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Abstract: In this paper, we studied the possibility of increasing the Brillouin frequency shift (BFS) de-
tection accuracy in distributed fibre-optic sensors by the separate and joint use of different algorithms
for finding the spectral maximum: Lorentzian curve fitting (LCF, including the Levenberg–Marquardt
(LM) method), the backward correlation technique (BWC) and a machine learning algorithm, the
generalized linear model (GLM). The study was carried out on real spectra subjected to the subse-
quent addition of extreme digital noise. The precision and accuracy of the LM and BWC methods
were studied by varying the signal-to-noise ratios (SNRs) and by incorporating the GLM method into
the processing steps. It was found that the use of methods in sequence gives a gain in the accuracy of
determining the sensor temperature from tenths to several degrees Celsius (or MHz in BFS scale),
which is manifested for signal-to-noise ratios within 0 to 20 dB. We have found out that the double
processing (BWC + GLM) is more effective for positive SNR values (in dB): it gives a gain in BFS
measurement precision near 0.4 ◦C (428 kHz or 9.3 µε); for BWC + GLM, the difference of precisions
between single and double processing for SNRs below 2.6 dB is about 1.5 ◦C (1.6 MHz or 35 µε).
In this case, double processing is more effective for all SNRs. The described technique’s potential
application in structural health monitoring (SHM) of concrete objects and different areas in metrology
and sensing were also discussed.

Keywords: Brillouin scattering; distributed fibre-optic sensors; data processing; machine learning;
BFS extraction; BOTDA; concrete; structural health monitoring

1. Introduction

The most used material in engineering structures is concrete. The list of its varieties
is constantly expanding [1,2]. Mechanical phenomena, both during concrete hardening
and during operation [3] and ageing [4] of particularly critical concrete structures, such
as hydraulic structures, are important data that require analysis and study. This is the
scientific direction of structural health monitoring (SHM) [5], which is actively developing
due to the emergence of new materials [6]. The challenging issue that SHM helps to solve
are related to the ability to receive data directly from construction in real-time about
their mechanical state during all its operational life. This allows the critical defects in the
structure to be found in time, thus preventing disasters. The most used instruments in
SHM are point-wise [3] and distributed fibre-optic sensors (DOFS) [7–9]. DOFS are mostly
based on various principles of optical reflectometry. Most often, using such techniques,
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the spatial distribution of temperature and deformation is studied. There are a number of
applications where obtaining accurate data on the temperatures and strains of a material is
essential. For example, in [10] the authors illustrate the age-induced degradation on the
Rayleigh-based distributed sensor response. To implement such a task, the distributed
systems must have a resolution of the order of tenths of a microstrain. In the case of using
a system based on the Brillouin scattering principle, in terms of Brillouin frequencies, this
will be in units of kilohertz [11]. When using experimental materials and designs, optical
fibres can be squeezed, pinched, or stretched more than they originally intended to. In
such cases, the optical signal undergoes significant changes—it is distorted causing the
signal-to-noise ratio to dramatically decreases [12–14]. At the same time, to solve a scientific
or industrial problem, sensors still need to give as correct values as possible. In the case of
the aforementioned sensor systems based on Rayleigh scattering, these issues are not so
acute since this type of scattering is relatively strong in comparison to Brillouin scattering
which is widely used in DOFS [15,16]. Meanwhile, systems based on these principles
are applied in SHM quite often [17,18]. One of the serious problems (especially at low
signal-to-noise ratios) is the inability to accurately determine the frequency maximum of
the Brillouin gain spectrum [19]. The present work is focused on solving this problem
using a combination of various methods, including machine learning. Since the available
equipment allowed us to train the system only on thermocouple readings, all issues of
determining the frequency shift will be solved using degrees Celsius, which will later be
converted to frequency and strain.

Thus, obtaining the correct BFS value is critical for the efficient operation of this type
of distributed sensor. In conditions of extremely low signal-to-noise-ratio (SNR), when, for
example, an optical line has a sufficiently high attenuation due to the use of a special type
of optical fibre or external influence, this task becomes even more difficult. The methods
known to the authors for revealing the real value of the maximum of the Brillouin gain
spectrum (BGS) can be divided into four possible approaches:

1. The first group of methods requires retrofitting additional hardware or software-based
digital filters to increase the SNR of BGS. For example, in [20–22], the low-pass filtering,
pump and probe waves intensities modulation and also the modulation of the probe
signal wavelength were used. The reports in [23,24] describe the successful use of
the wavelet transformations designed for signal filtering. The techniques mentioned
above showed their effectiveness, but due to their complexity (the use of atypical and
sophisticated algorithms with a significant number of parameters and coefficients)
and sensitivity to the spectra shape, the implementation of these methods is limited.
The idea of increasing the number of optical pulses for the strain measurement in a
single repetition time has also been proposed. Inspired by the pulse coding technique
in radar technology, the incorporation of optical pulse coding techniques such as
Golay complementary codes has also been proposed for the purpose of improving the
SNR [25].

