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Abstract

Motivation: Approaches that control error by applying a priori fixed discovery thresholds such as 0.05 limit the abil-
ity of investigators to identify and publish weak effects even when evidence suggests that such effects exist.
However, current false discovery rate (FDR) estimation methods lack a principled approach for post hoc identifica-
tion of discovery thresholds other than 0.05.

Results: We describe a flexible approach that hinges on the precision of a permutation-based FDR estimator. A series of
discovery thresholds are proposed, and an FDR confidence interval selection and adjustment technique is used to iden-
tify intervals that do not cover one, implying that some discoveries are expected to be true. We report an application to a
transcriptome-wide association study of the MAVERICC clinical trial involving patients with metastatic colorectal cancer.
Several genes are identified whose predicted expression is associated with progression-free or overall survival.

Availability and implementation: Software is provided via the CRAN repository (https://cran.r-project.org/web/pack
ages/fdrci/index.html).

Contact: joshua.millstein@usc.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Momentum has been gaining in recent years to go beyond the di-
chotomous and somewhat arbitrary dictates of the P<0.05 thresh-
old for ‘statistical significance’ (Amrhein et al., 2019; Wasserstein
et al., 2019). The main problem is that it oversells the P-value and
can lead to true discoveries mistakenly dismissed because they fail to
achieve the threshold or to unjustified confidence in weak evidence.
The emerging consensus is that more nuanced approaches are
needed to evaluate the totality of evidence and accept but quantify
uncertainty.

In large-scale testing settings such as omics, the false discovery
rate (FDR) plays an important role because it is based on a signal-
to-noise approach, which is more sensitive than family wise error
rate (FWER) when multiple null hypotheses are false. Unlike FWER,
some noise (false discoveries) is acceptable if the signal (true discov-
eries) is strong in comparison. Rather than applying a predefined
threshold such as 0.05, some have suggested that the set of rejected

tests should be guided by the results themselves and study-specific fac-
tors such as the costs of following up on false discoveries versus the
benefits of identifying true discoveries (Goeman and Solari, 2011).

With the development of the ‘q-value’, an FDR estimate using an
observed P-value as a discovery threshold, a shift in thinking has
occurred among some statisticians from conceptualizing FDR as an
entity that should be controlled to a parameter that can be estimated
(Storey and Tibshirani, 2003). It is underappreciated that like all
point estimates the informativeness of an estimate of FDR is inverse-
ly related to its variance, and study-related factors such as the num-
ber of discoveries can substantially affect the variance of the
estimate (Millstein and Volfson, 2013). A measure of uncertainty is
therefore needed for proper interpretation. Millstein and Volfson
(MV) addressed this problem by developing a permutation-based es-
timator with corresponding confidence intervals (CIs) (Millstein and
Volfson, 2013).

To choose a discovery threshold without the conventional 0.05
constraint, MV proposed computing FDR and corresponding CIs
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for multiple candidate thresholds, then selecting from among them.
However, a remaining problem, as Benjamini and Yekutieli (BY)
showed (Benjamini and Yekutieli, 2005b), is that intervals selected
because they imply departure from the null hypothesis may fail to
provide the assumed coverage probability.

Here we describe how a technique developed by BY for adjusting
multiple intervals for selected parameters (Benjamini and Yekutieli,
2005b) can be adapted to address the FDR CI selection problem.
Other authors have proposed FDR estimation and CIs for fixed re-
jection regions (Scheid and Spang, 2005; Storey, 2002), and simul-
taneous upper bounds for the false discovery proportion (FDP)
(Katsevich and Ramdas, 2020; Meinshausen, 2006). However, this
is the first principled approach we are aware of for post hoc selec-
tion and adjustment of FDR CIs.

