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Introduction

Metabolomics is the quantitative measurement of 
the dynamic multiparametric metabolic responses of 
living systems to pathophysiological stimuli or genetic 
modifications.[1] Metabolites can be viewed as a close 
recapitulation of disease phenotypes, and they may represent 
the ongoing pathogenesis in an organism to a greater extent 
than changes in gene expression.[2] Consequently, it has 
deepened our understanding of the biological mechanisms 

involved in several noninfectious diseases and provided 
a platform for the identification of new biomarkers.[3] 
Metabolic signatures have been exploited in the study of 
several diseases, such as Alzheimer’s disease,[4] Parkinson’s 
disease,[5] myocardial ischemia,[6] hypertension,[7] cancer,[8] 
and diabetes.[9‑12] However, this powerful analytical tool 
has not been widely applied to infectious diseases for the 
development of diagnostic biomarkers.[13‑15]

Tuberculosis (TB) is a major worldwide health problem, 
with a global estimate of 9.4 million incidences in 2010 
(range; 8.9  ×  106–9.9  ×  106). Of the more than 2  billion 
people infected with Mycobacterium tuberculosis  (Mtb) 
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globally, more than one‑tenth are likely to develop active 
TB during their lifetime. In many regions, notably in 
developing countries with high TB incidences, diagnosis is 
neither sensitive nor specific, and an estimated 40% of TB 
patients fail to be correctly diagnosed.[16] In recent years, 
advancement in the field of metabolomics has mainly been 
applied to metabolic profiling about TB drug metabolism, 
rather than diagnosis of TB.[17‑21] However, the serum that is 
successfully used in TB diagnosis on the basis of metabolic 
profiling is not by much.[22,23] A previous study by Weiner 
et al. using gas chromatography‑mass spectrometry  (MS) 
showed differences in metabolic profiles among the 
uninfected individuals, individuals with latent  (inactive) 
TB, and patients with active TB.[24] In a recent study, nuclear 
magnetic resonance spectroscopy was used to characterize 
the metabolism of the host during Mtb infection.[25] However, 
relatively few methods are considered to be capable of 
distinguishing between active TB and diseases other than 
TB, such as lung cancer, pneumonia, and so forth. It can be 
expected that several of the observed changes are the result 
of a general inflammatory process rather than a specific 
response to TB. In this study, 120 patients with active TB 
and 251 controls who were either healthy or had diseases 
other than TB (non‑TB group) were enrolled. Using ultra 
performance liquid chromatography‑MS (UPLC‑MS), we 
investigated the feasibility of identifying small molecule 
biochemical profiles in serum for gaining novel biological 
insights into the mechanisms underlying TB. The unique 
feature of this study was to employ the largest number of 
patients included in any study of a similar nature to date 
(120 with active TB and 251 controls). Multivariate statistical 
analysis was implemented to discriminate patients with active 
TB from the control subjects on the basis of their metabolic 
profiles. We identified 12 distinct biomarkers, including 
clusters that could be categorized as amino acids, fatty acids, 
lysophosphatidylcholine (lysoPC), and terpenoid compounds. 
Finally, these new metabolite markers, which can distinguish 
TB from non‑TB diseases, led to a number of hypotheses. 
Our results provide specific insights into the biology of TB 
and may offer new avenues for TB diagnosis or therapy.

Methods

Chemicals
Acetonitrile was purchased from Merck and Co. 
(Merck KGaA, Germany) and formic acid was obtained 
from Shanghai Nanxiang People Chemical Factory (China). 
All other solvents were of high‑performance liquid 
chromatography grade. Reference standards were purchased 
from Sigma‑Aldrich (St. Louis, MO, USA) and ultrapure 
water was prepared by Milli‑Q system (Millipore Co., USA).

Serum sample collection
Serum samples were collected at Tianjin Haihe Hospital from 
105 healthy individuals who visited the hospital for medical 
check‑up, 146 patients with lung diseases that were due to 
non‑TB conditions, and 120 patients with clinical signs of 
TB  [Table  1]. TB patients had the following symptoms: 

