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Abstract: Noise-induced hearing loss (NIHL) is a common inner ear disease but has complex
pathological mechanisms, one of which is increased oxidative stress in the cochlea. The high-mobility
group box 1 (HMGB1) protein acts as an inflammatory mediator and shows different activities
with redox modifications linked to the generation of reactive oxygen species (ROS). We aimed to
investigate whether manipulation of cochlear HMGB1 during noise exposure could prevent noise-
induced oxidative stress and hearing loss. Sixty CBA/CaJ mice were divided into two groups. An
intraperitoneal injection of anti-HMGB1 antibodies was administered to the experimental group;
the control group was injected with saline. Thirty minutes later, all mice were subjected to white
noise exposure. Subsequent cochlear damage, including auditory threshold shifts, hair cell loss,
expression of cochlear HMGB1, and free radical activity, was then evaluated. The levels of HMGB1
and 4-hydroxynonenal (4-HNE), as respective markers of reactive nitrogen species (RNS) and ROS
formation, showed slight increases on post-exposure day 1 and achieved their highest levels on
post-exposure day 4. After noise exposure, the antibody-treated mice showed markedly less ROS
formation and lower expression of NADPH oxidase 4 (NOX4), nitrotyrosine, inducible nitric oxide
synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1) than the saline-treated control
mice. A significant amelioration was also observed in the threshold shifts of the auditory brainstem
response and the loss of outer hair cells in the antibody-treated versus the saline-treated mice. Our
results suggest that inhibition of HMGB1 by neutralization with anti-HMGB1 antibodies prior to
noise exposure effectively attenuated oxidative stress and subsequent inflammation. This procedure
could therefore have potential as a therapy for NIHL.

Keywords: high-mobility group box 1 (HMGB1); cochlea; noise-induced hearing loss (NIHL);
NADPH oxidase (NOX); reactive oxygen species (ROS); reactive nitrogen species (RNS); oxida-
tive stress; inflammation

1. Introduction

Hearing handicaps arising from acoustic injury or noise trauma are a globally preva-
lent disability that manifests as hearing loss, tinnitus, the impairment of daily performance,
and sleep disturbance [1]. More seriously, increasing numbers of young people are now
suffering from recreational noise-induced hearing loss (NIHL) [2]. Complex pathological
mechanisms give rise to the cochlear damage associated with NIHL. High-level impulse
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noise exposure often causes mechanical trauma, including disruption of the organ of Corti
from the basilar membrane and rupture of the dendritic terminals of the auditory nerve
fibers [3]. Steady-state noise exposure also causes metabolic overstimulation of factors like
oxidative stress, inflammation, and apoptosis that are associated with NIHL [3–5].

Noise-associated oxidative stress in the cochlea is recognized as an important con-
tributor to the pathogenesis of NIHL and may reflect a combination of overdriving of the
mitochondria, glutamate excitotoxicity, and ischemia/reperfusion injury of the cochlear
blood supply [3]. The end result of these processes is an increased generation of reactive
oxygen species (ROS) and reactive nitrogen species (RNS) and subsequent cellular DNA
and protein damage. Ultimately, these changes lead to damage to organelles and triggering
of apoptotic/necrotic cell death [3,5].

A transient and intense ROS generation has been detected in the cochlea immediately
after a noise exposure, suggesting a possible association between the initial hair cell
damage and ROS formation. The cochlear ROS/RNS response may last for 2 weeks, with
a maximum formation at 7 to 10 days after noise exposure, and this prolonged response
contributes to long-term hair cell loss [6]. However, the molecular mechanism that leads to
persistent ROS production is not yet clear.

One possible cell factor that may be involved in NIHL responses is the high-mobility
group box 1 (HMGB1) protein. This is an abundant nuclear protein named for its high
electrophoretic mobility on polyacrylamide gels. Immune activation, primary cell necrosis,
or apoptosis can cause a release of HMGB1 from cells or its secretion by damaged cells
and activated immune cells [7]. Extracellular HMGB1 is an important soluble factor
that coordinates cellular events that are crucial for amplification of inflammation, for
establishment of early immune responses, and even for tissue repair [8].

Extracellular HMGB1 functions as a proinflammatory cytokine and can trigger inflam-
matory responses upon binding to several cell-surface receptors, including the receptor
for advanced glycation end products (RAGE) and the toll-like receptors TLR2, TLR4, and
TLR9 [9]. Interestingly, several studies have shown that inhibition of HMGB1 expression
with a neutralizing antibody can improve the severity of disease in models of sepsis, in-
flammatory diseases, and ischemia/reperfusion injuries [10–14]. HMGB1 also plays an
important role in ROS generation [15–18], as RAGE transduces the signals of HMGB1 to
enhance oxidative stress via NADPH oxidase (NOX) [16].

In a previous study, we reported that the increased expression of cochlear HMGB1
induced by NIHL was repressed by round window membrane-mediated dexamethasone
treatment, suggesting that HMGB1 may be a useful marker of inflammation in NIHL [19].
However, the association between cochlear HMGB1 expression and oxidative stress in
NIHL has not been fully explored.