2. Then, the most popular in commercial instruments and well-known method is the
reconstruction of a Lorentzian function, which is the actual BGS shape. This method
is widely used in engineering applications [26]. In recent years the method has seen
significant improvements in BFS detection precision [27] as well as in calculation
speed increase and works perfectly if the tuning coefficients of the Lorentzian shape
are precisely extracted. However, in practice, due to digitization data losses and
the noise contributed by various other reasons, the spectrum can be significantly
distorted [28,29]. These problems bring new limitations to the BGS reconstructing
method’s application.

3. The third approach is based on calculating the cross-correlation function of the ob-
tained BGS and some previously generated profiles of the Lorentzian shape [30–33].
Additionally, instead of this approach, the spectrum can be obtained by inverting the
original BGS, which is called backward correlation. This method will be described in
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this article in more detail later. Practice has shown that correlation methods are quite
effective in studying signals with low SNR.

4. Another noteworthy method is machine learning [34–37]. These are artificial intelli-
gence methods used to obtain the correct characteristic feature which is not a direct
solution to the problem but is a learning input through applied solutions to many
other similar problems. To obtain the desired value of the frequency shift, it is ad-
visable to use learning from precedents, or inductive learning based on identifying
empirical patterns in the data. Similar methods, including the generalized linear
model (GLM) method, which will also be discussed in detail in this article, have
become widespread and have demonstrated their effectiveness not only in increasing
the accuracy of determining the BFS but also in predicting it.

All these ways of BFS extraction are presented in a simplified manner within the
process of temperature or strain measurements using distributed Brillouin scattering tech-
nique (Figure 1a). The circled numbers correspond to the numbers of the approaches in the
list above.

Figure 1. The classical approach of the BFS extraction process (a) in comparison with the proposed
study (b).

Since the GLM method has demonstrated its effectiveness exclusively on the raw BGS
so far, its potential use for processing previously stored or newly received data that has
already been processed by other methods becomes especially interesting. This work is
focused on the consistent application of BFS extraction methods, and their effect on the
detection precision and the prediction accuracy evaluated at different signal-to-noise ratios.

In the sections below, firstly, the theory of the methods used and the ability of their
joint application and possible advantages of this approach are briefly discussed. Then the
conducted experiments are described, providing the processing details of the obtained
data and then demonstrating that the subsequent use of backward correlation method
and generalized linear model (Figure 1b) help to improve the BFS prediction efficiency
as well as measurement precision in a wide range of SNRs. The classical solutions which
usually apply the single processing with one of the well-known methods show smaller
efficiency. The Lorentzian curve ditting method realized with the Levenberg–Marquardt
(LM) algorithm is one of them. Its theory basics are presented in Section 2.

2. Levenberg–Marquardt (LM) Theory

The most used method to obtain BFS is the Lorentzian curve fitting (LCF) as the
measured BGS resembles a Lorentzian shaped curve [38]. Most of the LCF based methods
require initialization of model parameters. The accuracy of the system, however, is solely
dependent on the BFS determination [39,40]. This means that the pre-selection of the
spectral range is crucial for the fitting to be precise. One method to realize the fitting
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technique is by using a Levenberg–Marquardt (LM) algorithm. The LM algorithm is a
non-linear least square algorithm that has a good convergence property to minimize errors
in the derived BGS spectra. In this paper, the LM algorithm implemented is from the lmfit
module in Python. The module supports the optimization method and is advantageous
when encountering curve fitting related problems, which as mentioned previously is mainly
due to the initial parameter setting that could eventually affect the accuracy of the whole
system. This lmfit module automatically calculates the structure factor, convoluted with the
instrumental resolution, and then calculates the least square minimization to compute the
optimal parameters with high precision.

The Lorentzian model in the lmfit module is based on a Lorentzian or Cauchy–Lorentz
distribution function. The model possesses three main parameters: amplitude (A), width
(w) and peak position (µ). The model is expressed as:

f (x : A, µ, w) =
A
π

[
w

(x− µ)2 + w2

]
(1)

Subsequently, the FWHM can be translated as 2w. Whereas the established Brillouin
unsaturated gain profile g(v) of stimulated Brillouin scattering is expressed as:

g(v) =
gB

1 +
[
( f− fB)

∆ fB
2

]2 (2)

where fB is the central frequency (which in this study is the BFS) and ∆ fB is the BGS
linewidth, and gB is the peak of the spectrum. The lmfit module possess a model.guess
function that enables it to guess the starting values for the model parameters through
an iterative algorithm. From this method, some values for data are taken and utilized to
construct reasonable starting values for the parameters. As the set of parameters is obtained,
the module will subsequently perform a curve fit onto the data array. These methods are
repeated for each of the data arrays. Compared to the conventional LCF method, the
LM based LCF using lmfit is much faster in terms of processing as it is automatically and
relatively more accurate in guessing the starting values for the model parameters.

