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Summary

With the use of an alkaliphilic bacterium, Corynebac-
terium humireducens MFC-5, this study investi-
gated the reduction of goethite (a-FeOOH)
and degradation of 2,4-dichlorophenoxyacetic acid
(2,4-D) mediated by different humic substances
(humics) and quinones in alkaline conditions (pH
of 9.0). The results indicated that (i) using sucrose
as the electron donor, the strain MFC-5 was
capable of reducing anthraquinone-2,6-disulfonic
acid (AQDS), anthraquinone-2-disulfonic acid (AQS),
anthraquinone-2-carboxylic acid (AQC), humic acid
(HA) and fulvic acid (FA), and its reducing capability
ranked as AQC > AQS > AQDS > FA > HA; (ii) the
anaerobic reduction of a-FeOOH and 2,4-D by the
strain was insignificant, while the reductions were
greatly enhanced by the addition of quinones/
humics serving as redox mediators; (iii) the Fe(III)
reduction rate was positively related to the content
of quinone functional groups and the electron-
accepting capacities (EAC) of quinones/humics
based on fourier-transform infrared spectroscopy
(FT-IR) and electrochemical analyses; however, such
a relationship was not found in 2,4-D degradation
probably because quinone reduction was not the

rate-limiting step of quinone-mediated reduction of
2,4-D. Using the example of a-FeOOH and 2,4-D, this
study well demonstrated the important role of
humics reduction on the Fe(III)/Fe(II) biogeochemical
cycle and chlorinated organic compounds degrada-
tion in alkaline reducing environments.

Introduction

Humic substances (humics) are polymeric, heterogene-
ous redox-active natural organic compounds and are
ubiquitous in soils, sediments, and natural waters (Ste-
venson, 1994). The finding of humics as terminal electron
acceptors for microbial respiration (Lovley et al., 1996)
reveals the important role of humics in many biogeo-
chemical cycles happened in soils and aquatic sediments.
Reduced humics can transfer electrons abiotically to ter-
minal electron acceptors such as high valence metals (Gu
and Chen, 2003) or oxidized organic contaminants (Curtis
and Reinhard, 1994; Fu et al., 1999), functioning as elec-
tron shuttles between microorganisms and terminal elec-
tron acceptors. The redox-mediating ability of humics thus
affects the cycling of redox-active elements (e.g. Fe, Mn)
and the transformation of organic/inorganic contaminants
in suboxic or anoxic systems.

Humics in environments can be categorized into three
main fractions as humic acids (HA), fulvic acids (FA) and
humin. The soluble constituent of humics is strongly
pH-dependent (Stevenson, 1994): humin is the fraction
insoluble at all pH values, HA constitutes the fraction
soluble at pH > 2, while FA is soluble at all pH values.
Thus, a high pH would increase the fraction of dissolved
humics that are accessible for bacterial humics respira-
tion. Humics-reducing microorganisms are phylogeneti-
cally diverse, including Fe(III)-reducing (Lovley et al.,
1996), fermenting (Benz et al., 1998), sulfate-reducing
and methanogenic bacteria (Cervantes et al., 2002). They
are isolated and described from a broad diversity of envi-
ronments, mainly with circumneutral pH (Lovley et al.,
1996). Recently, researchers have turned their attention
to finding humics-reducing microorganisms in alkaline
environments, and several microbes (e.g. Alkaliphilus
peptidofermentans, Bacillus pseudofirmus, Natronincola
ferrireducens, Natronincola peptidovorans) have been
isolated from alkaline environments (Zhilina et al.,
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2009a,b; Ma et al., 2012). In our recent work, a halotoler-
ant, alkaliphilic, humics-reducing bacterium, belonging to
the genus Corynebacterium was isolated from a microbial
fuel cell (MFC) that was continuously fed with artificial
wastewater of pH 10.0 (Wu et al., 2011). The identification
of this alkaliphilic microorganism expanded the pH limit to
11.0 for microbial humics reduction, and also implicated
the potential contribution of microbe-mediated humics
reduction in natural alkaline environments.