In the present study, we hypothesized an involvement of the increased HMGB1
expression in the late production of ROS in noise-exposed cochleae. The purpose of this
study was to investigate the effect of HMGB1 inhibition on cochlear ROS reduction and
subsequent hair cell damage due to noise exposure.

2. Materials and Methods
2.1. Primary Cochlear Cell Culture

Cochleae of postnatal day 1 (P1) pups of CBA/CaJ mice were excised and transferred
into Petri dishes containing phosphate buffered saline glucose solution (BSG; 116 mM NaCl,
27.2 mM Na2HPO4, 6.1 mM KH2PO4, 11.4 mM glucose). To prepare the dissociated cell
cultures, 10 whole cochleae were pooled, cut into small pieces, and incubated in a mixture
of 0.05% trypsin/0.02% (w/v) EDTA at 37 ◦C for 15 min, followed by repeated pipetting.
The enzymatic digest was inactivated by adding 10% fetal bovine serum (FBS, Biological In-
dustries, Beit Haemek, Israel) in a mixture of Dulbecco’s Modified Eagle Medium (DMEM,
Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA). Tissue dissociates were filtered
through a 40 mm mesh to remove cell aggregates and debris. These newly dissociated
primary cochlear cells were plated in 6 cm dishes at 37 ◦C in a 5% CO2 atmosphere in
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DMEM supplemented with 10% FBS and penicillin-G. The primary cells were subcultured
every 3 days. The secondary or tertiary cells were used for the following experiments.

2.2. Immunofluorescence Staining of 4-HNE

The primary cochlear cells were treated with recombinant HMGB1 protein (BioVision,
San Francisco, CA, USA) for 24 h and the immunofluorescence staining of 4-HNE was
performed for ROS detection. Cells incubated with lipopolysaccharide (LPS, 0.1 µg/mL)
were used as positive control. The cells were washed twice with phosphate buffered saline
(PBS) and fixed with freshly prepared 4% paraformaldehyde at 37 ◦C for 30 min. The
cells were permeabilized with 0.1% Triton X-100 for 5 min in BlockPRO blocking buffer
(Visual Protein Biotechnology, Taipei, Taiwan). After PBS with Tween 20 (PBST) washes,
nonspecific antibody binding was blocked by BlockPRO blocking buffer for 60 min at
room temperature (RT). The cells were incubated with polyclonal primary antibodies to
4-HNE (1:100; Abcam, Cambridge, UK) in an antibody dilution buffer (Dako, Agilent
Technologies, Inc., Santa Clara, CA, USA), incubated in a humidified chamber for 1 h at RT,
and, after being washed with PBST, stained with a secondary antibody (Donkey anti-rabbit
Alexa Fluor 488, 1:500, Molecular Probes, Thermo Fisher Scientific Inc., Waltham, MA,
USA) for an additional 60 min. After being washed three times with PBST, the cells were
mounted in 4,6-diamidino-2-phenylindole (DAPI) Fluoromount-G® mounting medium
(SouthernBiotech, Birmingham, AL, USA). Cell images were captured with an LSM 880
Zeiss confocal microscope.

2.3. Quantitative PCR for Analysis of iNOS Gene (Nos2) Expression

Primary cochlear cells were seeded on 6-well plates overnight, then were treated with
recombinant HMGB1 for 72 h. Total RNA of each samples using high pure RNA isolation
kit (F. Hoffmann-La Roche Ltd., Basel, Switzerland) were extracted from primary cochlear
cells. RNA was converted to cDNA using QuantiNova Reverse Transcription kit (QIAGEN
GmbH, Hilden, Germany). Gene expression was measured with TaqMan gene expression
assays (Thermo Fisher Scientific Inc., Waltham, MA, USA) for Nos2 (iNOS gene; probe
ID: Mm00440502_m1) and Gapdh (probe ID: Mm99999915_g1) using QuantiNova Probe
RT-PCR Kit (QIAGEN GmbH, Hilden, Germany) and a QuantStudio 5 Real-Time PCR
system (Thermo Fisher Scientific Inc., Waltham, MA, USA). The qPCR data were presented
as gene expression level relative to the level of no treatment controls after normalization
with the expression of GAPDH.

2.4. Animals and Study Design

The experimental protocol was approved by the Institutional Animal Care and Use
Committee of the National Defense Medical Center, Taipei, Taiwan. Animal care complied
with all institutional guidelines and regulations. A total of 60 CBA/CaJ mice aged from
4 to 8 weeks and 5 P1 pups of CBA/CaJ mice were used. In the first in vivo experiment,
28 mice were exposed to noise and then were sacrificed at post-noise days 1, 4, 7, and 14
for immunohistochemistry and Western blot analysis. In the second experiment, 32 mice
were separated into two study groups. The experimental group received an intraperitoneal
injection of polyclonal chicken IgY anti-HMGB1 antibody (2 mg/kg in 0.1 mL saline [20];
Sagamihara, Kanagawa, Japan) 30 min before noise exposure. The control group was
injected with 0.1 mL saline only.