We include an application to the MAVERICC clinical trial (Parikh
et al., 2019), a study of metastatic colorectal cancer (CRC) patients
treated with first-line chemotherapy consisting of modified leucovorin,
5-fluorouracil, oxaliplatin plus bevacizumab (mFOLFOX6-BV) or leu-
covorin, 5-fluorouracil, irinotecan plus bevacizumab (FOLFIRI-BV). A
transcriptome-wide association study (TWAS) was conducted to inves-
tigate the relationship between genetic regulated gene expression and
progression-free survival (PFS) or overall survival (OS).

2 Materials and methods

Suppose a multiple testing setting with m hypotheses tests,
H1; . . . ;Hm, with corresponding P-values, P1; . . . ;Pm. An investigator
selected threshold, P�, defines S rejected tests that includes F false dis-
coveries (true null hypotheses) and S–F true discoveries (false null
hypotheses). Then FDR as estimated by MV, sometimes referred to as
pFDR, is defined as E½F=SjS > 0�, where F/S is the FDP. Here S is
observed once p� is chosen; however, F (and thus FDR) is unknown
based on the data at hand and can only be estimated.

MV FDR estimation (Supplementary Material) provides CIs and
has several other attractive features; (i) permutation-based and thus
non-parametric, accommodating statistics with unknown distribu-
tions, without need for P-values as intermediate statistics; (ii)
accounts for the number of permutations conducted, thus indicating
convergence to asymptotic values; (iii) accounts for general depend-
encies among tests; (iv) conservative, but less conservative than
Benjamini and Hochberg (1995) (BH) FDR; and (v) variance of
log( dFDRt) is smaller than the Storey and Tibshirani (2003) ap-
proach. MV FDR can be used whenever realizations of the statistic
of interest can be generated under the null hypothesis by permuta-
tion and where that distribution is similar across tests (approximate
exchangeability).

2.1 FDR-adjusted selected intervals
The BY is a general approach that can control the false coverage-
statement rate (FCR) through selection and adjustment of intervals
associated with rejected null hypotheses by leveraging BH FDR.
They define FCR as the expected proportion of parameters not cov-
ered by their intervals among the selected parameters and where the
proportion is defined to be zero if no parameters are selected. Let S
here be the total number of selected CIs and F the number of these
not covering their respective parameters, then FCR ¼ E½Q�, where,

Q ¼ F=S if S > 0
0 otherwise:

�
(1)

Here we adapt the BY approach for selecting and adjusting MV
FDR intervals at a series of T investigator defined thresholds, where
the parameters are log-transformed FDR point estimates at those
thresholds. Our interest is only in discovery sets with sufficient evi-
dence that FDR < 1, which is the alternative to the composite null
hypothesis that all discoveries are false. The investigator is then able
to make an informed choice from among the selected rejection
regions.

The BY approach requires a P-value for each parameter. Hence,
for each threshold, t, we propose a P-value based on a one-sided

Wald test, Pt, computed from the MV FDR estimate and standard
error (Supplementary Equations 1 and 2), where,

Pt ¼ UðZtÞ; Zt ¼
logðdFDRtÞ
r logðFDRtÞ

;Z � Nð0; 1Þ: (2)

Here / denotes the standard normal cumulative distribution func-
tion, and where the hypotheses are, H0 : logðFDRtÞ ¼ 0 vs.
Ha : logðFDRtÞ < 0. The steps of the adapted BY approach are
described in Algorithm 1.BY proved (Theorems 1 and 3 (Benjamini
and Yekutieli, 2005b)) that an approach with the structure of
Algorithm 1 controls FCR at level a as long as tests are independent
or are positive regression dependent on a subset (PRDS) and the
marginal intervals have the assumed coverage. While the proposed
P-values are not independent, they likely satisfy the PRDS criterion
due to positive correlations of overlapping rejection regions.
Therefore, selected thresholds will have MV FDR intervals corrected
for the effects of selection such that coverage is FCR controlled
under typical conditions.