3. Backward Correlation (BWC) Method Theory

Correlation methods can be used as an alternative to the LCF/LM methods. It was
previously shown [41] that the backward correlation (BWC) method, described in detail
in [42], demonstrates good efficiency in finding the maximum of the spectrum in conditions
of low signal-to-noise ratios, distortion of the spectrum shape and even digitization defects.
In [41], extreme detection conditions were created using digital simulation. How effective
this method will be in processing data obtained by a hybrid method—an experimental
setup and subsequent regeneration of noise—is reflected in one of the parts of the current
study. A basic theory of the BWC method is presented in Figure 2.

Let us imagine that we have registered a BGS using a typical Brillouin optical time-
domain analysis (BOTDA) or Brillouin optical time-domain reflectometry (BOTDR) setup.
After analogue-to-digital conversion, it can be written as a discrete sample set. This sample
set could be presented as 2N + 1 values of Pi (the backscattering power at frequency
fi = f0 + i ∗ ∆ f [ f0 + i ∗ ∆ f , Pi]), where i is in the range of [0; 2N] and corresponds to the
current frequency in BGS obtained from measurement; f0, the scanning start frequency; and
∆ f is a frequency sweeping step. You can see the array of Pi values represented graphically
in Figure 2, coloured blue. The obtained source data could be described as two components.
The first one is the useful data itself, the second component is the noise, distorting the
obtained signal: Pi = Ps

i + Pn
i . In the ideal case, when no noise is present, i.e., Pn

i = 0, a
simple iterative spectral peak seeking could be used to extract the precise BFS value up to
analogue-to-digital conversion error. However, in [42] we have previously demonstrated
that even the insignificant noise (SNR less than 20 dB) leads to precision loss. Let us write
down the source data Pi back to front to get the “backward” BGS P′i = P2N−i. To calculate
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the correlation function we need also to provide the “shift” k between two these data arrays,
so the backward signal with the shift k could be presented as P′′i = P′i−k , considering that
P′′ = 0 in the case when j = [i− k] is out of [0; 2N] range. The parameter k is an integer in
the range of [−2N; 2N]. Let us present the resulting signal as a convolution of the forward
and the backward signals:

X =
2N

∑
i=0

Pi ∗ P′′i =
2N

∑
i=0

Ps
i ∗ P

′′s
i +

2N

∑
i=0

Pn
i ∗ P

′′s
i +

2N

∑
i=0

Ps
i ∗ P

′′n
i +

2N

∑
i=0

Pn
i ∗ P

′′n
i (3)

where ∗ means multiplication. It is clearly seen from Equation (3) that the second and
third parts equal to zero, accurate to a statistical error since the noise and clean BGS data
of the resulting signal are not related to each other. The similar situation with the fourth
term which is also close to zero since the convolution of two independent noise signals
gives extremely low values. The first term represents the clean signals convolution. The
graphical interpretation of Equation (3) is a BWC profile (Figure 2, dotted line).

Figure 2. A schematic diagram combined using real data, describing the method operation principle
(blue graph—forward spectrum; orange graph—backward spectrum with its shifted copy; dotted
line—backward correlation function).

To have the right to apply other techniques after the BWC-profile calculation, we must
estimate the curve shape at first [43]. The convolution of two Lorentzian functions shifted
relative to each other by some value δ is given by (here we neglect discretization effects
and transit from summation to integration)

I( f ) =
∫ ∞

−∞

w2π−2

[( f − fb)2 + w2][( f − fb − δ)2 + w2]
d f (4)

where w is the spectrum width and fb is the BFS. For simplicity, at this stage, let us set the
fb, equal zero. We come to:

I( f ) =
w2

π2

∫ ∞

−∞

d f
[ f 2 + w2][( f − δ)2 + w2]

=
w2

π2

∫ ∞

−∞

d f
[( f − z1)( f − z2)][( f − z3)( f − z4)]

(5)

Here z1−2 = ±i ∗ w, z3−4 = δ± i ∗ w are the points of singularity where denominator
turns to zero.