2.5. Noise Exposure

Mice were anesthetized, placed in a soundproof booth with a loudspeaker (V12 HP;
Tannoy, Ltd., Coatbrige, UK) mounted above the center of the cage, and exposed to 110 dB
sound pressure level (SPL) white noise for 3 h. A specially designed and separated wire
cage was used to avoid inappropriate exposure to noise caused by the animals congregating
during the noise stimulation. The noise level was measured using a sound level meter
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(Rion NL-52, Tokyo, Japan), and differences in the noise level within the booth near the
center or edge of the cage were less than 1 dB.

2.6. Tissue Preparation and Immunohistochemistry

The cochleae were dissected and perfused with 4% paraformaldehyde (in 0.1 M phos-
phate buffered saline [PBS], pH 7.4) through the opened oval window and a small hole in
the apex. After a 2 h post-fixation, the cochleae were decalcified in 10% ethylenediaminete-
traacetic acid (EDTA), pH 7.3, at 4 ◦C on a rotating shaker; the EDTA solution was changed
daily until decalcification was complete. After immersion in a graded sucrose series (15, 20,
and 25%) for 30 min, and overnight immersion in 30% sucrose at 4 ◦C, the cochleae were
embedded in paraffin, sectioned at 5 µm, and immunostained using the Mouse/Rabbit
PolyDetector HRP/DAB Detection System (Bio SB Inc., Santa Barbara, CA, USA) and stan-
dard procedures for quenching (H2O2 in methanol) and blocking (PolyDetector Peroxidase
Blocker) endogenous peroxidase activity and for blocking non-specific antibody binding
(1× PBS containing 3% horse serum and 0.3% Triton™ X-100). The slides were blotted,
covered with antibody dilution buffer (Dako Co., Carpinteria, CA, USA) containing mouse
anti-HMGB1 (1:50; Novus Biologicals, Littleton, CO, USA), anti-4-hydroxynonenal (anti-4-
HNE) (1:50; Abcam, Cambridge, UK), anti-nitrotyrosine (1:50; Santa Cruz Biotechnology,
Santa Cruz, CA, USA), anti-inducible nitric oxide synthase (iNOS, 1:200; Novus Biologicals,
Centennial, CO, USA), or anti-intercellular adhesion molecule-1 (ICAM-1; 1:200; eBio-
science, Inc., San Diego, CA, USA), and incubated in a humidified chamber for 2 h at RT,
washed, and incubated with PolyDetector Label HRP secondary antibody for 30 min at
RT. The slides were washed again, treated with PolyDetector DAB substrate-chromogen
solution for 10 min, rinsed in distilled water, counterstained with hematoxylin (Muto Pure
Chemicals Co., Ltd., Tokyo, Japan), dehydrated through a graded alcohol series (50–100%),
cleared in xylene, and mounted in Permount (Fisher Scientific, Pittsburgh, PA, USA). The
slides were examined using an Olympus BX50 microscope equipped with a digital camera
(Olympus DP74, Olympus Corp., Tokyo, Japan).

2.7. Cochlear Cryosections and Immunostaining

Following gentle perfusion of 4% paraformaldehyde into the cochleae, the cochleae
were post-fixed for 2 h at RT, decalcified and dehydrated as described above, and then
transferred to OCT embedding medium. A stereomicroscope was used to orient the
cochleae, and the samples were transferred into a freezing slurry of solid CO2 and 100%
ethanol for 7–10 s until tissue was immobilized and solidified. Using a cryostat microtome,
10 µm mid-modiolar sections of frozen cochleae were cut and mounted on glass slides.
For immunostaining, the slides were incubated with anti-NOX4 polyclonal antibodies
(1:100; Abcam, Cambridge, UK) for 2 h. After three washes with PBS, the slides were
incubated with Alexa-Fluor-555-conjugated goat anti-rabbit antibodies (1:500; Thermo
Fisher Scientific, Eugene, OR, USA) for 1 h. After rinsing with PBS, the samples were
mounted in 4,6-diamidino-2-phenylindole (DAPI) Fluoromount-G® mounting medium
(SouthernBiotech, Birmingham, AL, USA), and covered with a coverslip. Fluorescence
images were obtained using an Olympus BX50 microscope. Immunostaining was quan-
tified by analyzing all camera images using the open-source ImageJ, Version 1.52v Fiji
software (https://imagej.net/Fiji.html#Downloads, accessed on 4 April 2021). The staining
intensities were expressed in arbitrary units (AU) for the different cochlear cell types and
subjected to histogram analysis.