Cough for more than 2 weeks and at least two additional 
symptoms  (hemoptysis  [coughing up blood], breathing 
difficulty, fever, night sweats, weight loss, chest pain, or 
fatigue). All patients were diagnosed based on chest X‑rays 
and sputum samples obtained from each TB patient were 
analyzed by Ziehl‑Neelsen staining and mycobacterium 
growth indicator tube culture. Active TB was diagnosed 
when (1) Mtb was cultured, (2) a caseating granuloma was 
found in the lung tissue by transthoracic needle biopsy 
and showed an appropriate response to treatment; or 
(3) clinical findings were compatible with TB, no clinical 
improvement was seen following treatment with empirical 
antibiotics, and treatment with anti‑TB medication resulted 
in clinical and radiological improvement. The 251 controls 
without comorbidities were matched to the TB group with 
respect to age and sex. Whole‑blood samples were drawn 
from a peripheral vein between 7:00 am and 9:00 am. Sera 
from patients and healthy volunteers were acquired from 
ethylenediaminetetraacetic acid‑preserved whole blood 
samples following centrifugation and were stored at −80°C 
until analysis. At the time of sample collection, none of the 
patients were receiving treatment. Before the UPLC‑MS 
analysis, serum samples were defrosted at room temperature 
for <20 minutes and 200 µl aliquots were combined with 
300 µl of saline (0.9% NaCl in 20% D2O/80% H2O) and 
then centrifuged at 12,000 ×g for 5 minutes. A volume of 
500 µl aliquot of the supernatant was pipetted into a 5 mm 
tube, and samples were stored at −80°C until further use.

Sample extraction
Before further metabolomics analysis, samples were 
defrosted at room temperature for <20  minutes. Briefly, 
400 µl of acetonitrile was added to the samples in a 4:1 (v/v) 
ratio. These sample mixtures were then homogenized by 
shaking them for 30 seconds and centrifuged at 15,000 ×g 
for 20 minutes at −4°C. The supernatant was collected and 
divided into three fractions: One for analysis by UPLC‑MS, 
one for quality control (QC) analysis, and one was stored 
for further analysis (if necessary). A 500 µl aliquot of the 
supernatant was pipetted into a 5 mm test tube and then 
loaded into the UPLC‑MS/MS system for analysis.

Instruments and conditions
In the first part of the study, samples were measured with a nano 
liquid chromatography system (Thermo Fisher Scientific, 
Germaring, Germany) coupled on‑line to a hybrid linear 
ion trap/OrbitrapTM mass spectrometer (LTQ‑Orbitrap‑XL, 

Table 1: Characteristics of TB patients and the control 
groups

Items Active  
TB

Healthy 
control

Non‑TB 
group

Total individuals (n) 120 105 146
Age (years)* 48.32 ± 18.15 42.71 ± 15.31 50.35 ± 17.41
Gender (female/male) 55/65 49/56 61/85
There was no significant difference in demographic data between 
TB patients and the controls. *Data are presented as mean ± SD. 
SD:  Standard deviation; TB: Tuberculosis.



Chinese Medical Journal  ¦  January 20, 2015  ¦  Volume 128  ¦  Issue 2 161

Thermo Fisher Scientific). Samples were loaded onto a 
trap column (PepMap C18, 300 μm internal diameter [ID], 
5 mm length, 5 μm particle size, 100 Å pore size; Thermo 
Fisher Scientific), then washed and desalted for 15 minutes 
using 0.1% trifluoroacetic acid in water as the loading 
solvent. Next, the trap column was switched in‑line with 
the analytical column (PepMap C18, 75 μm ID, 250 mm 
length, 3 μm particle size, 100 Å pore size; Thermo Fisher 
Scientific) and peptides were eluted with the following 
binary gradient: Starting with 100% solvent A and B, where 
solvent A consisted of 2% acetonitrile and 0.1% formic 
acid in water, and solvent B consisted of 80% acetonitrile 
and 0.08% formic acid in water. The column flow rate was 
set at 200 nl/min. For electro‑spray ionization (ESI), nano 
ESI emitters  (New Objective, Woburn, MA, USA) were 
used, and a spray voltage of 4.5 kV was applied. For MS 
detection, a data‑dependent acquisition method was used: 
High‑resolution survey scan from 50 to 1000 (m\z). Orbitrap 
full scan spectra and ion trap MS/MS fragmentation spectra 
were acquired partially simultaneously.

Quality control solution composition
To observe the stability of the machine, QC solution was 
formulated from the mixed supernatants of all of the samples. 
The mixed samples solution was divided into 31 aliquots. 
Ten copies of QC solution were detected continuously before 
analyzing, and then the rest of copies were randomly inserted 
between each of the 10 sample runs [Figure 1]. The order 
in which samples were analyzed was randomized using 
the Excel 2013 software (Microsoft, USA), and a posttest 
blank sample was run after each of the 10 samples to avoid 
cross‑contamination.

