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Signaling mechanisms in mirror image pain pathogenesis

Radim Jancalek 

Department of Neurosurgery and International Clinical Research Center (ICRC), St. Anne’s University Hospital, Pekarska 53, CZ - 656 91 Brno, 
CZECH REPUBLIC

ABSTRACT

It is now clear that a peripheral nerve lesion affects contralateral non-lesioned structures, and thus such a lesion can result in mirror image pain. The pathogenesis 
is still not exactly known, but there are some possible signaling pathways in the contralateral reaction of the nerve tissue after unilateral nerve injury. Potential sig-
naling pathways of contralateral changes can be generally divided into humoral and neuronal mechanisms. Damage to peripheral nerves or spinal roots produces 
a number of breakdown products with development of an aseptic inflammatory reaction. Released immunomodulatory cytokines are believed to be transported 
via blood or cerebrospinal fluid into the contralateral part of the body affecting spinal roots, dorsal root ganglia or peripheral nerves. Because neurons are ele-
ments of a highly organized network, injury to the peripheral neuron results in signals that travel transneuronally into the central nervous system and affects 
the contralateral homonymous neurons. There is also evidence that spinal glia creates and maintain pathological pain. Additionally, there may be compensatory 
changes in behavior of animals with an impact on contralateral neurons, such as altered stance and motor performance or autonomic reflex changes. Although 
the transneuronal signaling pathway appears to be plausible, the humoral signaling pathway or other communication systems cannot be excluded at this time. 
Knowledge about these processes has clinical implications for the understanding of chronic neuropathic pain states, and, therefore, further studies will be neces-
sary. Understanding signaling mechanisms in mirror image pain pathogenesis may provide novel therapeutic targets for the management of neuropathic pain.
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Introduction

Damage to peripheral nerves results in 
structural changes of nerve tissue as well 
as functional alterations including neuro-
pathic pain. Although stimuli for chronic 
neuropathic pain arises from the area in-
nervated by the damaged nerve, there 
have been reported signs in areas other 
than those attributed to the injured nerve, 
i.e., in contralateral regions.

So-called “mirror image pain” is typically 
characterized by mechanical allodynia 
and occurs in chronic pain conditions, 
including reflex sympathetic dystrophy,1 
causalgia,2 and/or atypical facial pain.3 
Pathogenesis of mirror image pain is still 
not exactly known, but there are some 
possible signaling mechanisms in the 
contralateral reaction of the nerve tissue 
after unilateral nerve injury. 

Many previous studies dealing with the 
reaction of a peripheral nerve injury use a 
contralateral non-injured one as a control 
sample. However, there is increasing evi-
dence that unilateral nerve injury induces 
contralateral changes. The pioneering 
review about the effect of a peripheral 
nerve lesion on contralateral non-lesioned 
structures was written by Koltzenburg 
and colleagues in 1999.4 Studies that 
are more recent verify the concept of the 
contralateral reaction.5,6

A damage of nervous tissue leads to 
changes already described by Waller.7 This 

reaction is generally an aseptic inflamma-
tion with an increase in many immuno-
modulatory cytokines.8 Since local injury 
to an organism causes the widespread 
reaction of the inflammatory system ex-
ceeding the borders of the tissue dam-
age, it is presumed that injury to nervous 
tissue also induces such a response. 

The nervous system is a highly organized 
structure with many connections. Each 
neuron, the basic functional units of 
nervous tissue, is closely connected with 
many other ones. There is also a com-
plex relationship between neurons and 
glia. Thus, the contralateral reaction of 
the nervous system on local injury is not 
a surprising and unexpected finding. In 
this review, we discuss a possible patho-
genetic background for the contralateral 
changes of the nervous system. 

Signaling pathways of the contralateral 
reaction

Although neuropathic pain is associated 
with dysfunction (hyperexcitability) of 
neurons, it is obvious that “inflammatory 
changes” have a decisive role in the patho-
genesis of neuropathic pain. Therefore, 
when addressing possible signaling mech-
anisms of the contralateral reaction after 
nerve injury, one has to also take into con-
sideration immunocompetent cells (such 
as macrophages, lymphocytes, Schwann 
cells, astrocytes, and/or microglia) and se-
creted immunomodulatory factors.