2.8. Cochlear Surface Preparations and Outer Hair Cell Survival Rate

Mice were flushed with pre-warmed PBS and then transcardially perfused with 4%
paraformaldehyde. The cochleae were removed, and the oval window and the cochlear
apex were opened to facilitate immediate perfusion with 4% paraformaldehyde in PBS. The
samples were then immersed in the same fixative solution for 1 h at RT to allow diffusion
through the whole cochlea. After washing with PBS, the bony capsule surrounding the

https://imagej.net/Fiji.html#Downloads
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cochlea, the cochlear lateral wall, and Reissner’s membrane were removed. The remaining
part of the cochlea was permeabilized with 0.3% Triton X-100 for 10 min, followed by
staining with 2% Alexa Fluor 488-conjugated phalloidin (Molecular Probes) for 40 min.
After three washes with PBS, the entire basilar membrane containing the organ of Corti
was dissected into half turns, whole mounted on glass slides with DAPI Fluoromount-G®

mounting medium, and covered with a coverslip for analysis. The flat surface prepara-
tion of the organ of Corti was examined over its entire length with an Olympus BX50
microscope. The survival rates of the outer hair cells (OHCs) were calculated as described
previously [19].

2.9. Western Blotting

Aliquots of cochlea homogenates were separated on 8% sodium dodecyl sulfate
(SDS) polyacrylamide gels, transferred to polyvinylidene difluoride (PVDF) membranes
(Millipore, Billerica, MA, USA), blocked with 5% skimmed milk in TBST (0.2 M Tris-base,
1.37 M NaCl, and 0.1% Tween 20), probed with the indicated primary antibody at 4 ◦C
overnight, washed with TBST, and incubated with anti-rabbit horseradish peroxidase-
linked whole antibody (1:10,000; GE Healthcare, Chicago, IL, USA) for 1 h at RT. The
immunoreactive bands were stained using a light emitting nonradioactive method (ECL;
Millipore). The specific primary antibodies were anti-HMGB1 antibody (1:1000; Novus
Biologicals, Littleton, CO, USA), anti-4-HNE antibody (1:1000; Abcam, Cambridge, UK),
and anti-actin antibody (1:1000; Millipore, Burlington, MA, USA).

2.10. Auditory Brainstem Response Recording

Auditory function was evaluated by recording auditory brainstem responses (ABRs)
in anesthetized mice, as described previously [19]. Specific stimuli (clicks and 8-, 16-,
32-kHz tone bursts) were generated by using SigGen software (Tucker-Davis Technologies,
Gainesville, FL, USA) and delivered to the external auditory canal. The average responses
from 1024 stimuli for each frequency were obtained by reducing the sound intensity in 5 dB
steps until threshold. The resulting ABR thresholds were defined as the lowest intensity at
which a reproducible deflection in the evoked response trace could be recognized.

2.11. Statistical Analysis

Statistical analysis was performed using a two-tailed Student’s t-test. Results are
expressed as the mean ± standard error of the mean (SEM). Differences were considered
significant at p < 0.05.

3. Results
3.1. Recombinant HMGB1 Activated 4-HNE Production and Induced the Expression of iNOS
Gene in Primary Cochlear Cells

We first examined whether cochlear cells respond to excessive HMGB1 to initiate
subsequent ROS activation. As shown in Figure 1A,B, a different concentration of recom-
binant HMGB1 treatments resulted in a dose-dependent induction of 4-HNE in cochlear
primary cultured cells. Besides, recombinant HMGB1 also upregulated the iNOS (NOS2)
gene expression in primary cochlear cells with a dose-dependent effect (Figure 1C). These
results implicated that inner ear sensory organs might be targeted by HMGB1-mediated
inflammation or oxidative stress that contributes to cochlear injury after noise exposure.
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Figure 2 shows that both HMGB1 and 4-HNE were upregulated in the mouse coch-

leae at different time points after noise exposure. The HMGB1 and 4-HNE levels progres-
sively increased beginning at post-exposure day 1 and reached a maximum at day 4 (Day 
4 vs. control, p = 0.0098 in HMGB1 and p = 0.039 in 4-HNE) (Figure 2B). On post-exposure 
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Figure 1. Recombinant HMGB1 activated 4-HNE production and induced the expression of iNOS gene in primary cochlear
cells. (A) After incubation with various concentrations of recombinant HMGB1 for 24 h, immunostaining for 4-HNE was
used to determine the generation of reactive oxygen species in primary cochlear cells. Representative immunofluorescence
staining for 4-HNE (green), DAPI (blue), and merged images in the cells treated with recombinant HMGB1 or LPS.
(B) Histogram representations of mean fluorescence intensity of 4-HNE staining intensities. Data are shown as the
means ± SEM (n = 6 for each bar). Scale bars = 50 µm. (C) Recombinant HMGB1 stimulated the expression of iNOS
gene (NOS2) in primary cochlear cells. Gene expression level was determined by quantitative PCR and expressed as the
level relative to no treatment controls. Data are shown as the means ± SEM (n = 5 for each bar). * p < 0.05; ** p < 0.01;
4-HNE = 4-Hydroxynonenal; DAPI = 4,6-diamidino-2-phenylindole; LPS = lipopolysaccharide; SEM = standard error of
the mean.