Implemented in the fdrci package, the software was designed to
accommodate arbitrarily large-scale analyses using the property that
MV FDR requires only the total number of tests, m, and counts of
rejected tests in the observed and permuted results. Thus, computa-
tional requirements are minimized by allowing the user to filter out
results that are not likely to be of interest (e.g. P-values larger than
candidate thresholds) prior to FDR analysis. The R code used for
the analyses here is provided in Supplementary Material in the R
Markdown format, and a vignette, ‘fdrci: FDR selection and adjust-
ment—HGSOC’ has been added to the fdrci software for
instruction.

2.2 Numeric simulation
We conducted computer simulations under a variety of scenarios to
compare coverage of MV FDR intervals following three selection
strategies: (i) ‘UCB’, upper CI bound <1, (ii) ‘M.2’, MV FDR point
estimate <0.2 and (iii) ‘BY’, proposed approach. For each replicate
of each scenario, 100 block-correlated Gaussian variables were
simulated with sample size 200 and block size five. For each block,
Xl �MVNð0;RlÞ,

Rl ¼
r2 r2q . . .

r2q . .
. ..

.

..

.
. . . r2

2
664

3
775; (3)

where Xl denotes predictors in block l, all correlated at q ¼ 0:3. For
each of the L¼20 blocks, an outcome variable, Yl � NðXlb; r2Þ, was
generated, yielding 20 outcome variables in all. The objective of the
analysis for each replicate was to identify true associations using hy-
pothesis tests, H0 : b ¼ 0, for all predictor-outcome pairs, a total of
100�20¼2000 tests. To apply MV FDR, 20 additional analyses were
conducted for each data set after randomly permuting outcome varia-
bles with respect to predictors, thereby maintaining the dependencies

Algorithm 1 Select and adjust MV FDR confidence intervals

Require: set of p-value thresholds, T , defining nested candidate

rejection regions

1: for t 2 T do

2: Compute p-values, Pt ¼ UðZtÞ
3: end for

4: Sort jT j p-values from smallest to largest, Pð1Þ; . . . ;PðjT jÞ
5: Calculate R ¼ maxfi : PðiÞ < ia=jT jg
6: for r � R do

7: CIr ¼ exp logðdFDRrÞ6za�
2
r logðFDRrÞ

n o
, where a� ¼ Ra=jT j

8: end for

9: Return CIr 8 r � R
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within predictor and outcome sets. MV FDR and intervals were com-
puted from the observed and permutation P-values for a series of sig-
nificance thresholds,� log 10ðPÞ ¼ 2:0;2:1; . . . ; 6:0, and intervals were
selected (and adjusted for the BY approach) according to the three
approaches described above.

Two thousand replicate studies were conducted for each of five
scenarios: (A) 5 blocks with b ¼ ½0:05;0:05;0:05; 0:05; 0:05�0 and 15
blocks with b ¼ ½0;0; 0; 0; 0�0, thus H0 false for 25 of the 2000 tests (b
here refers to the equation for Yl above), (B) like Scenario A, but with
H0 false for 10 blocks or 50 of 2000 tests, (C) like Scenario A but with
a larger effect under Ha; b ¼ ½0:075; 0:075; 0:075;0:075;0:075�0, (D)
like Scenario C, but with H0 false for 10 blocks and (E) b ¼
½0;0;0; 0; 0�0 for all blocks, thus E represents the global null of no asso-
ciations between any predictors and outcomes. To estimate FCR, Q
(Equation (1)) was computed for the selected intervals for each repli-
cate, with the mean computed across all replicates.

To assess the statistical properties of the permutation approach
for detecting statistical interactions in Cox proportional hazards
models, we conducted computer simulations under a variety of scen-
arios (Supplementary Material) consistent with Model 3 (below).
These included a sample size of 329 as observed in the MAVERICC
data, a binary treatment variable, a continuous or categorical gene
variable, and a correlated adjustment covariate (r �0.6). The object-
ive was to determine whether evidence supports concerns expressed
by previous authors that basic permutation-based approaches are
more problematic for detecting statistical interactions (Anderson
and Braak, 2003).

2.3 Application to the MAVERICC clinical trial
We conducted a TWAS in the MAVERICC clinical trial to identify
genes predictive or prognostic of PFS or OS. MV FDR with the BY
approach was used to identify discoveries and quantify uncertainty.
For comparison, FDR was also computed using the BH method.