Soda lakes and soda deserts are the most representa-
tive naturally occurring alkaline environments. Artificially
generated alkaline environments could be derived from
diverse industrial activities such as cement manufacture,
alkaline electroplating, leather tanning and herbicide
manufacture (Ulukanli and Diğrak, 2002 and references
therein). For example, a field site from a former herbicide
production plant that was heavily contaminated with orga-
nochlorines generated an aqueous pH up to 12 (Müller
et al., 1999). The mineralogy and geochemistry of alkaline
systems are highly complex and cannot be simply
deduced from those studies conducted under neutral or
acidic conditions. For instance, as iron(III) oxides are gen-
erally insoluble, solid-phase minerals under neutral or
alkaline conditions, iron(III) reduction had not been rec-
ognized to occur above a pH of 9.0 before a alkaliphilic
bacterium capable of iron(III) reduction was isolated from
alkaline environment (Ye et al., 2004). Given the favour-
able solubility of humics under alkaline conditions, the
contribution of humics will become ever more important to
redox reactions under alkaline conditions.

To investigate the probable impact of microbial humics
reduction on redox reactions in alkaline environments,
C. humireducens MFC-5, a bacterium capable of humics
reduction at pH as high as 11.0 and salinity of 12%, was
used in alkaline anaerobic incubation. Humics-mediated
reductive transformation of high valence metals and
organic contaminants was conducted with the example of
goethite (a-FeOOH) and 2,4-dichlorophenoxyacetic acid
(2,4-D) respectively. This study aimed to investigate: (i)
the ability of the strain MFC-5 to reduce humics, iron(III)
oxides and 2,4-D under alkaline conditions, (ii) the reduc-
tive transformation of iron(III) oxides and 2,4-D coupled to
the humics reduction by C. humireducens MFC-5, and (iii)
the mechanism of electron transfer behind the humics-
mediated catalytic reduction of iron(III) oxides and 2,4-D
by C. humireducens MFC-5.

Results and discussion

Alternative electron acceptors

Here we investigated the ability of C. humireducens
MFC-5 to conserve energy to support cell growth with
quinones [anthraquinone-2,6-disulfonic acid (AQDS),

anthraquinone-2-sulfonic acid (AQS) and anthraquinone-
2-carboxylic acid (AQC)] or humics (FA or HA) serving as
the electron acceptor under alkaline conditions. Figure 1
presents the kinetics of microbial quinones/humics reduc-
tion by strain MFC-5 using sucrose as the electron donor
at pH 9.0. After a 10-day incubation, the concentration of
quinones/humics in the controls lacking sucrose (biotic
control) or active cells (abiotic control) remained almost
unchanged, demonstrating that quinones/humics were
persistent in the absence of microbial activity of MFC-5
and the chemical reduction of quinones/humics by
sucrose was negligible. In contrast, quinones/humics
were significantly reduced in the active treatments
(sucrose + quinones/humics + MFC-5), and the reduced
AQDS, AQS, AQC and FA (AH2QDS, AH2QS, AH2QC and
FAred) reached 0.66 � 0.03, 0.78 � 0.02, 0.82 � 0.09
and 0.12 � 0.01 mmol l-1 respectively. The amount of
reduced HA (HAred) was determined by adding Fe(III)
and determining how much Fe(II) was produced (Lovley
et al., 1996), and approximately 0.096 � 0.006 mmol l-1

of Fe(II) was produced in the treatments containing
sucrose and MFC-5 after a 25-day incubation. In other
words, the microequivalents involved in the microbial
reduction of AQDS, AQS, AQC, FA and HA by strain
MFC-5 were to be 1.32, 1.56, 1.64 and 0.12 and
0.096 eq l-1 respectively. These results suggested that (i)
AQDS, AQS, AQC, FA and HA were able to serve as
favourable electron acceptors in the anaerobic metabo-
lism of strain MFC-5 under alkaline conditions, and (ii) the
reducing capability of strain MFC-5 for quinones/humics
was ranked as AQC > AQS > AQDS > FA > HA.