3.2. Noise Exposure Increased Cochlear HMGB1 Expression and Oxidative Stress

Figure 2 shows that both HMGB1 and 4-HNE were upregulated in the mouse cochleae
at different time points after noise exposure. The HMGB1 and 4-HNE levels progressively
increased beginning at post-exposure day 1 and reached a maximum at day 4 (Day 4 vs.
control, p = 0.0098 in HMGB1 and p = 0.039 in 4-HNE) (Figure 2B). On post-exposure
day 7, significant overproduction of both HMGB1 and 4-HNE was still evident in the
noise-exposure group but not in the control group (Day 7 vs. control, p = 0.044 in HMGB1
and p = 0.013 in 4-HNE), although both levels had dropped from the day 4 levels. The
increased levels in the noise-exposure group recovered to baseline levels on day 14. The
similarity of the time-dependent changes in HMGB1 and ROS generation suggested a
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positive correlation between the HMGB1 levels and oxidative stress in response to a
cochlear noise insult.
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Figure 2. Noise exposure upregulates cochlear expression of high mobility group box 1 (HMGB1) and
4-HNE. (A) Western blot analysis of cochlear HMGB1 and 4-HNE expression after noise exposure.
(B) Quantification of the time course of cochlear HMGB1 and 4-HNE expression (n = 4 [refers to 8
cochleae from 4 animals] for each bar). The results are expressed as the mean ± SEM. * p < 0.05;
** p < 0.01; N = a control mouse group not exposed to noise; SEM = standard error of the mean.

Immunohistochemistry was also used to analyze the distribution of HMGB1 expres-
sion in the cochlea after noise exposure (Figure 3). On post-noise exposure day 1, a local
increase was noted for HMGB1 immunostaining in the spiral ligament of the cochlear basal
turn, mostly at the region characterized by type I and II fibrocytes (Figure 3, arrows). On
day 4, a markedly increased HMGB1 expression was evident in the cochlear middle and
basal turns, including the organ of Corti, spiral ligament, spiral limbus, and spiral ganglion
regions, with the most intense HMGB1 expression occurring in the organ of Corti and spiral
ligaments. Therefore, noise exposure appeared to induce cochlear HMGB1 expression
starting at post-exposure day 1, with possible initiation in the spiral ligament.
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Figure 3. Representative expression and distribution of HMGB1 in mouse cochlear tissues following noise exposure. 
HMGB1 immunohistochemical staining (brown color) was substantially increased on post-exposure day 1 in the spiral Figure 3. Representative expression and distribution of HMGB1 in mouse cochlear tissues following noise exposure.

HMGB1 immunohistochemical staining (brown color) was substantially increased on post-exposure day 1 in the spiral
ligament of the basal turn. Arrows indicate HMGB1-positive staining cells, mainly localized in the type II cell region. On
day 4, the HMGB1 was markedly expressed in the organ of Corti, spiral limbus, spiral ganglion, and spiral ligament of
the cochlear basal and middle turns (n = 4 [refers to 4 cochleae from 4 different animals]). Scale bars = 50 µm. SL = spiral
ligament; OC = organ of Corti; SG = spiral ganglion.
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3.3. Pretreatment with Anti-HMGB1 Neutralizing Antibody Attenuated HMGB1 Expression,
ROS Generation, and Subsequent Inflammation in Noise-Exposed Cochlea

As shown in Figure 4A, in the absence of noise exposure, administration of anti-
HMGB1 antibodies appeared to partially neutralize the cochlear HMGB1 but had no
significant effect on 4-HNE expression or on the basal level of ROS in the cochlea. By
contrast, pretreatment with anti-HMGB1 antibodies following noise exposure not only
attenuated the elevated cochlear HMGB1, but it also decreased the elevation of 4-HNE
following noise exposure. The immunohistochemical analysis results (Figure 4B,C) agreed
with the Western blot findings.
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Figure 4. Blockade of HMGB1 by pre-treatment with anti-HMGB1 antibodies diminished the 
noise-induced increases in ROS in the cochlea. Mice were intraperitoneally treated with anti-
Figure 4. Blockade of HMGB1 by pre-treatment with anti-HMGB1 antibodies diminished the noise-
induced increases in ROS in the cochlea. Mice were intraperitoneally treated with anti-HMGB1
antibodies or saline 30 min prior to noise exposure. Samples of cochlear homogenates or sections
were collected 4 days after noise exposure. (A) Western blot analysis for HMGB1 and 4-HNE
in the cochleae treated with anti-HMGB1 antibodies or saline (n = 4 [refers to 8 cochleae from 4
different animals] for each bar). Representative immunohistochemical staining (brown color) for
(B) HMGB1 and (C) 4-HNE of the cochleae (n = 4 [refers to 4 cochleae from 4 different animals]).
Scale bars = 50 µm. * p < 0.05.
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Increased nitric oxide (NO) levels have been recognized to contribute to oxidative
stress in the cochlea following acoustic trauma [21–23]. Figure 5 shows that both nitroty-
rosine (Figure 5A), a biomarker of RNS, and iNOS (Figure 5B) immunostaining were
significantly diminished from the control levels in the mouse cochlea by pretreatment with
anti-HMGB1 group on post-exposure day 4. Therefore, inhibition of noise-induced HMGB1
appeared to repress noise-induced activity of iNOS and RNS generation.