Let us choose the closed curve consisting of section [−R, R] and semicircle in half-
plane where the imaginary part is positive—as shown in Figure 3. According to residue
theorem, the integral of the function under consideration over the closed curve is equal
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to 2πi ∑ res f and summation is taken over all the singularity points inside the curve—i.e.,
over z1 and z3. In the limit R→ ∞, the integral over the semicircle tends to zero (since the
semicircle length is proportional only to R and the integer and falls as 1/R4). Obviously,
the integral over the [−R, R] section tends to the required value I. Let us calculate the
residues at points z = z1 and z = z3:

Res f |z=iw =
1

(iw + iw)[(iw− δ)2 + w2]
=

1
2iw[δ2 − 2iwδ]

(6)

Res f |z=δ+iw =
1

(δ + iw− δ + iw)[(iw + δ)2 + w2]
=

1
2iw[δ2 + 2iwδ]

(7)

Finally, we can write

I = 2i
w2

π

[
1

2iw[−2iwδ + δ2]
+

1
2iw[2iwδ + δ2]

]
=

w
π

[
2δ2

[2iwδ− δ2][2iwδ + δ2]

]
=

(2w)

π

[
1

[(2w)2 + δ2]

] (8)

I(δ) =
(2w)

π

[
1

[(2w)2 + δ2]

]
=

(2w)

π

[
1

[W2 + δ2]

]
(9)

where w is a FWHM of the BWC profile.
It is obvious that expression Equation (9) is also a Lorentzian function, and, therefore,

has a clearly localized maximum, associated with the desired value. As mentioned above,
the Lorentzian-like shaped signal makes it possible to include the method into processing
circuits. The value of “optimal shift” δ is fairly easy to be recalculated in BFS.

Figure 3. Illustration of taking the integral procedure.

4. Generalize Liner Model (GLM) Theory

GLM is an extension of the general linear model in machine learning that could
compute response based on the maximum likelihood of the training set of data [44,45]. It
allows Lorentzian or Gaussian, Poisson, normal and a few other distribution-like data to
be processed through GLM. The model calculates the mean and matches it to the linear
predictor using a link function with reweighted least square iterative technique onto the
distribution data to produce the maximum likelihood predictions. There are three main
components in GLM: the random component, systematic component and link function. The
link function, as its name suggests, links the other two components together. The random
component, which is the distribution data, with the linear predictor of the systematic
component is given by:

ηi = β0 + β1Xi1 + β2Xi2 + . . . + βkXik (10)
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where βk are the estimated coefficients, and Xik are the independent variables. Then,
a commonly employed link function or identity link transforms the expectation of the
dependent variable µi ≡ E(Yi), to the linear predictor, which is given by:

g(µi) = ηi = β0 + β1Xi1 + β2Xi2 + . . . + βkXik (11)

where µi is the expected value of the response. GLM can also be thought of as a linear model
for a transformation of the expected response. The physical model can be represented as in
Figure 4. Since the behaviour of BFS is linear to the increment of temperature, the GLM
suits the BFS–temperature input–output target for the BOTDA dataset the best.

The random component, which is represented as Y value, is the BGS distribution, and
the systematic component is represented as X. For instance, in this paper, the temperature
categories for each BGS, represented by Y1, Y2, . . . , Yn, are all independently distributed.
The task of the link function is to connect the two variables together.

Figure 4. The use of GLM for BFS extraction.

Before implementing the GLM model, there are a few crucial steps required. First, the
BGS distribution along the fibre was retrieved experimentally using the experimental setup
presented below. The BGS distribution is normalized to 1 in order to increase consistency
and easier object to target mapping. Next, the target value, which in this case is the
temperature measured by the thermocouple, was paired with the noisy raw BGS. The
BGS–temperature pairs will create a dataset that will be used in the training phase in
GLM model.

In the training phase for machine learning models, it is crucial to avoid overfitting.
Overfitting can eventually lead to low accuracy and has a higher chance to occur when
the dataset used is noisy. A noisy dataset may not represent the actual properties of that
particular dataset. Forcing the model to learn such a noisy dataset may make the model
more flexible but, at the same time, can cause overfitting. However, for a different type of
machine learning model, a different technique or solution is required to overcome this and,
at the same time, increase the interpretability of the model.

For GLM, the technique used is called regularization. Regularization tunes the learning
algorithm from relying too much on every data point and helps identify the significant
predictors. It reduces the variance of the model significantly without a substantial increase
in its bias. The regularization technique used in this paper is called Lasso, which stands
for the least absolute shrinkage and selection operator. The Lasso regularization can be
expressed as:

n

∑
i=1

(yi − β0 −
p

∑
j=1

β jxij)
2 + λ

p

∑
j=1
|β j| = RSS + λ

p

∑
j=1
|β j| (12)

where the first term is residual sum of squares (RSS) and β represents the coefficient
responsible for estimating different variables. The Lasso method allows variable selection
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that can yield sparse models. This means that Lasso shrinks the insignificant features or
completely removes some features altogether in order to avoid over-fitting.