MAVERICC was a randomized phase II trial comparing first-
line treatment with modified leucovorin, 5-fluorouracil, oxaliplatin
plus bevacizumab (mFOLFOX6-BV) to treatment with leucovorin,
5-fluorouracil, irinotecan plus bevacizumab (FOLFIRI-BV) in
patients with previously untreated metastatic CRC (Parikh et al.,
2019).

Genome-wide association study data for this study were gener-
ated by the Illumina Infinium OncoArray-500K BeadChip, designed
primarily for measuring genomic variation associated with predis-
position to common cancers (Amos et al., 2017). QC steps included
the following. Samples with call rates <95% or with discordant
genotype imputed vs. reported sex were excluded. Markers were
excluded if call rate was <98% or if the within-race Hardy–
Weinberg equilibrium (HWE) P-value was <10�12. The strict HWE
criterion reflects the possibility of a departure from HWE caused by
case-status rather than by genotyping errors.

Genotype imputation was conducted for the autosomes, exclud-
ing single nucleotide polymorphisms (SNPs) with minor allele fre-
quency <0.01. Data were pre-phased using SHAPEIT v2.r837 and
imputed to the 1KGP Phase 3 reference panel [downloaded from the
IMPUTE2 website (https://mathgen.stats.ox.ac.uk/impute/impute_
v2.html#reference)] using IMPUTE v2.3.2 (Howie et al., 2012). The
enhanced dataset was then used to impute genetically regulated gene
expression. Gamazon et al. (2015) analyzed transcriptome and gen-
etic variation data from the GTEx eQTL repository to construct
additive models of genetically regulated gene expression (Barbeira
et al., 2018; Gamazon et al., 2015). They applied an elastic net ap-
proach to estimate weights for linear combinations of SNPs for
transverse colon and other tissues. We used version 7 weights for
transverse colon (downloaded from predictdb.org) with the imputed
SNP data from the three clinical trials to impute gene expression for
5613 genes across the genome following QC. To further reduce
dimensionality of the dataset, we applied the Partition approach
(Barrett and Millstein, 2020; Millstein et al., 2020), specifying a
maximum information loss of 20% (minimum information capture
of 80%). This procedure collapses highly correlated groups of fea-
tures into new features, subject to the satisfaction of the information
loss constraint. We observed a high degree of statistical

independence between imputed gene features, thus few groups were
collapsed. The final data set included 5520 imputed features, with
74 representing multiple predicted coexpressed genes. To eliminate
high leverage points, each feature was transformed into an ordinal
variable with three tertile groups.

OS was defined as time from randomization until death from
any cause or last follow-up, and PFS was defined as time from ran-
domization to disease progression, death or last follow-up.
Adjustment covariates included age, sex, Eastern Cooperative
Oncology Group (ECOG) performance status, number of metastatic
sites, tumor location (left versus right), KRAS mutation status, and
treatment arm. Patients with complete data included 162 from the
mFOLFOX6-BV arm and 167 from the FOLFIRI-BV arm.
Following the approach of the primary analysis for the MAVERICC
clinical trial, models were stratified by geographic region and tumor
excision repair cross-complementing group 1 (ERCC1) expression
levels (high/low). Three Cox models were fitted for each gene,

ln
hðtÞ
h0ðtÞ

� �
¼ RciWi þ bT (Model 1)

ln
hðtÞ
h0ðtÞ

� �
¼ RciWi þ bT þ dG (Model 2)

ln
hðtÞ
h0ðtÞ

� �
¼ RciWi þ bT þ dGþ xTG (Model 3)

where h(t) denotes the hazard function, W denotes adjustment cova-
riates, T is an indicator for treatment and G, the imputed gene. For
each gene, two likelihood ratio tests were conducted, a test of the
prognostic effect, d (Model 2 versus Model 1), and a test of the pre-
dictive effect (treatment-gene interaction) x (Model 3 versus Model
2). One hundred permutation analyses were conducted by randomly
permuting G within strata, where the same permutation was used
for all gene features. Thus, dependencies between gene features, and
between adjustment covariates and the outcomes were preserved.