Humics-enhanced Fe(III) reduction by strain MFC-5

Using a similar experimental procedure, microbial reduc-
tion of iron(III) oxides by C. humireducens MFC-5 was
tested with a synthetic poorly crystalline iron(III) oxide,
a-FeOOH. However, almost no Fe(III) reduction was
observed in all the treatments (inset figure of Fig. 2a),
suggesting that the strain MFC-5 can not perform Fe(III)
reduction coupled to sucrose oxidation. Though all Fe(III)-
reducing microorganisms are capable of using humics as
electron acceptor (Lovley et al., 1996; 1998; Coates et al.,
1998), the ability to reduce extracellular quinones of
humics-reducing microorganisms is not always directly
related to their ability to reduce iron(III) oxides. This is the
case for the strain C. humireducens MFC-5 in this study.
However, the addition of quinones/humics (AQDS, AQS,
AQC, FA or HA) enhanced the rate and extent of
a-FeOOH reduction significantly. Data showed that the
total Fe(II) concentration after 20 days of incubation
increased from 0.03 mmol l-1 in the active culture with-
out quinones/humics to 0.81, 0.98, 1.02, 0.71 and
0.51 mmol l-1 in the active cultures with the amendment of
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Fig. 1. The reduction of quinones and humics by C. humireducens MFC-5 with sucrose as the electron donor: (a) AQDS; (b) AQS; (c) AQC;
(d) FA; (e) HA. The experiments were performed under anaerobic conditions at 30°C for 10 days. Error bars represent standard deviation of
the mean (n = 3).
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Fig. 2. Production of Fe(II) during the biore-
duction of 5 mmol l-1 a-FeOOH by C. hu-
mireducens MFC-5 provided with 5 mmol l-1

sucrose as the electron donor and in the
presence of electron transfer mediators (qui-
nones or humics): (a) dissolved Fe(II); (b)
total Fe(II). Inset shows total Fe(II) produc-
tion from a-FeOOH reduction by MFC-5 with
sucrose serving as the electron donor
(without sucrose or active cells as control).
The experiments were performed under
anaerobic conditions at 30°C for 20 days.
Error bars represent standard deviation of
the mean (n = 3).
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AQDS, AQS, AQC, FA and HA respectively (Fig. 2b). For
all treatments, the dissolved Fe(II) accounted for only a
very small fraction of the total Fe(II) (Fig. 2a), which was
expected because alkaline pH could result in precipitation
of iron as Fe(OH)3.

The stimulation effects of quinones/humics on Fe(III)
reduction are believed to be related to the microbial proc-
esses of quinones/humics since a-FeOOH was persistent
in the abiotic control containing a-FeOOH and quinones/
humics but without microbial activity of strain MFC-5. The
ability of quinones/humics to stimulate Fe(III) reduction
followed a order of AQC > AQS > AQDS > FA > HA,
which was exactly consistent with the above reported
capability of MFC-5 to reduce quinones/humics. Kappler
and colleagues (2004) have suggested that the electron
transfer through microbial reduction of humics represents
an important path of electron flow in anoxic environments.
In the mixed culture, the exogenous soluble redox active
compounds (AQDS, AQS, AQC, FA and HA) were biologi-
cally reduced by MFC-5 and their reduced form (e.g.
AH2QDS for AQDS) abiotically transferred electrons to
a-FeOOH where they were reoxidized and again served
as electron acceptors for MFC-5. The cycle would con-
tinue until sucrose, a-FeOOH or other necessary nutrients
were depleted. This route has been proposed as an
important mechanism for the enhancement of iron(III)
oxides reduction by alleviating the need for direct contact
between the cell and the oxides surface (Lovley et al.,
1996; 1998; Scott et al., 1998; Zachara et al., 1998).