ICAM-1, which functions as a proinflammatory cytokine in the recruitment of leuko-
cytes to the cochlea, was upregulated following acoustic exposure [19,24]. HMGB1 plays
a significant role in the response to noise-induced cochlear inflammation [19]; however,
the effect of anti-HMGB1 on cochlear ICAM-1 after noise exposure has not been tested
previously. Noise exposure increased the intensity of ICAM-1 expression, but this increase
was suppressed by pretreatment with anti-HMGB1 antibodies (Figure 5C).

Treatment with neutralizing anti-HMGB1 antibodies prior to noise exposure therefore
appeared to inhibit noise-induced ROS generation in the cochlea. NADPH oxidase 4
(NOX4), which is one member of the NOX family that generates ROS, has been detected in
the mouse cochlea. Overproduction of NOX4 in a transgenic mouse model rendered the
mice vulnerable to NIHL [25]. HMGB1 mainly binds to RAGE and TLR4 [26], and NOX4
can also directly interact with RAGE and TLR4 [17,27–29]. Figure 6 shows that anti-HMGB1
pretreatment significantly reduced noise-induced NOX4 expression, especially in the spiral
ligament (p = 0.042) and spiral ganglion (p = 0.037) regions. In the region of the organ of
Corti, no significant difference was found between the experimental and control groups
(p = 0.383); however, the expression of NOX4 in the inner and outer hair cells was lower
in the anti-HMGB1 group than in the control group (Figure 6A). Therefore, neutralizing
the elevated HMGB1 levels caused by noise exposure also repressed NOX4 expression in
the cochlea.
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Figure 5. Blockade of HMGB1 by pretreatment with anti-HMGB1 antibodies diminished the noise-
induced increase in RNS level and inflammation in the cochlea. Mice were treated intraperitoneally
with anti-HMGB1 antibodies or saline at 30 min prior to noise exposure. Samples of cochlear
homogenates or sections were collected 4 days after noise exposure. Representative immunohisto-
chemical staining (peroxidase/DAB (brown color) for (A) nitrotyrosine, (B) iNOS, and (C) ICAM-1
in the cochlea (n = 4 [refers to 4 cochleae from 4 different animals]). Sections were counterstained
with hematoxylin. I, II, III, IV = classification of spiral-ligament fibrocytes. Scale bars = 50 µm.
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Figure 6. Immunohistochemical staining for NOX4 in the cochlea 4 days after noise exposure. (A)
Representative staining of cochlear sections from mice pretreated with anti-HMGB1 antibodies or
saline. Hollow arrows indicate inner hair cells and white arrows indicate outer hair cells. Labeling:
Nox4 (green); DAPI (blue). (B) Histogram representations of the mean fluorescence intensity of Nox4
staining. Data are shown as the means ± SEM (n = 4 [refers to 4 cochleae from 4 different animals])
for each bar). Scale bars = 50 µm. * p < 0.05; Nox4 = NADPH oxidase 4; DAPI = 4,6-diamidino-2-
phenylindole; SEM = standard error of the mean.
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3.4. Suppression of HMGB1 Expression Ameliorated NIHL and Cochlear Hair Cell Loss

We evaluated the hearing function of mice prior to and at 1, 7, and 28 days after noise
exposure by measuring the ABR to click and tone-burst stimuli (Figure 7). At post-noise day
1, no significant differences were detected in the ABR between the anti-HMGB1-treated and
saline-treated groups, except at the 32 kHz frequency. At 7 days post noise, significantly
fewer threshold shifts were seen in the anti-HMGB1 treatment group than in the saline
group at click and frequencies crossing the low to high tone-burst stimuli. Therefore,
blocking the signal pathway of HMGB1 via anti-HMGB1 antibodies appeared to rescue
hearing loss in mice that had suffered a noise trauma.
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Figure 7. Neutralizing anti-HMGB1 antibodies reduced the auditory brainstem response (ABR) threshold shift in mice with
noise-induced hearing loss. The ABR was recorded from one ear in each animal. The results are expressed as the mean ±
SEM (n = 5 [refers to 5 measured ears from 5 different animals]). * p < 0.05; ** p < 0.01; SEM = standard error of the mean.