Compound identification, quantification, and data 
curation
The UPLC‑MS raw data were converted and processed 
by using MZmine 2.10  (http://www.biomedcentral.
com/1471‑2105/11/395). Briefly, chromatograms were built 
and peaks were recognized using the local minimum search 
function, and the ion intensities, matching m/z, and retention 
time was grouped into peak lists. Later, these peak lists were 
exported individually and imported into MetaboAnalyst 
2.0 (http://nar.oxfordjournals.org/content/early/2012/05/01/
nar.gks374.full). The peaks were aligned and normalized 
to the sum of all detected peaks. The processed and 
normalized data were imported into SIMCA‑P (Umetrics, 
Umeå, Sweden) for multivariate statistical analysis. To 
distinguish TB from the controls, orthogonal partial least 
squares discriminant analysis (OPLS‑DA) was performed. 
Based on the OPLS‑DA model, the specific metabolites were 
determined by applying Mann–Whitney U‑test (SPSS 15.0, 
IBM, NY, USA) with P value threshold of 0.05. For each 
biomarker, a receiver operating characteristic (ROC) curve 
was generated. The area under curve (AUC) value and 95% 
confidence interval  (CI) were calculated to determine the 
specificity and sensitivity of TB. To increase the diagnostic 
accuracy of combined changes in serum metabolites levels, 
multiple logistic regression analysis was carried out.

Results

Baseline characteristics
Table  1 lists the baseline characteristics of enrolled 
patients and the controls. The active TB patients were 
48.32  ±  18.15  (mean  ±  standard deviation) years old on 
average and consisted of 65  males and 55  females. The 
healthy controls were 42.71 ± 15.31 years old and consisted 
of 56  males and 49  females. The non‑TB controls were 
50.35  ±  17.41  years old and consisted of 85  males and 
61  females. Of the 146  patients with non‑TB controls, 
51 patients (60.1%) had lung cancer, comprising the cancer 
subgroup (L); 45 patients (39.9%) made up the pneumonia 
subgroup (P); 28 patients were in the chronic obstructive 
pulmonary disease (COPD) subgroup (C); and 22 patients 
comprised the bronchiectasis subgroup (B).

Ultra performance liquid chromatography‑mass 
spectrometry platform performance
Representative UPLC‑MS chromatograms of the serum 
samples of the patients with active and the subjects with the 
healthy and non‑TB controls were shown in Figure 2. The 
peaks were very well resolved and were evenly dispersed 
across the entire retention time domain, showing the 
high quality of the raw data. There were many significant 
differences in the areas and heights of peaks among groups, 
as a matter of fact, it is inferred that differences in peaks 
resulted from metabolic derangements along with diseases.

Differentiation between tuberculosis patients and 
controls, and among the subgroups based on OPLS‑DA
As mentioned above, the overall peak profiles of the three 
groups looked quite different, which suggested that these 
profiles could be used to discriminate TB from the controls. 
For the holistic treatment of these data, multivariate 
analysis was used to identify the metabolomic differences 
between the groups. For data reduction and pattern 
recognition (PR), a series of PR methods were applied using 
SIMCA ‑P 12.1 software  (Umetrics, Sweden). Principal 
component analysis (PCA) was initially applied to the data 

Figure 1: Quality control (QC) map. ▲: QC point. First ten QC points 
were run to and then the rest of the QC points were interleaved between 
the ten test samples. None of the QC points produced results outside 
of the control range.
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to visualize inherent clustering between the three groups. 
PCA involves the transformation of a multidimensional set 
of possibly correlated variables into two linearly uncorrelated 
dimensions. This model explained an estimated 41.4% of the 
original data (R2 = 0.414 and Q2 = 0.334) [Figure 3]. However, 
in addition to the effects of the diseases on the metabolome, 
there were other factors that are known to contribute to 
differences of endogenous metabolites, such as age and diet.

Therefore, orthogonal signal correction technology was used 
to filter out unrelated variable information and retain related 
variables. Hence, OPLS‑DA model was introduced, which is 
used to determine the maximum separation between different 
kinds of samples according to the sample classification 
information. The OPLS‑DA model was used to identify 
biomarkers that accounted for the differences between the 
three groups, and it clearly distinguished between the TB group 
and the two control groups (non‑TB disease subgroups were 
combined) [Figure 4]. The results showed that 82.1% of samples 
were consistent with the discrimination of the model, and the 
predictive ability of the model was 58.2% (Q2Y = 0.582). These 
findings indicate that the OPLS‑DA model may pave the way 
for the diagnosis of TB and permit differentiation between 
other kinds of related diseases.