“Cytokines” is a generic name for a diverse 
group of soluble proteins and peptides 
that act as “messenger” molecules and 
mediate communication among immune 
system cells and between immune system 
cells and the rest of the body. Many ex-
perimental studies have documented the 
important role of cytokines and immune 
cells during different types of neuropathy 
and their potential to induce or facilitate 
neuropathic pain.9,10 Nevertheless, the ma-
jority of the studies have been focused on 
local or homolateral neuroinflammatory 
reactions to nerve damage. Studies aimed 
at the contralateral expression of cytokines 
after unilateral nerve injury are still rare. 

Ruohonen and colleagues investigated 
contralateral changes of different proin-
flammatory and anti-inflammatory cyto-
kines after transaction of the rat sciatic 
nerves.11 They described significantly high-
er expressions of transforming growth 
factor beta (TGF-β1), interleukin 1 beta (IL-
1β), tumor necrosis factor alpha (TNF-α), 
and interleukin 10 (IL-10) in the contralat-
eral nerve than in the non-injured control 
one. Other authors reported alterations 
in expression of bradykinin receptors and 
tetrodotoxin resistant Na+ channels in the 
contralateral dorsal root ganglion (DRG) 
after damage of the sciatic or saphenous 
nerve.12,13

Koltzenburg has noted that responses to 
contralateral injuries are usually qualita-
tively similar but smaller in magnitude 
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and have a briefer time course com-
pared to ipsilateral changes.4 Although 
the contralateral IL-1β, IL-10 and mono-
cyte chemoattractant protein 1 (MCP-1) 
mRNA expression levels were comparable 
with the ipsilateral expression profile af-
ter chronic constriction injury in Klein-
schnitz’s study, the contralateral TNF-α 
level remained unchanged, while at the 
site of nerve injury, this proinflammatory 
cytokine was strongly induced.14 Thus, the 
contralateral cytokine gene expression is 
not just an unspecific phenomenon but 
seems to be differentially regulated.

The recruitment of circulating macrophag-
es into the peripheral nerve is essential for 
degeneration and subsequently for suc-
cessful regeneration after nerve injury. 
Chemokines (cytokines with chemotactic 
activities) are factors influencing such re-
cruitment. Since an increased expression 
of chemokines was observed in the non-
injured contralateral nerves, one can as-
sume that there are local conditions suit-
able for macrophage invasion.15 In line 
with this assumption, Dubovy and col-
leagues found a significantly higher num-
ber of ED-1+ macrophages in both ipsilat-
eral and contralateral DRG up to 4 weeks 
after nerve injury.5 Nonetheless, Taskinen 
and Roytta came to a different conclu-
sion. They have not found macrophages 
or other inflammatory cells in the side 
contralateral to injury.15 Therefore, the re-
action of the contralateral nerves to injury 
is not uniform but reflects differences in 
the experimental models used (site and 
mode of injury, timing of experiment, 
used processing methods, etc.). 

A comparative study revealing differences 
between crush and chronic constriction 
injury indicates that the mode of nerve in-
jury determines contralateral effects, both 
qualitatively and quantitatively, as shown 
in a study of ipsilateral response.14,16 Over-
all, the level of cytokines is higher and 
more sustained after chronic constriction 
injury than after peripheral nerve crush. 
As a possible explanation, chronic con-
striction injury appears to be a stronger 
stimulus due to persisting ligatures and 
long-lasting perineurial inflammation.17 
On the other hand, nerve injury by crush 
is a monophasic event promptly followed 
by robust regeneration of nerve fibers.

Although the exact signaling mechanisms 
that link the two sides of the body and 
induce the contralateral reaction in cy-
tokines are still unknown, the synthesis of 
cytokines was proven in endothelial cells, 
proliferating Schwann cells, affected DRG 

neurons, and macrophages.15,18-20 Upreg-
ulation of satellite cells and TNF-α in the 
contralateral DRG after unilateral spinal 
nerve injury is associated with contral-
ateral mechanical allodynia.21 Thus, the 
presence of cytokines may be responsible 
for development of mirror image neuro-
pathic pain.