Figure 8 shows the severity of hair cell loss in the cochlea from the different treatment
groups at day 28 after noise exposure. The preservation of hair cells was significantly
greater in the mice pre-treated with anti-HMGB1 antibodies than with saline and especially
in the middle and basal turns of the organ of Corti. No significant hair cell loss was
observed in the apical turn in either group. Therefore, inhibition of elevated HMGB1
expression could protect the cochlea from noise-induced damage.
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tive images of a surface preparation of the basal and middle turns of the cochlea of the pretreated and untreated control 
groups on day 28 after noise exposure. Immunofluorescence staining shows the nuclei (blue, DAPI) and filamentous actin 
(green, phalloidin). (B) The survival rates of the outer hair cells in the basal and middle turns of mouse cochleae from each 
group. The results are expressed as the mean ± SEM (n = 4 [refers to 4 cochleae from 4 different animals] for each bar). 
Scale bars = 50 μm. *p < 0.05; DAPI = 4,6-diamidino-2-phenylindole; SEM = standard error of the mean. 

Figure 8. Pretreatment with anti-HMGB1 antibodies protects auditory hair cells in noise-exposed cochlea. (A) Representative
images of a surface preparation of the basal and middle turns of the cochlea of the pretreated and untreated control groups
on day 28 after noise exposure. Immunofluorescence staining shows the nuclei (blue, DAPI) and filamentous actin (green,
phalloidin). (B) The survival rates of the outer hair cells in the basal and middle turns of mouse cochleae from each
group. The results are expressed as the mean ± SEM (n = 4 [refers to 4 cochleae from 4 different animals] for each bar).
Scale bars = 50 µm. * p < 0.05; DAPI = 4,6-diamidino-2-phenylindole; SEM = standard error of the mean.
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4. Discussion

The current study examined the time-course changes in HMGB1 and ROS production
in the noise-exposed cochlea for a period of up to 2 weeks. Dynamic changes were observed
in cochlear HMGB1 expression, beginning with an immediate upregulation at post-noise
day 1, a maximum at day 4, a decline at day 7, and then a recovery to the pre-noise level
at day 14. Interestingly, Ladrech et al. found that aminoglycoside-injured organs of Corti
in the rat also had the highest perilymphatic HMGB1 concentrations at 4 days after the
treatment [30]. To date, only two published studies have directly addressed and measured
the HMGB1 in an experimental NIHL model [19,31]. The first study, by Chen et al.,
reported changes in several inflammatory mediators in a guinea pig NIHL model involving
treatment with hydrogen-saturated saline [31]. Although they concluded that HMGB1 does
not seem to be involved in the pathogenesis of NIHL, their observations might be limited
by the use of cross-sectional measurement in their study design. The second study was our
previous work on measurements of HMGB1 in guinea pigs pretreated with dexamethasone.
We found a marked suppression of the cochlear inflammatory response and a decrease in
the expression of ICAM-1 and HMGB1 in noise-damaged cochlea [19].

ROS can be generated immediately after noise exposure and can undergo continuous
induction in the cochlea for 7–10 days [5,6]. Consequently, ROS can serve as a marker
for investigating interventions that involve the neutralization of HMGB1. Our results
supported the hypothesis that cochlear HMGB1 may directly or indirectly contribute to
ROS formation in noise-exposed cochlea. This study is the first to indicate a correlation
between cochlear oxidative stress and HMGB1 expression in NIHL.

Noise trauma is also known to promote the expression of nitric oxide synthase en-
zymes (notably iNOS) and the generation of nitric oxide (NO) in the cochlea [5,21]. The
NO produced through the enzymatic reaction of inducible nitric oxide synthase 2 (NOS2)
can react with superoxide (O2

−•), a ROS formed enzymatically by NADPH oxidase, to
generate cytotoxic reactive nitrogen species (RNS). Both ROS and RNS are thought to play
a major role in tissue oxidative damage and dysfunction. Treatment with an inhibitor of
iNOS to reduce NO generation has been shown to improve NIHL [22,23]. The genes for
iNOS can also be regulated by HMGB1 [32], although most of the evidence regarding the
role of HMGB1 in cochlear iNOS expression comes from cisplatin ototoxicity [15,33].

Cisplatin not only increases the transcriptional and translational expression of TLR4
in the cochlea, but it also increases the interaction between TLR4 and LPS, thereby upregu-
lating the production of several proinflammatory cytokines, such as TNF-a, IL-1b, and IL-6,
via nuclear factor (NF)-kB activation [33]. The interaction between HMGB1 and a TLR2
agonist (e.g., peptidoglycan) or a TLR4 agonist (e.g., LPS) has a synergistic effect on iNOS
expression and NO release by upregulating greater numbers of surface receptors (TLR2/4
and RAGE). This increase in receptors, in turn, amplifies the activation of MAPKs (p38 and
JNK) and NF-κB, thereby enhancing iNOS expression and NO production [34].

For noise-exposed cochlea, the role of HMGB1 is unclear and needs further elucidation.
HMGB1, as a highly conserved and ubiquitous protein in the nucleus and cytoplasm of
nearly all cell types, may also possibly participate in noise-induced cochlear insults. In the
present study, nitrotyrosine, a marker of cell inflammation as well as of NO production,
was markedly expressed in the organ of Corti and spiral ligament after noise exposure.
Neutralization of HMGB1 via anti-HMGB1 antibody treatment reduced the RNS-induced
nitrative stress. These findings support our hypothesis that HMGB1 may have direct or
indirect associations with noise-induced activation of iNOS.