The influence of humics on iron(III) oxides reduction
has been extensively studied using AQDS as a surrogate
for humics (Zachara et al., 1998; Nevin and Lovley, 2002;
Liu et al., 2007; Wolf et al., 2009). This study investigated
the effects of aquatic FA, HA, and quinones with different
chemical structures and redox potentials on Fe(III) reduc-
tion, and they exhibited different influence on a-FeOOH
reduction by MFC-5. Majority studies agreed that quinone
functional groups are the main important electron-
accepting and shuttling moieties in humics (Lovley et al.,
1996; Scott et al., 1998). To find out the reason for the
different stimulation effects, FT-IR was used to investigate
the difference of quinone groups in AQDS, AQS, AQC, FA
and HA. In the FT-IR spectrum, the absorption at about
1650 and 1630 cm-1 can be assigned to the C=O stretch-
ing of quinones (D’Orazio and Senesi, 2009). If the inten-
sity of a band can be measured as the percent
transmittance of the IR radiation, the amount of quinones
groups in the redox-active compounds can be ranked as
AQC > AQS > AQDS > FA > HA (Fig. S1). Employing an
electrochemical approach (chronoamperometry) estab-
lished by Yuan and colleagues (2011), the electron-
accepting capacities (EAC) of AQDS, AQS, AQC, FA and
HA were determined to be 1481, 2261, 2710, 1025 and
680 mmole- (g c)-1 respectively. Thus, the order of ability of

accepting electrons was AQC > AQS > AQDS > FA > HA,
which well agreed with the sequence of quinone group
content in these quinones/humics as determined by
FT-IR. Plotting the EAC of the different quinones/humics
versus Fe(II) produced in the quinones/humics-
supplemented cultures, a high positive correlation
(R2 = 0.92) was established (Fig. 3). A conclusion can be
drawn that the extent of enhancement in Fe(III) reduction
induced by quinones/humics was highly dependent on the
amount of quinone groups that were responsible for the
electron accepting and shuttling properties in the redox
active compounds. Our results are similar with Wolf’s
study which evidenced that the kinetics of microbial iron
reduction mediated by quinones was primarily depended
on the redox potential of the shuttle compound (Wolf
et al., 2009).

Humics-enhanced 2,4-D anaerobic degradation by
strain MFC-5

Further, the reductive degradation of 2,4-D by strain
MFC-5 under alkaline conditions was studied. As shown
in Fig. 4, for the treatments of 2,4-D + MFC-5, 2,4-
D + sucrose, and 2,4-D + sucrose + MFC-5, approxi-
mately 5% of 2,4-D was reduced within 106 h and no
further decrease in 2,4-D concentration was observed after
that. The results were pretty similar to Fe(III) reduction by
MFC-5 and suggested that there was only slight stimula-
tion of MFC-5 on 2,4-D reduction. The amendment of
AQDS, AQS, AQC, FA and HA in the system of 2,4-
D + sucrose + MFC-5 led to a significant decrease in
2,4-D, and achieved a final removal rate of 22.1%, 12.2%,
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19.4%, 38.7% and 26.4% within 330 h respectively.
According to the literature (Walters, 1999), there are two
anaerobic aquatic metabolisms for 2,4-D degradation: (i)
2,4-D → 2,4-dichlorophenol (2,4-DCP) → 4-chlorophenol
(4-CP), and (ii) 2,4-D → 2,4-DCP → 2,4-dichloroanisole
(2,4-DCA). In the anaerobic incubation of 2,4-D
+ sucrose + MFC-5 + quinones/humics, 2,4-DCP was
observed as the intermediate metabolic product, and high-
performance liquid chromatography (HPLC) analysis ruled
out the existence of 4-CP but not 2,4-DCA. These results
likely suggested that 2,4-D degraded through pathway (ii)
rather than metabolism (i), which was generally proposed
for anaerobic degradation under neutral pH conditions
(Boyle et al., 1999; Berestovskaya et al., 2000).