3 Results

3.1 Simulation results
Departures from the assumed coverage were small and tended to be
conservative, with coverage >0.95 for the three approaches for most
scenarios that included false null hypotheses (Table 1). However,
for the global null (Scenario E), coverage was substantially
decreased for UCB (coverage ¼ 0.780), with 22.1% of replicates
including at least one CI upper bound <1. M.2 selection was also
anti-conservative (coverage ¼ 0.935), with 12.0% of replicates
including at least one CI upper bound <1. In contrast, BY selection
was slightly conservative (coverage ¼ 0.969), with 4.5% of repli-
cates including at least one CI upper bound <1. Coverage tended to
be more conservative with larger effect sizes and larger numbers of

Table 1. Estimated coverage (1 � FCR) from 2000 replicate simulation

studies for each of five scenarios

FDR CI selection method

Scenario UCB M.2 BY

A 0.942 0.954 0.973

B 0.965 0.969 0.979

C 0.971 0.972 0.976

D 0.973 0.978 0.976

E� 0.780 0.935 0.969

A: 5 non-null blocks, weak effects; B: 10 non-null blocks, weak effects; C:

5 non-null blocks, strong effects; D: 10 non-null blocks, strong effects; E�: 0

non-null blocks (global null hypothesis).
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false null hypotheses. The BY approach was the most conservative
in all scenarios.

Conditional coverage is a useful concept as it is restricted to
selected intervals. However, BY arrived at the FCR formulation in
part because conditional coverage depends on underlying condi-
tions. They showed that even very conservative approaches such as
Bonferroni adjusted intervals fail to achieve adequate conditional
coverage in some situations typified by the global null.
Understanding its limitations, we assessed conditional coverage for
the three selection approaches as a function of true FDR. In simula-
tions, M.2 performed substantially worse than the other approaches
in the approximate range, 0.2< true FDR < 0.5 (Fig. 1). This result
is perhaps not surprising considering that within this range the inter-
val is selected only if the FDR point estimate differs from the true
value. In contrast, BY showed mostly conservative conditional
coverage across the range 0 to 0.5.

The permutation approach for statistical interactions was more
conservative than the parametric approach in almost all simulation
scenarios (Supplementary Tables S1 and S2). Statistical power was
similar for the parametric and permutation-based approaches.
When both prognostic and predictive gene effects (d and x) were set
to zero and extreme high leverage points were included, type I error
was still close to assumed levels. However, high leverage points
combined with outliers in the presence of main effects in G caused
inflated type I error for both approaches. When high leverage points
were addressed by transforming G into an ordinal variable by

tertiles, the approach taken for the MAVERICC analysis here, type I
error was reduced to acceptable levels. These results support the use
of the permutation approach for the MAVERICC gene-treatment
interaction analysis.

3.2 Application to the MAVERICC clinical trial
In data from the MAVERICC study, several genes were identified as
discoveries both according to BH and BY criteria (Table 2). The
close agreement between the parametric BH FDR (qBH) and non-
parametric MV FDR (qMV) is consistent with approximate satisfac-
tion of parametric assumptions underlying P-values from the Cox
proportional hazards models. It also supports the validity of the per-
mutation approach for testing treatment by gene interactions. Two
genes, WDSUB1 and CAVIN3, achieved transcriptome-wide selec-
tion for gene*treatment interaction by BY approach as well as FDR
< 0.05 by both BH and MV. The two genes, DYNC2H1 and
CCDC47, did not achieve the conventional BH discovery thresholds
of 0.05 or 0.1, however, they were selected by the BY approach,
implying that though the evidence may be weak, it does provide
some support for true discoveries. It should be noted that the evi-
dence for these two genes is consistent between the BH and BY
approaches; however, the BY FDR approach provides additional in-
formation regarding the precision of the FDR estimates. There was
no evidence of prognostic effects. The minimum BH FDR was 0.76
and MV FDR did not fall below 1 for the series of significance
thresholds ð� log 10ðPÞ ¼ f3; 3:1; 3:2; . . . ;6gÞ tested.