5. Experiment Setup

The experimental setup for BOTDA is illustrated by Figure 5. A continuous-wave
(CW) laser source having a linewidth of 100 kHz was used as an input signal with a centre
wavelength at 1552.92 nm. The source radiation was split by a 50:50 optical coupler into a
CW probe and pulsed pump signal. The probe arm is comprised of three main components:
a signal generator, a single side-band modulator and an erbium-doped fibre amplifier. The
CW light was modulated with a high-frequency radio signal by the SSBM which generates
a carrier suppressed double-sideband probe signal. The radio frequency was swept at
1 MHz scanning step between 10.765 to 10.935 GHz, which is the typical range of BGS for a
single-mode fibre. The modulated signal was amplified to 0 dBm by EDFA1 and then sent
into the fibre under test (FUT). The FUT was subjected to five different temperature levels,
45 ◦C to 85 ◦C with 10 ◦C increment.

Figure 5. Experimental BOTDA setup.

The pump arm consists of a pulse generator, Mach–Zehnder modulator, polarization
scrambler and another amplifier. The light was modulated with a square pulse by MZM to
generate the pump signal with an extinction ratio of around 25 dB. The polarization of this
pump signal was scrambled by the PS to reduce the polarization-dependent noise in the
Brillouin signal. The power of this pump was boosted by EDFA2 and launched into the
opposite end of the FUT.

The Brillouin signal from FUT was passed through a fibre Bragg grating (FBG) to
filter out other spectral components such as the Rayleigh scattering and the anti-Stokes
frequency. The signal was converted into electrical by a DC-coupled 1 GHz bandwidth
detector and digitized by an oscilloscope with 500 MHz bandwidth, 2.5 Gbps sampling
rate and averaged 5000 times. For this particular experiment, the FUT was a 1.26 km long
standard telecom-grade single-mode fibre. A short section of the FUT, about 8 m, was
heated to the set temperature using a hot plate. The thermocouple was used to measure the
temperature throughout the experiment as a reference. Table 1 lists the make and model of
key components and devices used in the experiment.
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Table 1. List of components and equipment used in the experiment.

No. Components/Devices Make and Model

1. Laser source Yokogawa AQ4312A
2. Signal generator Hittite HMC-T2220
3. Pulse generator Agilent 33521A
4. Polarization scrambler General Photonics PCD-104
5. Mach–Zehnder modulator iXblue MX-LN-20
6. Single side-band modulator iXblue MPX-LN-20
7. Erbium-doped fiber amplifier Keopsys CEFA-C-PB-LP
8. O/E converter Tektronix P6703B
9. Oscilloscope Teledyne-LeCroy HDO4054
10. Optical spectrum analyzer Yokogawa AQ6370B
11. Fibre Bragg grating Generic. FWHM 1nm. Reflectivity >95%
12. Fibre under test Corning SMF-28e+
13. Polarization controller Newport F-POL-APC

6. Digital Noise

Further, the noise had to be added to the obtained spectra. This could be done in
several ways: for example, to introduce additional attenuation of the optical signal into
the line by adding macro bends or other defects; controllably shift the area of interest to
the end of the line; reduce the duration of the probe pulses; the addition of digital noise.
Using the first two listed methods, it is rather difficult to achieve noise control with good
accuracy, the third method can distort the useful signal form, which will cast doubt on the
correctness of the experiment. The fourth way, associated with the generation of digital
noise based on spectra previously obtained in the experiment, is preferable in view of its
simplicity, transparency and lack of influence on other parameters of the study.

However, digital noise must be generated correctly. It is possible to study the distri-
bution law of noise intensities in the experimentally obtained spectra and generate new
noise according to this law. This approach is appropriate if we assume the linearity of the
photodetector response over the entire frequency range of interest. If we assume that the
response, and therefore the noise characteristics at each individual frequency, can vary,
it is necessary to create noise with this feature in mind. To do this, we took a big set of
individual spectra, exclude the useful signal from them, and, based on the data obtained,
generate noise for each frequency separately. Let us denote these BGS sets, obtained for
each sensor temperature, by the matrix N, in which I is the signal intensity at the discrete
value of the frequency m.

N =

 I1;1 · · · Im;1
...

. . .
...

I1;n · · · Im;n

 (13)

Thus, m is the number of elements in the spectrum; n is the number of spectra for a
given temperature. The values of the matrix are calculated from the matrix N:

B =

n−1 ∑n
i=0 N(I1;i) · · · n−1 ∑n

i=0 N(Im;i)
...

. . .
...

n−1 ∑n
i=0 N(I1;n) · · · n−1 ∑n

i=0 N(Im;i)

 (14)

It is easy to see that the rows of this matrix represent the averaged BGS for each
individual temperature, and therefore for a certain BFS. Further, the set of noise components
N′ was calculated by subtracting the matrix B from the matrix N:

N′ = N − B (15)
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Thus, the columns in this matrix will contain deviations from the average spectrum
inherent for every frequency of the spectrum. If for each discrete frequency m we randomly
choose the number of the element in the column [0, n], then the laws of the intensity
distribution of the noise components for each frequency will be maintained.