Identification of tuberculosis‑specific metabolites
The successful use of UPLC‑MS metabolomics analysis 
and the OPLS‑DA model described above to distinguish 
between the TB group and control groups led us to search for 
the specific metabolites that contributed to the metabolomic 
differences. Based on the OPLS‑DA model, the signals that 
were highly correlated and had high signal‑to‑noise ratio 
values were selected. The metabolites of >400 small molecules 

in the sera of patients in the three groups were explored. The 
molecules responsible for these signals were identified and 
differences in the abundance of these small molecules were 
determined by applying Mann–Whitney U‑test for each of 
the three possible comparisons, using a P value threshold of 
0.05. Twenty‑seven metabolites were detected at significantly 
different levels between the active TB group and the control 
groups. Of those metabolites identified to differ significantly 
between groups, 12 metabolites [Table 2 and Figure 6], were 
clustered in the fatty acid, phospholipids, amino acids, and 
terpenoid compounds metabolite sets. To confirm that the 
three groups differed in terms of the serum levels of these 
metabolites, a heat map, a graphical representation of data 
where the individual values are represented as colors, was 
drawn [Figure 5]. Heat maps are 2D displays of the measured 
experimental values in the data matrix. The relatively high 
abundance of any specific metabolite is represented by 
yellow‑colored squares  (pixels) and a low abundance is 
represented by orange‑colored squares.

The results showed that the three groups were significantly 
different in terms of the abundances of these biomarker 
metabolites in the patient sera.

Differences in small metabolites can be used as specific 
and sensitive biosignatures of tuberculosis status
To investigate whether the characteristics of the metabolites 
that significantly differed among the three groups could be 
efficiently exploited for building a sensitive biosignature of 
TB status, ROC curves, which have been conventionally used 
to evaluate diagnostic performance in clinical research, were 
calculated. In the specific metabolites that were decreased in 
active TB patients, the ROC curves of 3D, 7D, 11D‑phytanic 
acid, behenic acid and threoninyl‑γ‑glutamate exhibited 
excellent efficiency with a AUC values of 0.904 (95% 
CI: 0.863–0.944), 0.93 (95% CI: 0.893–0.966) and 0.964 
(95% CI: 0.941–0.988), respectively [Table 3  and Figure 7a]. 

Figure 2: High performance liquid chromatography‑mass spectrometry 
chromatograms of the serum samples of patients from the 
tuberculosis (TB) group, the healthy group, and the four subgroups 
of patients with non‑TB diseases. Abscissa: Retention time. Ordinate: 
Relative abundance. The numbers on the point of the peaks indicate 
the retention time of each substance. T indicates TB group; N indicates 
healthy control; P indicates pulmonitis subgroup; L indicates lung 
cancer subgroup; C indicates chronic obstructive pulmonary disease 
subgroup; B indicates bronchiectasis subgroup.

Figure 3: Principal component analysis (PCA) model. PCA scores plots 
of the SIMCA‑P + 12.0.1.0 generated data, showing tuberculosis (TB) 
patients versus healthy controls and the non‑TB group collected serum 
samples before the removal of ‘noise’ and interfering compounds from 
the dataset. ◆: TB group; ▲: Healthy control; ▲: Pulmonitis subgroup; 
▲: Lung cancer subgroup; ▲: COPD subgroup; ▲: Bronchiectasis 
subgroup.
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Kynurenine, quinolinic acid (QUIN), and presqualene 
diphosphate  (PSDP) showed significant up‑regulation in 
patients with active TB (P < 0.05). The AUC values for these 
metabolites were more than 0.8  [Table 3 and Figure 7b], 
showing moderate performance of diagnostic value. The 
largest and smallest resulting AUC values were 0.964 and 

0.720 [Table 3, Figure 7a and b], which indicated that these 
biomarkers may potentially be involved in the disease 
mechanisms. Using multiple logistic regression analysis 
of these 12 metabolites, the combination of lysoPC (18:0), 
behenic acid, threoninyl‑γ‑glutamate, and PSDP was used to 
represent a suitable biomarker group that allowed efficient 
differentiation of active TB from the controls. The resulting 
ROC curve of the biomarker combination had an AUC value 
of 0.991 (95% CI: 0.982–1.000) [Table 3 and Figure 7c], 
which reflects strong significant difference between active 
TB and the control patient groups.