Figure 2 demonstrates that MV FDR tends to decrease as the
stringency of the P-value threshold increases (a style of plot avail-
able in the fdrci software), as we would expect. It is also apparent
from Figure 2 that the cost of applying BY selection/adjustment is
low in terms of increased CI width.
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0.85

0.90

0.95

1.00

0.0 0.1 0.2 0.3 0.4 0.5
FDR

co
ve

ra
ge

UCB

M.2

BY

Fig. 1. Conditional coverage for three CI selection approaches. UCB indicates selec-

tion of intervals where the upper bound is <1; the M.2 approach selects intervals

where MV FDR estimate is <0.2; and BY denotes Benjamini and Yekutieli FCR-

adjusted BH-selected intervals. Conditional coverage was computed across the four

simulation scenarios, A–D (8000 replicates in total, including 160 000 permutation

analyses), where each replicate study included a non-zero proportion of false null

hypotheses (see Section 2)

Table 2. TWAS features associated with PFS via treatment interaction in metastatic colorectal cancer patients from the MAVERICC clinical

trial

FDR for LRTs of x

Symbol dð95%CIÞ Pd xð95%CIÞ Px qBH qMV (95% CI) (qMVa
95% CI)

WDSUB1 0.01 (�0.16, 0.17) 0.95 �0.78 (�1.12, �0.44) 4.7e�6 0.026 0.025 (0.005, 0.13) (0.004, 0.14)

CAVIN3 0.14 (�0.03, 0.31) 0.12 �0.78 (�1.12, �0.43) 1.0e�5 0.028 0.025 (0.005, 0.13) (0.004, 0.14)

DYNC2H1 1.76 (�0.81, 4.33) 0.15 12.1 (4.7, 19.4) 6.2e�5 0.11 0.13 (0.04, 0.42) (0.04, 0.46)

CCDC47 �0.08 (�0.25, 0.09) 0.36 0.65 (0.31, 0.99) 1.5e�4 0.21 0.24 (0.09, 0.66) (0.08, 0.70)

dð95%CIÞ; xð95%CIÞ correspond to Model 3; P-values reported are for LRTs. Q-values correspond to FDR estimates for likelihood ratio tests of x. qBH

denotes BH FDR, qMV denotes MV FDR and qMVa denotes BY adjusted CIs using 100 replicate permutations.
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Fig. 2. MV FDR discovery plot for tests of treatment*gene interactions, x, for PFS.

P-values from likelihood ratio tests were computed for both permuted (100 repli-

cates) and non-permuted data to estimate MV FDR for a series of detection thresh-

olds. Digits in the field denote the number of discoveries at each P-value threshold.

The gray shaded area displays the 95% CI region computed by the MV FDR

method whereas the light gray area represents the BY FDR adjusted approach. The

dashed line indicates FDR ¼ 0.05
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For OS, no effect achieved BY FDR selection, however, the prog-
nostic effect, d (Model 2), of the gene SMIM19 achieved BH 0.05
level (P ¼ 5:1e� 6). The qBH ¼ 0.028, whereas qMV ¼ 0.060, which
again demonstrates relatively close agreement, however intervals
were not selected by the BY approach. Figure 3 shows that the inter-
vals are quite wide, which is not surprising considering that preci-
sion of the FDR estimate decreases with decreasing numbers of
discoveries (Millstein and Volfson, 2013).