Transneuronal signaling pathway

Neurons of the nervous system are not 
separate from but rather parts of a highly 
organized neural network. Thus, damage 
of a peripheral neuron induces reactive 
changes in related neurons at the differ-
ent levels of neuronal organization (plas-
ticity of nervous system). Despite some 
midline structures that appear to have 
bilateral innervations (e.g., the urinary 
bladder), great importance is attached to 
the spinal commissural interneurons that 
connect the dorsal horns by way of the 
dorsal commissure and have the capacity 
to mediate specific contralateral changes 
unrestricted to the axial body regions. 
These functional connections in the spi-
nal cord that coordinate the two body 
halves have already been shown by Sher-
rington in 1910 and verified by recent 
report.22 More recent electrophysiological 
and morphological studies also strongly 
support the existence of commissural in-
terneurons connecting both dorsal horns 
within the spinal cord.23-25

Transmedian signaling via interneurons 
requires that signals cross through sepa-
rate neurons. Action potential achieves 
this, but only in one direction. There are 
numerous precedents for trans synaptic 
signaling of trophic factors, both antero-
grade and retrograde. After damage of 
motor and sensory neurons, molecules 
including brain-derived neurotrophic 
factor (BDNF) and neurotrophin 3 (NT3) 
can be released from neurons and may 
therefore be able to affect neurons in the 
spinal cord.4 A partial attenuation of a 
transneuronal signal also explains relative 
delay and the smaller magnitude of the 
contralateral effects.

The transneuronal signaling pathway 
supports findings of retrograde transneu-
ronal degeneration that occurs, for ex-
ample, after amputation. Subsequently 
to this, degeneration of the commissural 
neurons in the intermediate zone may in-
duce degeneration of the neurons on the 
spared side.26

Although the understanding of transneu-
ronal signaling pathways in contralateral 
reactions is mainly based on peripheral 

nerve lesion studies, it is now widely ac-
cepted that the nervous system also plays 
an important role in the contralateral 
spread of primary inflammatory diseases. 
For example, symmetry of inflammation 
is a fundamental characteristic of rheu-
matoid arthritis.27 Levine and colleagues 
have proposed that this symmetry may 
be underpinned by joint innervations, and 
they have proposed a neurogenic contri-
bution to both existing inflammation and 
the symmetrical pattern of rheumatoid 
arthritis.28,29 Animal models of rheuma-
toid arthritis also support the neurogenic 
hypothesis of the contralateral effect.30,31

Glial signaling pathway

Conventionally, glia have been considered 
only as supportive cells for neurons. In 
the early 1990s, Garrison and colleagues 
made the first links between neuropathic 
pain and glial activation after nerve inju-
ry.32 Activated glia release many immuno-
modulatory products, including excitatory 
amino acids, nitric oxide, prostaglandins, 
and cytokines. The proinflammatory cy-
tokines, derived largely from glia, are key 
mediators modulating neuronal activity 
and leading to induction and mainte-
nance of neuropathic pain. Proinflamma-
tory cytokines activate neurons as well 
as glia via binding to specific receptors. 
Thus, this is a means by which glia can 
influence neurons as well as other glia.33

In a basal state, resting astrocytes are 
involved in maintaining homeostasis of 
microenvironments, and resting micro-
glia have no recognized function. Astro-
cytes and microglia become activated 
in response to peripheral and/or central  
nervous system trauma resulting in mor-
phological and functional changes. 

Experimental studies demonstrate that 
microglia and astrocytes are activated 
following peripheral nerve injury and 
that increase in immunoreactivity for the 
specific cell markers (OX42 – microglia, 
GFAP - astroglia) correlates with the de-
velopment of allodynic behavior.34 Acti-
vated microglia and astrocytes produce 
multiple immunomodulatory mediators 
and neuromodulators, acting on prima-
ry afferents or dorsal horn neurons and 
leading to the enhancement and mainte-
nance of dorsal horn neuron sensitization 
and subsequent pain sensitization. This 
neural-glial interaction after peripheral 
nerve injury is likely to be triggered by 
signaling molecules released in the spinal 
cord from central terminals of damaged 
sensory neurons, stimulating surrounding 
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glial cells. In addition, there is a microglia-
astrocyte interaction; activation of micro-
glia occurs before astrocyte activation 
and is known to cause astrocyte activa-
tion. Glial activation is further enhanced 
by microglia-microglia interaction and 
astrocyte-astrocyte interactions. Many 
signaling molecules (e.g., MAP kinases, 
ATP receptors, chemokine receptors) are 
exclusively activated in spinal microglia or 
astrocytes after nerve injury and an inhi-
bition of these molecules can attenuate 
neuropathic pain.35

Although pain is regarded traditionally 
as neuronally mediated, recent progress 
shows an important role for spinal gli-
al cells in persistent pain sensitization. 
Mounting evidence has implicated spinal 
microglia in the development of chronic 
pain (e.g., neuropathic pain after periph-
eral nerve injury). Less is known about the 
role of astrocytes in pain regulation. How-
ever, astrocytes have very close contact 
with synapses and maintain homeostasis 
in the extracellular environment. Thus, gli-
al cell activation has also been proposed 
to be involved in the phenomenon of the 
spread of pain sensation ipsilaterally or to 
the contralateral side.