2,4-D was degraded in the active culture containing
2,4-D, sucrose, MFC-5 and quinones/humics. In this
system, microbial respiration of quinones/humics by strain
MFC-5 should have occurred. The possibility of 2,4-D
biodegradation by MFC-5, abiotic reduction of 2,4-D by
sucrose or dead cell had been eliminated, it could be
deduced that 2,4-D reduction was a consequence of
quinones/humics respiration by MFC-5. As quinones/
humics were reduced by MFC-5, reduced quinones/
humics were generated and could provide electrons that
were required for 2,4-D reductive degradation. To explore
the electron transfer between reduced quinones/humics
and 2,4-D, cyclic voltammetry (CV) was used to evaluate
redox reaction in the system of quinones/humics and
2,4-D. Because of the different solvents used in the three-
electrode cell for 2,4-D/quinones (aqueous) and 2,4-D/
humics (organic), the CVs of quinones and humics cannot
provide a meaningful comparison. Figure 5 displays the

CVs recorded for quinones, 2,4-D and quinones + 2,4-D.
CVs of AQDS, AQS, AQC exhibited well defined cathodic
and anodic peaks corresponding to the reduction of
quinone moieties and the oxidation of their reductive prod-
ucts produced at the electrode surface. Voltammograms
of the mixture all showed that the redox couple potentials
shifted to a more positive value as compared with the CV
of the individual quinones, suggesting electron transfer
between quinones and 2,4-D. It is obvious that AQDS
suffered the greatest change of the peak current, followed
by AQC and AQS, implying that more electrons are
transferred from AQDS to 2,4-D. This electrochemical
analysis supported the order of 2,4-D removal:
AQDS > AQC > AQS. Different from stimulated Fe(III)
reduction by quinones, the rate and extent of 2,4-D deg-
radation enhanced by quinones was not directly related to
the quinone group content and the EAC of quinones
(AQC > AQS > AQDS). Though the electrochemical
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quantification (EAC, CVs in Fig 5) in this study all sug-
gested that compared with AQDS, AQC and AQS are
more effective redox mediators, the fact was that AQDS
more effectively increased the degradation rate of 2,4-D
than other quinone compounds. These results implied that
quinone reduction might not be the rate-limiting step of
quinone-mediated reduction of 2,4-D. Two independent
reaction steps have been previously proposed for
quinone-mediated reduction of azo dyes, consisting of
quinones reduction by quinone reductase generating hyd-
roquinones and further reductive azo bond cleavage by
hydroquinone (Rau and Stolz, 2003). A similar two inde-
pendent reaction steps were believed to be involved in
quinone-mediated degradation of 2,4-D, and the second
step of chemical redox reaction might be crucial to regu-
late the rate and extent of 2,4-D reductive degradation.
Further research is underway in our laboratory to investi-
gate the rate-limiting step of quinone-mediated reduction
of iron(III) oxides and 2,4-D.

Environmental implications

The genus Corynebacterium represents a large group of
Gram-positive, asporogenous, rod-shaped bacteria with a
high DNA G + C content (Liebl, 1992), and now includes
over 100 species. Among them, there are less than 10
strains capable of growing under alkaline conditions,
including C. halotolerans (Chen et al., 2004), C. marinum
(Du et al., 2010), C. maris (Ben-Dov et al., 2009),
C. matruchotii (Barrett et al., 2001), C. terpenotabidum
(Collins et al., 2001), etc. Corynebacterium humireducens
MFC-5 was thus far the only alkaliphilic Corynebacterium
species capable of reducing quinones/humics. Driven by
MFC-5, quinones/humics could function as electron shut-
tles to transfer electrons in redox reactions between
sucrose and a-FeOOH or 2,4-D in alkaline environments
(Fig. S2).

The redox cycling of iron plays a critical role in a range
of biogeochemical processes in anoxic soils and aquifers,
reactive Fe(II) species are important reductants for the
abiotic transformation of many organic pollutants such as
chlorinated contaminants, nitroaromatic explosive, and
pesticides (Williams et al., 2005; Kim and Strathmann,
2007; Wu et al., 2010). At a circumneutral pH, Fe(II)
species are generally produced via microbial iron reduc-
tion coupled to the oxidation of organic matter by dissimi-
latory Fe(III)-reducing microorganisms (Lovley et al.,
2004; Weber et al., 2006). Due to the decrease of
aqueous Fe(III) and increase of aqueous humics under
alkaline conditions, the bioavailability of terminal electron
acceptor for Fe(III)-reducing microorganisms becomes
lower than that for humics-reducing bacteria. Driven by
the activity of alkaliphilic bacteria, such as MFC-5 in this
study, humics reduction would promote Fe(II) accumula-

tion in alkaline environments, consequently affecting
Fe(II)-associated redox reactions. Considering the large
mass of humics in natural environments, humics-
mediated Fe(III) reduction might be the predominant
source of Fe(II) species over microbial metabolism.

