and at 3 and 9 h

(45 mg/kg) post-TBI

Attenuation of the decrease of post-TBI sAPPα

24 h post-injury. Corpus callosum and striatal

atrophy, ventriculomegaly, astrogliosis, and

microglial activation reduced 3 months post-injury

Siopi et al.

(2011)

Closed head injury

(mouse)

30 min (45 mg/kg, i.p.) and every 12 h

(22.5 mg/kg, i.p.) for 1 week. Or

twice-daily minocycline injections for

2 weeks (6 weeks surviving)

Reduced the activation of microglia/macrophages

and improved neurological outcome, but any

increase of neurogenesis

Ng et al. (2012)

Controlled contusion

spinal cord injury (rat)

Multiple injections (30 mg/kg, i.p.) at 0.5,

1, and 24 h, or a single injection of

90 mg/kg at either 0.5, 1.0, or 24 h after

injury

Improved functional recovery, reduced tissue

damage, cavity size, apoptosis and activated

caspase-3 signal

Festoff et al.

(2006)

Controlled cortical impact

(rat)

45 mg/kg, i.p. at 1 h, 24 and 48 h after

injury

Improved active place avoidance following CCI Abdel Baki

et al. (2010)

Endothelin-1 (ET-1) model

of focal ischemia (rat)

45 mg/kg, i.p. at 2 and 12 h following the

last injection of ET-1, then 22.5 mg/kg

every 12 h (5×)

Improved behavioral outcome. Reduced subcortical

and whole hemisphere infarct volume

Hewlett and

Corbett (2006)

Focal cerebral ischemia

(rat)

45 mg/kg, i.p. twice a day for the first day;

22.5 mg/kg for the subsequent 2 days

Reduced cortical infarction volume, inhibited

morphological activation of microglia in the area

adjacent to the infarction, induction of

IL-1b-converting enzyme, and reduced

cyclooxygenase-2 expression and prostaglandin E2

production

Yrjanheikki

et al. (1999)

Huntington disease

(mouse)

daily 5 mg/kg, i.p. Inhibited caspase-1 and caspase-3 up-regulation Chen et al.

(2000)

Middle cerebral artery

occlusion (MCAO; mice)

45 mg/kg two times in every 12 h starting

at 30 min after the onset of MCAO

Neuroprotectant at males, but ineffective at

reducing ischemic damage in females

Li and

McCullough

(2009)

Neonatal

hypoxia-ischemia (HI; rat)

2 h after hypoxia (45 mg/kg, i.p.), then

every 24 h from P4–P9 (22.5 mg/kg)

Prevention of HI induced changes in SERT, 5-HT

and 5-HT positive dorsal raphe neurons. Lasting

effect after 6 week of HI

Wixey et al.

(2011)

Parkinson disease

(mouse)

Daily twice (12 h apart) injections from 1.4

to 45 mg/kg (i.p.) starting 30 min after the

first MPTP injection and continuing

through four additional days after the last

injection of MPTP

Inhibited microglial activation, mitigated both the

demise of nigrostriatal dopaminergic neurons and

the formation of nitrotyrosine. Prevented the

formation of mature interleukin-1β and the

activation of NADPH–

oxidase and inducible nitric oxide synthase (iNOS)

Wu et al.

(2002)

Spinal cord injury (T13

hemisection of the spinal

cord; rat)

30 min (40 mg/kg, i.p.) followed twice per

day for 2 days post-injury

Reduced the development of pain behaviors at 1

and 2 weeks after SCI, reduced microglial OX-42

expression and decreased the expression of

noxious stimulation-induced c-Fos

Marchand

et al. (2009)

(Continued)
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Table A1 | Continued

Animal model of disease Dose Effect Reference

Spinal cord injury (rat) Twice a day beginning 30 min after injury

(50 mg/kg, i.p.) for 2 days

Reduced apoptotic oligodendrocytes and microglia in

proximal and distal segments of the ascending

sensory tract. Reduced microglial/macrophage

density, attenuated axonal dieback and improved

functional outcome

Stirling et al.

(2004)

Temporary middle

cerebral artery occlusion

model (TMCAO; rat)

For 4 h post TMCAO protocol: 3 or

10 mg/kg i.v. at 4, 8, and 12 h; for the 5-h

post TMCAO protocol: at 5, 9, and 13 h;

and for the 6-h post TMCAO protocol at 6,

10, and 14 h

3 and 10 mg/kg i.v. were effective at reducing infarct

size with a 5 hour therapeutic time window after

TMCAO. 10 mg/kg extended the window time to

ameliorate neurological deficits to 5 h

Xu et al. (2004)

Table A2 | List of antibodies and their respective classifications and dilutions used to measure protein biomarker levels in sera and brain tissues.

Antibody Vendor Catalog No. Dilution in RPPM

INFLAMMATORY

C-reactive protein (CRP) Santa Cruz Biotechnology, Inc. sc-30047 1:20

Monocyte chemoattractant protein (MCP-1) Santa Cruz Biotechnology, Inc. sc-1784 1:20

Toll-like receptor 9 (TLR9) Santa Cruz Biotechnology, Inc. sc-13218 1:20

VASCULAR

Claudin 5 Santa Cruz Biotechnology, Inc. sc-28670 1:20

Vascular endothelial growth factor (VEGF) Abcam ab-53465 1:50

VEGF receptor 2 (FLK-1) Santa Cruz Biotechnology, Inc. sc-315 1:20

Aquaporin 4 (AQP4) Abcam ab-97414 1:50

NEURONAL

Neuron-specific enolase (NSE) Abcam ab-53025 1:20

Neurofilament heavy chain (NF-H) Sigma Aldrich N-4142 1:20

Tau protein Santa Cruz Biotechnology, Inc. sc-1995P 1:20

GLIAL

S100 beta protein (S100β) Abcam ab-41548 1:20

Glial fibrillary acidic protein (GFAP) Abcam ab-7260 1:50

Myelin basic protein (MBP) Santa Cruz Biotechnology, Inc. sc-13914 1:20

Biomarkers labeled with italics were only measured in the brain.
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FIGURE A1 | Outline of the experimental schedule. After 1 week of
acclimation, baseline behavioral analyses, and injury (or sham), rats were
treated intraperitoneally for four consecutive days (marked by circled
numbers of 1 through 4) with 50 mg/kg of minocycline or saline starting at
4 hours after injury. Behavioral assessments (Open Field, Elevated Plus

Maze, and Barnes Maze) were conducted before injury (Baseline
Behavioral Session), and at 1 (open field OF only), 8 (Behavioral Test
Session I.), and 45 days (Behavioral Test Session II.) after injury or sham. At
the end of the experiment blood and brains were collected, processed,
and analyzed using RPPM and ELISA.
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