Kaplan–Meier curves for PFS by gene expression tertile for
Table 2 genes are shown in Figure 4. The low and high expression
groups tend to reverse order between treatments, consistent with
predictive effects. This dynamic is especially compelling for
WDSUB1, where median PFS in patients with high predicted expres-
sion is 18.1 months for the FOLFIRI arm but only 8.5 months for
FOLFOX6. Another example is the low expression group for
DYNC2H1, where median OS is 27.7 months for the FOLFIRI arm
but only 8.1 months for FOLFOX6. In contrast, the prognostic ef-
fect on OS for SMIM19 has a similar pattern across arms (Fig. 5).

4 Discussion

In contrast to fixing the error rate before viewing the data to identify
a rejection region, we suggest a dynamic process that incorporates
study-specific factors such as precision of the FDR estimate, number
of discoveries and cost/benefit of follow up research. The proposed
adapted BY approach provides FDR CIs with the assumed coverage
probability for investigator-selected discovery thresholds. If we con-
sider each candidate threshold to be a hypothesis test, where selec-
tion of the associated interval corresponds to rejection of the test,
then the proposed approach controls BH FDR. Therefore, it also
controls FWER under the global null hypothesis that all null hypoth-
eses are true (Goeman and Solari, 2014). Alternatively, if false null
hypotheses are likely to be rejected, the approach ensures condition-
al coverage (Benjamini and Yekutieli, 2005a).

In related work, Storey (2002) proposed a resampling-based
interval for post hoc FDR estimation, however, it does not account
for the number of permutations conducted, and the problem of mul-
tiple inference was not discussed. In the context of FDP, more has
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Fig. 3. MV FDR discovery plot for tests of d (Model 2), the prognostic effect of a

gene on OS. P-values from likelihood ratio tests were computed for both permuted

(100 replicates) and non-permuted data to estimate MV FDR for a series of detec-

tion thresholds. Digits in the field denote the number of discoveries at each P-value

threshold. The gray shaded area displays the 95% CI region computed by the MV

FDR method. The dashed line indicates FDR ¼ 0.05
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been done to allow for adaptive selection of rejection regions by
defining simultaneous upper confidence bounds. Meinshausen
(2006) described an exact permutation-based method for defining
simultaneous upper bounds on FDP, accounting for arbitrary
dependencies among tests and accommodating an exploratory strat-
egy for selection of rejection regions. Like MV FDR, this method
can be applied without P-values as intermediate statistics. Hemerik
et al. (2019) describe modifications to improve and generalize this
approach. Goeman and Solari (2011) proposed a general technique
based on the closed testing principle that provides simultaneous
upper FDP bounds that hold uniformly across all rejection sets.
Although this approach can be computationally expensive, there are
shortcuts and simplifications, such as those described by Katsevich
and Ramdas (2020). Some have argued that FDP rather than FDR
should be controlled, since it is more relevant to the data set in
hand. However, currently, FDR is more widely used, possibly be-
cause estimation of FDP under general dependence is much more
difficult than FDR (Pawitan et al., 2006), and statistical power may
be lower (Katsevich and Ramdas, 2020).

We showed that the approach proposed here yields conservative
coverage in simulated data and is more conservative than selecting
intervals with upper bound <1 or intervals corresponding to point
estimates <0.2. We demonstrated that the method of selecting inter-
vals with upper bound <1 can be substantially anti-conservative
under the global null but that the proposed approach adequately
addresses this problem. We also showed that the proposed approach
has much better conditional coverage under the scenarios investi-
gated here than the approach of selecting intervals with FDR
estimates <0.2. Although simulation studies were confined to a sub-
region of the parameter space, the challenges of hypothesis testing

with moderately strong positive dependencies among features,
which translates to positive dependencies among tests, were
addressed.