Functioning as electron shuttles, humics have been
shown to abiotically catalyse the reductive degradation of
various xenobiotics (Van der Zee and Cervantes, 2009),
for example, 2,4-D in our study. Theoretically, electron
transfer from organic matter towards pollutants can occur
provided that the standard redox potential of the electron
shuttle is in between those of the two eventual half
reactions as described in Fig. S2. Thus, humics reduction
by alkaliphilic humics-reducing microorganisms might
provide an effective remediation strategy for recalcitrant
contaminants under alkaline environments.

Conclusion

The alkaliphilic and halotolerant bacterium, C. humiredu-
cens MFC-5, could conduct anaerobic metabolism with
quinones/humics as the sole terminal electron acceptor
coupled to sucrose oxidation, but failed to perform
anaerobic reduction of iron(III) oxides or 2,4-D. The pres-
ence of quinones/humics can significantly enhance
a-FeOOH reduction and 2,4-D anaerobic degradation by
MFC-5 under alkaline conditions. Quinone molecule
acted as redox mediator which was biotically reduced by
strain MFC-5, and reduced quinones/humics abiotically
transferred electrons to exogenous Fe(III) or 2,4-D. The
rate of Fe(II) production was shown to be positively
related to the quinone group content and the EAC of the
mediators, but not the same for humics-mediated 2,4-D
transformation. This study demonstrated the important
role of humics reduction in the redox cycle of iron and the
environmental transformation of chlorinated organic pol-
lutants under alkaline conditions.

Experimental procedures

Materials

Humics analogues (AQDS, AQS and AQC), FA and HA, of
chemical grade were purchased from Sigma-Aldrich (Tokyo,
Japan). 2,4-D, of analytical grade, was also purchased from
Sigma-Aldrich. All of the chemicals were used as received,
without further purification. a-FeOOH was synthesized
according to the procedures of Li and colleagues (2008).
Mineral salts medium (MSM) used for anaerobic incubation
was prepared as previously described (Wu et al., 2011).

Corynebacterium humireducens MFC-5 was isolated from
the anode of a wastewater-fed MFC that was continuously
operated at a pH of 10.0. The strain MFC-5 is active for
anaerobic reduction of AQDS, with lactate, formate, acetate,
ethanol, or sucrose as electron donor (Wu et al., 2011).
Resting cell suspension of MFC-5 was used in this study. The
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suspension was aerobically prepared in Luria–Bertani (LB)
medium at 30°C, and then harvested at the late log phase by
centrifugation (8000 g at 4°C for 10 min). Pellets was then
washed twice and re-suspended in sterilized MSM (pH 9.0).

Batch reduction experiments

Strict anaerobic techniques and sterile conditions were used
throughout all the incubation experiments. MSM was
adjusted to pH 9.0 using 0.1 mmol l-1 NaOH, and maintained
with 20 mmol l-1 carbonate buffer (pH 9.0). The serum bottles
(25.2 ml) contained alkaline MSM that was sterilized by auto-
claving at 115°C for 20 min. Other components (i.e. sucrose,
quinones/humics, Fe(III), 2,4-D or cell suspension) were
added from their corresponding stock solutions after MSM
was cooled to ambient temperature. Then the bottles were
purged with O2-free N2/CO2 (80/20 v/v) for 15 min, sealed with
butyl-rubber stoppers and crimped with aluminum caps. All
bottles were incubated in the dark at 30°C, which was optimal
for the microbial growth of strain MFC-5. All the treatments
were conducted in triplicate.