Reactive changes in blood

Damage to a peripheral nerve produces 
a number of breakdown products at the 
site of the lesion and beyond with conse-
quent reactions of immune cells and pe-
ripheral glia. These cells release a number 
of cytokines, which modulate an inflam-
matory reaction. During these changes, 
the blood-nerve barrier becomes more 
permeable to large molecules.36 There-
fore, blood flow may be a nonspecific 
way for delivery of factors from injured 
nerve to the contralateral one. 

Nevertheless, a sporadic study focused on 
concentrations of proinflammatory cy-
tokines in serum after nerve compression 
found normal values of TNF-α, IL-1β, IL-6, 
and IL-8.37 The authors concluded that 
nerve compression does not induce a sig-
nificant systemic inflammatory reaction. 
However, cytokines mentioned in the 
study predominantly participate in the 
acute stage of the inflammatory reaction; 
thus, the negative results of the systemic 
reaction may reflect only a later stage of 
sciatica because the mean duration of the 
sciatic pain was 196±233 days.

The majority of the studies dealing with 
peripheral nerve injury report the contral-
ateral changes at homonymous nerves 
but there are only sporadic studies aimed 

at reactions that are more widespread. 
Kleinschnitz and colleagues conclude that 
contralateral responses after nerve injury 
are restricted to the homonymous nerves 
which argue against an unspecific periph-
eral mechanism via circulating factors.16 
Since there are not enough data to reject 
the role of circulation factors definitely, 
additional research is required. 

Spinal root compression and reactive 
changes in cerebrospinal fluid

Inspite of morphologic differences as 
well as differences in reaction to injury 
between peripheral nerves and spinal 
roots, there are only a few studies deal-
ing with the contralateral reaction after 
spinal root injury today. Homeostasis of 
the spinal roots is closely connected to 
barrier systems that separate nerve tissue 
from the environment of blood and cere-
brospinal fluid (CSF). The injury to spinal 
roots leads to affection of the barrier sys-
tems with increased vascular permeability 
as well as release of markers of nerve tis-
sue damage into CSF.38-40

In 1934, Mixter and Barr reported that 
prolapsed intervertebral discs cause sci-
atic pain.41 They also found an increase in 
the concentration of total protein in the 
CSF of patients with lumbar disc hernia-
tion. Later, several authors verified that 
the increased concentrations of total pro-
tein in the CSF of patients with lumbar 
disc herniation are related to nerve root 
compression and clinical findings indicat-
ing radiculopathy.42-44 Furthermore, TNF, 
IL-1 and IL-6 released into lumbar cere-
brospinal fluid have been observed under 
conditions of pain facilitation.45

The clinical findings are supported by 
experimental studies. Skouen and col-
leagues have found a several-fold but 
transient increase of the total protein 
concentration in the CSF of pigs with spi-
nal root compression for 1 week as com-
pared with control and sham animals.39 
The authors concluded that the elevated 
CSF total protein found in the patients 
with sciatica is due to leaking of plasma 
proteins primarily from the injured spinal 
root into the CSF. The proteins were de-
rived from the serum in response to in-
creased endothelial cell permeability of 
capillaries. This process is suggested to be 
caused by mechanical compression of the 
spinal roots and local inflammatory reac-
tions with breakdown of the blood-nerve 
barrier.38,44  Another part of proteins in 
CSF comes from the damaged nerve tis-
sue and can be used as markers of the 

nerve injury (e.g., neurofilaments, S-100, 
glial fibrillary acidic protein, and neuron-
specific enolase).40,46

Because of changes in CSF proteins, they 
can be used as diagnostic parameters for 
radiculopathy, especially when surgery is 
considered or in patients in whom sciat-
ica is unlikely. However, the studies deal-
ing with the content of proinflammatory 
cytokines after spinal root compression 
by disc herniation are trying to predict a 
course of clinical symptomatology giving 
similar results.