NOX generates superoxide under stressful conditions and is recognized as one of the
major sources of ROS in the noise-damaged cochlea [5]. Some members of the NOX family
are upregulated by noise trauma, and NIHL can be alleviated by NOX inhibitors [25,35–37].
An interaction between the RAGE and TLR4 signaling pathways and NOX4 has been
reported to generate ROS in several disease models [16–18,27]. Extracellular HMGB1, upon
binding to the RAGE and TLR4 expressed in the inner ear, can further activate signaling
cascades [33,38,39]. Our results presented here demonstrated an upregulated expression of
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cochlear NOX4 after noise exposure and a significant repression of this NOX4 activation
by neutralization of HMGB1. Thus, the Nox4-derived ROS generation showed a strong
association with HMGB1 expression; therefore, it might be regulated via some type of
HMGB1-related signaling mechanism in the noise-exposed cochlea.

Repression of extracellular HMGB1 can reduce the inflammatory response in disease,
thereby modulating HMGB1-associated immune dysfunction as well [40]. For this reason,
HMGB1 has been recognized as a promising therapeutic target. Antibodies that neutral-
ize HMGB1 confer protection against arthritis-related damage and tissue injury, colitis,
ischemia, sepsis, endotoxemia, and systemic lupus erythematosus [10,12–14,40]. Treatment
with anti-HMGB1 antibodies also diminishes ROS generation in the ischemia-reperfusion
injury of brain, heart, liver, and kidney [41]. Recently, P5779, an HMGB1 inhibitor that
targets the HMGB1-TLR4/MD-2 pathway to inhibit HMGB1-induced response, has been
demonstrated to improve survival in experimental models of liver ischemia/reperfusion
and sepsis [40]. Similarly, resveratrol, a wine polyphenol that activates surtuin-1 (SIRT1),
was demonstrated to reduce inflammation by inhibiting HMGB1/TLR4 signaling in mod-
els of asthma and ischemic brain injury [42,43]. Glycyrrhizin, a naturally occurring anti-
inflammatory and antiviral triterpene that directly binds to HMGB1, has been applied in
the clinic to inhibit cytokine activities [44]. In the present study, our results explain in part
the role of HMGB1 in noise-induced cochlear damage and hearing loss and may support
the clinical application of HMGB1 inhibitors for the prevention of NIHL.

The blood–labyrinthine barrier (BLB), similar to the blood–brain barrier (BBB), can
restrict the delivery of therapeutic agents from blood into the inner ear [45]. The mecha-
nism of action of the HMGB1 inhibition via anti-HMGB1 Ab neutralization that underlies
the current noise-exposed cochlea model remains to be clarified; however, a few specu-
lative mechanisms have been proposed. One mechanism is based on an immunologic
study on the inner ear by Mogi et al., who found that the immunoglobulins (IgG and
albumin) in perilymph of the cochlea were mainly derived from infiltration from the blood
vessels surrounding the perilymphatic space [46,47], suggesting that immunoglobulins
can conquer the blood–labyrinth barrier. A similar finding was verified in the CNS by
demonstrating that the large IgG molecule could cross the blood–brain barrier (BBB) of the
guinea pig [48]. Therefore, delivery of anti-HMGB1 Abs via intravenous or intraperitoneal
injections could achieve brain therapeutic benefits from hippocampal neuronal death and
cognitive impairment in animal models [49].

A second possible mechanism involves entry of pre-treated anti-HMGB1 Abs in
the blood vessels into the perilymph through altered permeability of the BLB following
noise-induced trauma. Support for this mechanism in the BBB has been demonstrated
by the observation that more anti-HMGB1 Abs enters the brain through the damaged
BBB that results from a wide range of CNS diseases [50]. A third potential mechanism
is through paracrine/autocrine regulatory mechanism via the release of HMGB1 from
the spiral ligament, organ of Corti or spiral ganglion and its diffusion from the inner ear
to the blood side, followed by neutralization by anti-HMGB1 Abs administered around
the capillaries, thereby diminishing the level of cell-secreted HMGB1 that acts on nearby
cells in a paracrine way [51]. Further experiments are needed in future to establish which
models are most likely to explain the inhibition of HMGB1 in noise-exposed cochlea via
anti-HMGB1 Ab neutralization.

5. Conclusions

We present the first evidence that HMGB1 signaling may participate in the cochlear
oxidative stress induced by noise trauma. The upregulation of HMGB1 expression was
associated with elevated generation of ROS/RNS following noise exposure. Manipulation
of HMGB1 expression using anti-HMGB1 antibody pretreatment helped to reduce cochlear
ROS/RNS generation, preserved more outer hair cells in the organ of Corti, and resulted
in significantly less deterioration in the auditory threshold shifts associated with NIHL.
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This information suggests that targeting HMGB1 may represent a promising therapeutic
approach for NIHL treatment in the future.
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