In the experiments testing alternative electron acceptors
for MFC-5 anaerobic metabolisms, each bottle contained
1 ¥ 107 cells ml-1, 20 ml MSM (pH 9.0) with 5 mmol l-1 of
sucrose (electron donor) and one of the following substrates
as electron acceptor: 1 mmol l-1 of AQDS, AQS, AQC, FA or
200 mg l-1 of HA; 5 mmol l-1 a-FeOOH and 180 mmol l-1 of
2,4-D. Two control assays were performed under the same
conditions: an abiotic set without bacterial cells and a biotic
set without the addition of sucrose.

For studying the influence of humics reduction by the strain
MFC-5 on the anaerobic reduction of iron(III) oxides and
2,4-D under alkaline conditions, four batch experiments
were conducted: (i) MSM + (a-FeOOH or 2,4-D) + sucrose
+ (AQDS, AQS, AQC, FA or HA), (ii) MSM + (a-FeOOH or
2,4-D) + sucrose + (AQDS, AQS, AQC, FA or HA) + dead
cells of MFC-5, (iii) MSM + (a-FeOOH or 2,4-D) +
sucrose + MFC-5, and (iv) MSM + (a-FeOOH or 2,4-
D) + sucrose + (AQDS, AQS, AQC, FA or HA) + MFC-5. Set
(i) and (ii) were abiotic controls to evaluate the abiotic trans-
formation of a-FeOOH and 2,4-D by sucrose, humics and
dead cells, and set (iii) served as a biotic control. The con-
centrations of each component were: 5 mmol l-1 Fe(III),
180 mmol l-1 2,4-D, 0.5 mmol l-1 AQDS/AQS/AQC/FA,
200 mg l-1 HA, and 1 ¥ 107 cells ml-1.

Analysis methods

Triplicate bottles were sacrificed for chemical analysis. The
concentration of AH2QDS, AH2QS and AH2QC was quantified
by UV-Vis spectrophotometer (TU1800-PC, Beijing). As
shown in Fig. S3, the specific wavelengths of AH2QDS,
AH2QS and AH2QC at pH 9.0 were 408, 397 and 380 nm
respectively. FAred and HAred were determined with Fe(III)-
citrate as previously described (Lovley et al., 2000).

Total Fe(II), including dissolved and sorbed Fe(II), was
quantified photometrically at 510 nm after being extracted
using 0.5 mol l-1 HCl for 1.5 h and reacting with 1,10-
phenanthroline. Dissolved Fe(II) was determined by remov-
ing the mineral and sorbed Fe(II) from the aqueous phase
using a 0.22 mm syringe filter and then assaying the filtrate

using the colorimetric method (Li et al., 2010). The difference
between the total and dissolved Fe(II) was defined as sorbed
Fe(II). The concentration of 2,4-D and its intermediates was
analysed by HPLC (Waters 1527/2487) as described by Wu
and colleagues (2010).

FT-IR (Vector 33, Bruker, Germany) was used to determine
the functional groups of humics. The interpretations of the
FT-IR spectra were based on the literature of D’Orazio and
Senesi (2009). CV was used to evaluate the redox behaviour
of 2,4-D (180 mmol l-1), quinones (0.5 mmol l-1) and 2,4-D/
quinones. Voltammograms were obtained using a potentio-
stat (CHI605C, Shanghai Chenhua, China) and a three-
electrode cell (20 mmol l-1 carbonate buffer of pH 9.0;
500 mmol l-1 NaClO4 electrolyte, 3 mm diameter Pt disk
working electrode, Hg wire counter electrode, Ag/AgCl refer-
ence electrode) under continuous N2 bubbling. Tested solu-
tions were deoxygenated by purging with O2-free N2 gas for
30 min before CVs measurement, and the scan data were
recorded from -0.8 to 0 V at a scan rate of 50 mV s-1 at
intervals. Chronoamperometry was employed to determine
the EAC of humics by applying fixed positive or negative
potentials to a working electrode in a conventional three-
electrode cell (Yuan et al., 2011).
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Fig. S2. Proposed mechanism of humics-mediated reduc-
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D+MFC-5+Humics+sucrose under alkaline conditions.
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