The resulting noise must be added to the original spectrum with a known signal-to-
noise ratio, multiplied by the appropriate factor, as shown in the equation below:

S = 10
N(add)

10 (N′(I1;n′) . . . N′(Im;n′) + (N(I1;n) . . . N(Im;n)) (16)

where N(add) is the specified increase in noise, dB; n′ = random(0 . . . n) for the column
corresponding to the frequency m.

We believe that this approach will allow the most realistic reproduction of the BGS
noise pattern. The next section considers the application of Equation (16) to generate digital
noise with a given SNR.

7. Data Processing Strategy

Once the data of five different temperature conditions have been collected experimen-
tally, the BGS is distorted by digital noise as described in the previous section. There are
four different values of SNR that had been generated through digital noise: −2, 3, 6 and
20 dB, comprising four datasets with five different temperature conditions in each of the
datasets. The complete steps of the whole data processing areas are visualised in Figure 6.
Once the added digital noise dataset is generated, the following step is processing the
spectra with the LCF- and correlation-based methods: LM and BWC. The purpose of this
step is to improve the noisy spectra by replacing them with a smooth Lorentzian curve.
Next, the new spectra are normalized to unity for better efficiency when using the machine
learning method in the later stage.

Figure 6. Data processing principle.

There are two ways of obtaining the temperature corresponding to the individual BGS.
One way is to obtain the central frequency of the spectra, i.e., the BFS and the other one is by
using the machine learning method. For the former method, the fibre coefficient has to be
calculated through BFS–temperature slope and then utilizing it for the translation, as what
had been done in single processing. The second method is by using a machine learning
model. As previously mentioned in this paper, the machine learning model used is GLM.
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The GLM model is trained with the four datasets (−2, 3, 6 and 20 dB) containing 100 BGS
of each of the temperature conditions and then tested with 100 spectra samples collected at
75◦ for double processing. Another GLM model is trained with the noisy spectra and then
tested with the same 100 spectra samples collected at 75 ◦C as a benchmark. The described
principle is shown in Figure 6.

8. Results and Discussion

To identify the efficacy of the proposed method, the 100 BGS spectra collected at 75 ◦C
are plotted for each SNR condition. The absolute error results are as illustrated in Figure 7.
The absolute error is calculated based on the difference between the thermocouple reading,
where we regarded it as the true temperature of 75 ◦C and the temperature predicted by
the GLM model and through the BFS calculation process. The x-axis represents the fibre
length described by 100 spectra samples collected at 75 ◦C. On the other hand, the y-axis
represents the absolute error calculated for each of the individual 100 BGS.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. The absolute error results obtained after data processing: (a) −2 dB single processing;
(b) −2 dB double processing (c) 3 dB single processing; (d) 3 dB double processing; (e) 6 dB single
processing (f); 6 dB double processing; (g) 20 dB single processing; (h) 20 dB double processing.
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On the left-hand side, the graphs are plotted for single processing methods (BWC,
LM), as opposed to the right-hand side where the BGS had been processed through double
processing methods (BWC + GLM, LM + GLM). All the plots are inclusive of the benchmark
plot where the noisy spectra were processed using only GLM. Visually, one can notice
that the absolute errors were improved significantly using the double processing methods.
Of all four of the SNR conditions, the single processing method appeared to have higher
error as opposed to the benchmark. However, when going through the double processing
method, the error is comparable, and some are even better than the benchmark.

For -a 2 dB SNR, the maximum error for single processing using LM is 25.5 ◦C whereas
when using the double processing method (LM + GLM) it is 11 ◦C, an improvement of
14.5 ◦C. On the other hand, for single processing using BWC, the error is 11.2 ◦C and for the
double processing method (BWC + GLM), it is 10.9 ◦C. The maximum error for benchmark,
however, is 12.5 ◦C, higher than both double processing methods.

As for a 3 dB SNR, the difference in error between single and double processing for
LM is 7.9 ◦C and 1.3 ◦C for BWC. While for 6 dB SNR, the error has improved by 0.9 ◦C
for the double processing method using LM and 1.4 ◦C for the double processing method
using BWC. Finally, for 20 dB SNR, the improvement using the double processing method
is by 2.4 ◦C for LM and 1.7 ◦C for BWC.

For a deeper insight, the measurement precision and the prediction accuracy were
calculated and shown in Figures 8 and 9. The prediction accuracy is calculated based on
the root mean square error (RMSE) formula taking the thermocouple reading, 75 ◦C, as the
true temperature. On the other hand, the measurement precision is calculated based on
the standard deviation. The temperature measurement precision represents the statistical
variability and how reproducible measurements were even if the points are far away from
the actual temperature reading. In contrast, the temperature prediction accuracy reflects on
the analysis of the predicted result in comparison to the true temperature value. Both are a
measure of errors and both are independent of one another, therefore, it is possible to have
a high measurement precision but less prediction accuracy.