Brisby and colleagues have demonstrat-
ed that the concentrations of IL-1β, IL-6, 
IFN-γ and TNF-α in CSF were normal in 
patients with sciatic pain and a CT-veri-
fied disc herniation at the time of surgery, 
while IL-8 concentrations in CSF were el-
evated in approximately one-third of the 
patients.37 They also showed that the 
elevated concentrations of IL-8 correlate 
with a short duration of sciatic pain and a 
more pronounced herniation (sequestra-
tion or extrusion). Nevertheless, the au-
thors found no relationship between the 
concentration of IL-8 and pain intensity 
or neurological findings. 

The relationship between the extent of 
herniation and the IL-8 concentration in-
dicates that mechanical factors may cause 
the increase in IL-8 within CSF. The result 
also indicates that there is a biochemical 
effect induced by the intervertebral disc, 
since substances from the inner part of 
the disc (nucleus pulposus) reach the sur-
rounding tissue largely if the extruded 
nucleus pulposus is not covered with an-
nulus fibrosus and ligament tissue.

On the other hand, Cornefjord and col-
leagues detected no increase in IL-8 con-
centration in CSF after slow-onset com-
pression and the application of nucleus 
pulposus on the spinal root using a pig 
experimental model.40 Despite the fact 
that inflammatory changes have been 
demonstrated to take place in the nerve 
root, the authors could not detect any in-
flammatory response by measuring IL-8 in 
CSF. It is necessary to note that the study 
was focused on biomarkers for nerve tis-
sue injury.

More studies are needed in order to sub-
stantiate the results of the published 
studies. It is obvious that the proinflam-
matory cytokines are involved mainly at 
the onset of sciatica, and thus it is crucial 
to plan the timing of experiments proper-
ly. The samples that have been collected 
late demonstrate significant changes in 
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the level of acute inflammatory cytokines 
but cannot rule out the possibility of an 
inflammatory reaction in CSF after the 
spinal root compression with a subse-
quent effect on the contralateral spinal 
roots and DRG. It is important to realize 
that age and sex affects the inflammatory 
response as well as the biological insta-
bility of cytokines after CSF collection as 
well as the detection methods used.47-49

Conclusions

Many studies describe contralateral 
changes after unilateral peripheral nerve 
treatment as incidental and unexpected 
observations in a control group of the 
main experiment. Although there are 
only a few studies designed for research 
on contralateral changes, it is now clear 
that peripheral nerve lesions affect the 
contralateral non-lesioned structures. 
Potential mechanisms of contralateral 
change after peripheral nerve lesion can 
be divided into humoral mechanisms 
and neuronal mechanisms. Damage to 
peripheral nerves or spinal roots pro-
duces a number of breakdown products 
at the lesion and beyond with the sub-
sequent reaction of immunocompetent 
cells. A number of immunomodulatory 
cytokines are released by this aseptic 
inflammatory reaction, and they can be 
transported via blood or CSF into the 
contralateral part of the body and affect 
spinal roots or peripheral nerves. An ob-
jection to such a mechanism is the dif-
ferent rate and extent of development 
of contralateral changes after proximal 
versus distal nerve lesions, as reported in 
some works. 

The local damage to peripheral nerves 
and spinal roots also leads to reactive 
changes in affected axons and their per-
ikarya. Cytokines play an important role 
in this reaction. Whereas the neurons are 
elements of a highly organized neuronal 
network, injury of a peripheral neuron 
results in signals that travel transneu-
ronally into the CNS and then ultimately 
affect contralateral homonymous neu-
rons. Glial cell activation has also been 
proposed to be involved in the phe-
nomenon of spread of pain sensation 
ipsilaterally or to the contralateral side. 
Neural–glial interactions are bidirec-
tional. On the one hand, glia express dif-
ferent types of neurotransmitter recep-
tors, which enables them to respond to 
neural signals. On the other hand, glial 
cells produce numerous mediators (e.g., 
proinflammatory cytokines and growth 
factors) that are neuroactive.

Additionally, there may be compensatory 
changes in the behavior of the animals 
with an impact on contralateral neurons, 
such as altered stance and motor perfor-
mance or autonomic reflex changes, after 
peripheral nerve damage.

Although the transneuronal signaling 
pathway appears to be plausible, the 
humoral signal pathway or other com-
munication systems cannot be excluded 
at the present time. Knowledge about 
these systems has clinical implications 
for the understanding of chronic neuro-
pathic pain states, and, therefore, further 
studies will be necessary. Understanding 
signaling mechanisms in mirror image 
pain pathogenesis may provide a novel 
therapeutic target for the control of neu-
ropathic pain.
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