A limitation is that calculation of the intervals requires permuta-
tion results. For permutation statistics to be valid realizations of the
null distribution, the standard assumptions underlying permutation
tests apply. It has been noted in the context of linear models, that
restricting permutation to a single feature of interest would break
any dependencies that exist between that feature and the other cova-
riates (Berrett et al., 2020). Thus, the distribution of the test statistic
under permutation may not exactly represent the true null distribu-
tion. While we do not dispute this reasoning, we note that T is a
randomized treatment, therefore G is statistically independent of T
under both the null and alternative. Further, for the MAVERICC
application, we assume that the parametric properties of the test
statistic approximately hold under the null hypothesis that G is inde-
pendent of the outcome conditional on the covariates, that is, the
test statistic has a chi-square distribution with one degree-of-
freedom, whether or not there are dependencies between G and the
other covariates. Under these assumptions, permuting G within
strata would also yield a test statistic with a chi-square distribution
under the null. Thus, even though there could be dependencies be-
tween the observed G and the other covariates, both observed and
permuted test statistics would be distributed as approximately chi-
square under the null.

Similar reasoning applies to the test of the interaction term, TG.
The simulation results showed that type I error was inflated when
high leverage points and outliers occurred in the presence of main
effects of G and T on survival. However, it was well controlled
when there was no main effect of G or when G was transformed
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into an ordinal variable. The permutation approach was slightly
more conservative than the parametric approach for both predictive
and prognostic effects, even with strong positive or negative correla-
tions between G and an adjustment covariate. These results are con-
sistent with the findings of Bů�zková et al. (2011), which test
statistics approximately independent of main effects can yield ap-
proximately valid permutation-based tests for interaction in large
samples.

Notably, CAVIN3 (Caveolae Associated Protein 3), identified
here as predictive for PFS, is known to be downregulated in several
cancer cell lines by genetic or epigenetic alteration and is considered
a putative tumor suppressor (Hernandez et al., 2013). CAVIN3 ex-
pression is commonly lost or decreased in CRC by aberrant CpG
hypermethylation and loss of function is linked to tumor progression
and poor prognosis. CAVIN3 overexpression leads to cell cycle ar-
rest, apoptosis, suppression of colony formation in vitro and inhib-
ition of tumor growth in vivo in CRC models. CAVIN3 dictates the
balance between ERK and Akt signaling, two key signaling pathway
in CRC development and treatment response (Hernandez et al.,
2013). MAPK/ERK signaling promotes drug resistance by inducing

epithelial–mesenchymal transition, while suppression of PI3K/AKT/
mTOR pathway can reverse oxaliplatin resistance of CRC cells and
increases irinotecan sensitivity. Furthermore, CAVIN3 also interacts
with BRCA1, and its epigenetic inactivation via promoter hyperme-
thylation has been associated to resistance to oxaliplatin in CRC
(Moutinho et al., 2014). CAVIN3 silencing occurs in primary
tumors from CRC patients, where it predicts shorter PFS in
oxaliplatin-treated case patients with advanced disease. Here
patients with higher predicted CAVIN3 levels had shorter PFS, an
apparent discrepancy possibly explained by the differences between
normal transverse colon tissue and tumor tissue.

CCDC47 (Coiled-Coil Domain Containing 47 or Calumin) was
among 8 top-ranking genes in a study focused on candidate driver
genes affected by point mutations in microsatellite instable CRC
(Kondelin et al., 2018). The downregulation of DYNC2H1 (Dynein
Cytoplasmic 2 Heavy Chain 1) was reported in breast cancer
(Kondelin et al., 2018), and DYNC2H1 is a critical gene for the as-
sembly of primary cilia, microtubule-based organelles that protrude
from the cell surface, which play a critical role in development and
disease through regulation of signaling pathways including the
Hedgehog pathway. Loss of cilia has been reported in several cancer
types and it has been hypothesized that the presence or absence of
cilia may regulate targeted drug efficacy (Hassounah et al., 2012).
On the other hand, CCD47 is involved in the regulation of calcium
ion homeostasis in the endoplasmic reticulum, which has been re-
cently shown to be important in processes related to cancer progres-
sion including the development of resistance to cancer therapies
(Bong and Monteith, 2018; Kerkhofs et al., 2018).

Two discoveries, CCDC47 and DYNC2H1, were indicated by
MV FDR even though FDR was >0.05. Here the intervals played an
important role in quantifying uncertainty, suggesting that despite
the larger FDR, they are still likely to be true discoveries.
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