For measurement precision test at a −2 dB SNR, it has been improved by 1.6 ◦C
(1.71 MHz or 37.2 µε) in LM when using the double processing technique. This was
followed by 1.7 ◦C, 0.7 ◦C and 0.5 ◦C improvement respectively for 3, 6 and 20 dB SNRs.
It should be noted that there are two areas of the SNR-axis at Figure 8a showing stable
differences of precisions between single and double processing—for SNRs below 2.6 dB, it
is about 1.5 ◦C (1.6 MHz or 35 µε)—labelled as G1, and for SNRs above 7.6 dB, this value
equals to 0.5 ◦C (500 kHz or 11.6 µε)—labelled as G2. This means that for SHM data with
extremely low SNR, adding GLM after LM in the processing stage is necessary to keep the
precision within acceptable level.

(a) (b)

Figure 8. Measurement precision demonstrated by studied methods: (a) LM; (b) BWC.

On the other hand, for BWC (see Figure 8b), the difference between single processing
and double processing is around 0.4 ◦C (428 kHz or 9.3 µε), where single processing is
the more precise technique for a −2 dB SNR. However, for other SNR conditions (above
the SNR value of approximately 0.1 dB, which was found by approximation), the double
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processing technique is more precise than single processing. For 3, 6 and 20 dB SNRs, the
difference is 0.3 ◦C, 0.4 ◦C and 0.3 ◦C, respectively. The measurement precision for double
processing using BWC surpass the benchmark where it is 2.6 ◦C, 1.2 ◦C, 0.8 ◦C and 0.6 ◦C
for −2, 3, 6, and 20 dB respectively. As for the double processing using LM, the precision is
comparable to the benchmark.

A similar pattern can be seen in prediction accuracy plots. At a −2 dB SNR for LM
(Figure 9a), the significant difference was found to be 8.3 ◦C (8.9 MHz or 193 µε). This was
followed by 3.3 ◦C, 1.7 ◦C and 1.8 ◦C accuracy improvement for 3, 6, and 20 dB respectively.
The graph shows that for SNRs below approximately 5 dB the “accuracy to SNR” slopes
differ (marked as angles g1 and g2). It gives reason to suppose that further decrease of SNR
could lead to the total signal loss when using a single processing technique with LM, while
the application of double processing gives hopes for more precise BFS detection.

Comparably to the measurement precision, the single processing technique is more
accurate at a −2 dB SNR for BWC (Figure 9b), where the difference was found to be 0.9 ◦C
(963 kHz or 21 µε). The crossing of red and green lines occurs at approximately 0.2 dB,
which is also found by approximation. However, a more accurate reading was scored
by the double processing technique for other SNR conditions for BWC. The difference is
0.9 ◦C, 0.8 ◦C and 0.7 ◦C for 3, 6 and 20 dB SNRs respectively. The prediction accuracy for
benchmark is found to be 4.3 ◦C, 1.9 ◦C, 1.3 ◦C, and 1.1 ◦C. This means that both double
processing techniques scored a comparable accuracy result to the benchmark.

(a) (b)

Figure 9. Prediction accuracy demonstrated by studied methods: (a) LM; (b) BWC.

As can be seen from the figures presented above, double data processing is more
efficient in almost all cases, both in the case of measurement precision and prediction
accuracy. This suggests that the tasks set can be considered completed and we can proceed
to a discussion of the general results obtained.

9. Conclusions and Future Work

In this work, we have successfully demonstrated the subsequent application of various
methods for determining BFS, which gave a gain from tenths to several Celsius degrees
when determining the temperature at a single point of an optical fibre. The graphs provided
above showed that double processing is more efficient in most cases.

The conducted studies allowed us to conclude that the first part of the data processing
algorithm should be finding the signal-to-noise ratio for each individual BGS. Depending on
this value, the entire further signal processing strategy can be built. Thus, when processing
signals with a low signal-to-noise ratio, it is recommended to use the BWC method as the
first stage. With the SNR = 2 dB, even with single processing, it gives a gain of 0.5 ◦C
(535 kHz or 11.6 µε) compared to the LM method. In the case of the BWC method, the
double processing strategy should be as follows: at SNR <0 dB, more confidence should
be given to the signal after single processing, and at higher signal-to-noise ratios, double
processing is more effective.

The results obtained are in good agreement both with simulation and experiments
in our previous works [40,41,46] and with the results of other authors. Thus, in [47], Ha-
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neef et al. examine a method called cross reference plot analysis (CRPA) and compare it with
the well-known cross-correlation and LCF methods. The cross-correlation method, which is
similar in nature to the backward correlation method, also exhibits higher accuracies in data
regions with low SNR. The CRPA method itself, which also uses the convolution operation
in its algorithm, gives the BFS determination accuracy at SNR = 6 dB about 1 MHz, which
is slightly higher than that obtained by us. However, it is worth noting that for the CRPA
method this accuracy is constant, while the artificial intelligence algorithm improves the
accuracy with further training.

In [33], where the cross-correlation method for determining BFS is considered in
detail, an accuracy of 2.7 MHz was achieved at a 12 dB signal-to-noise ratio, while our
approach gives an accuracy of 0.7 MHz. Of course, it would be appropriate to carry out
all such comparisons on the same initial data, but in fact, there are not many works where
researchers compare their methods on different SNRs (even with different data). During
the work on the material, we have not found a single scientific article that shows the
fundamental possibility and successful application of combining BGS processing methods
into chains (sequences), similar to how the methods of sequential processing of audio
material are arranged in recording studios. We have proved that the formation of such
sequences is possible due to the universality of the methods and the similarity of their input
and output data. At this stage, double processing was the first step to multiprocessing.

We believe that for applications in SHM for concrete and reinforced concrete objects
with normal operating conditions when the fibres are not subjected to extreme strains,
the use of double processing is more appropriate. This strategy is suitable for increasing
accuracy in most cases. According to [48], a fibre extension of 1000 µε (0.1%) results in an
increase of only 0.108 dB/km in line attenuation. So when the fibre is stretched by units or
tens of µε, the spectrum will not be dramatically distorted. A somewhat different situation
becomes in the scientific problems of SHM of concrete structures. For example, when
analyzing critical deformations of a reinforced concrete structure, much larger deformations
(up to 2 mm/m, which is equivalent to 2000 µε or 0.2%) can be studied [49]. For a big
research object such as a fragment of a residential building, extended lengths of optical
fibre are used to obtain more information, then each kilometre with such deformations will
reduce the SNR by more than 0.2 dB. Even more interesting is the situation with research on
the shape memory materials [50]. In addition to the fact that they can have higher strains
(up to 2.5%), they can also be below zero. This complicates the task and, provided that
the integrity of the fibre is maintained, gives an almost twofold signal loss (>2.7 dB) per
sensor kilometre. However, such a case is not frequent: usually, the dimensions of products
made of shape memory materials are much smaller, so signal losses due to the impact
on a long sensor are unlikely. At the same time, at fibre deformations close to breaking,
when irreversible deformations are formed in the quartz glass and polymer coating, the
dependence of the optical signal attenuation on the deformation magnitude can hardly be
considered linear. In this regard, strong signal distortions are possible, thus the processing
strategy in such cases must be studied in the future. The disadvantages of the proposed
method include the obvious two-stage nature, which complicates the algorithm. However,
this can be overcome by using more substantial computing resources. Their cost compared
to the cost of BOTDA or BOTDR is extremely low. Another negative feature of the approach
using a neural network is the requirement to train the system for each new application.
However, it should be noted that any traditional method, when adapted to a new task,
requires adjustment by a specialist, which also takes time; while the neural network learns
on its own.

Another interesting area of future exploration may be the study of BFS in some-
what “exotic” fibres, for example, active ones. Such optical fibres have a complex multi-
component structure—in addition to traditional silica and germanium oxides. They quite
often contain aluminium oxide, and very rare earth elements such as erbium, ytterbium,
holmium, etc. Each of these components significantly affects the final BFS, the accurate
value of which is a “fingerprint” of a given sample and characterizes the correctness of the
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creation of its composition. However, such fibres have rather high optical losses (30 dB/m)
in the region of 1.55 microns due to the presence of these elements. This makes the study
of extended sections of such fibres by reflectometry methods rather difficult, although
realizable [51–54]. In the case of Brillouin reflectometry, the use of short probe pulses leads
to distortion of BGS, the appearance of a rather intense noise component. This task also
opens a new page in the application of LM, BWC and GLM separately and together and
can become a worthy part of research devoted to the multistage study of active fibres.

One more promising direction in the study of the sequential application of the LM,
BWC and GLM methods can be their use in polarization-Brillouin reflectometry [46]. In
such setup, linearly polarized radiation is injected into one or sequentially into different
polarization axes using linear polarizers or polarization beam splitters. Each time light
passes through such elements, it loses 3 dB of optical power or more. With the dynamic
ranges of Brillouin reflectometers of tens of decibels and the presence of several forward
and backward passages through such elements in the optical scheme, the study can be
carried out with an extremely low signal-to-noise ratio. In some cases, the spectrum can
show two superimposed Stokes or anti-Stokes of two polarization modes, which leads to a
deviation of the shape of the resulting spectrum from the Lorentzian curve. Under these
conditions, it would undoubtedly be interesting to evaluate the productivity of GLM, BWC
and LM methods, which the authors propose to do in the future.
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