Comparison between patients with active tuberculosis 
and nontuberculosis disease subgroups based on serum 
metabolic profiling
To determine whether our metabolomic approach could 
be used to make a distinction between the active TB and 
non‑TB groups, Mann–Whitney U‑test was applied for 

Figure 5: Heat map based on the differences in the abundance of 
small metabolic compounds among sera from the tuberculosis (TB) 
group, healthy group and non‑TB group. Yellow color indicates higher 
abundance of metabolites; Orange color indicates lower abundance 
of metabolites.

Figure  4: (a) OPLS‑DA two‑dimensional model. ◆: TB group; 
▲: Healthy control; ▲: Pulmonitis subgroup; ▲: Lung cancer 
subgroup; ▲: COPD subgroup; ▲: Bronchiectasis subgroup. 
(b) OPLS‑DA three‑dimensional model. OPLS‑DA scores plot 
discriminating serum samples of tuberculosis (TB) patients, healthy 
control and non‑TB group based on the metabolite profiling data. 
▲: TB group; ▲: Healthy control; ▲: Pulmonitis subgroup; ▲: Lung 
cancer subgroup; ▲: COPD subgroup; ▲: Bronchiectasis subgroup.

b

a

Table 2: Details of the 12 metabolites best describing the variation between patients with active TB and the controls

Metabolite Preferred 
adducts

Molecular 
weight (m/z)*

P Retention 
time

Molecular 
formula†

Trend 
(O/T)‡

Palmitic acid M + NH4 274.274 0.000053 6.17544 C16H32O2 ↓
LysoPC (16:0) M + H 496.339 0.000765 7.5063 C24H50NO7P ↓
LysoPC (18:0) M + Na 546.352 0.001066 8.6785 C26H54NO7P ↓
3D, 7D, 11D‑phytanic acid M + NH4 330.336 0.000654 7.3454 C20H40O2 ↓
Behenic acid M + NH4 358.367 0.000954 7.92855 C22H44O2 ↓
Phytal M + NH4 312.329 0.002911 7.35257 C20H38O ↓
Threoninyl‑γ‑glutamate M + H 248.124 0.000097 5.66712 C9H17N3O5 ↓
Kynurenine M + NH4 341.24 0.003481 4.80868 C10H12N2O3 ↑
Quinolinic acid M + H 565.283 0.002253 4.46054 C7H5NO4 ↑
Presqualene diphosphate M + Na 609.31 0.001955 4.49312 C30H52O7P2 ↑
LysoPC (P‑18:1 (9Z)) M + H 506.36 0.000501 8.67014 C26H52NO6P ↓
LysoPC (P‑16:0) M + H 480.344 0.000851 7.82707 C24H50NO6P ↓
*Molecular weight (m/z) is denoted by its monoisotopic mass, †The chemical formulas were predicted based on accurate mass by using the molecular 
formula generator algorithm of Mass Frontier 6.0 software (Thermo Fisher Scientific), ‡The trend of marker levels in the active TB group. ↑ and ↓ 
indicate increased and decreased levels, respectively, compared with the healthy group. TB: Tuberculosis; LysoPC: Lysophosphatidylcholine.
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comparison between the active TB group and the subgroups 
of non‑TB. The findings indicated that the UPLC‑MS 
analysis of serum may help in the diagnosis of TB and 
non‑TB as remarked above. Finally, the specific markers 
between active TB and the subgroups were explored as 
below [Table 4]:
•	� The serum levels of PSDP, lysoPCs, 3D, 7D, 

11D‑phytanic acid, behenic acid, hypoglycin B, phytal and 
threoninyl‑γ‑glutamate were significantly different between 
the active TB and lung cancer subgroups (Р < 0.05)

•	� Palmitic acid, lysoPC (16:0), 3D, 7D, 11D‑phytanic acid, 
behenic acid, phytal, lysoPC (P‑16:0), and kynurenine 
were more effective in discriminating active TB from 
bronchiectasis (Р < 0.05)

•	� Palmitic acid, lysoPC (16:0), 3D, 7D, 11D‑phytanic acid, 

behenic acid, phytal, threoninyl‑γ‑glutamate, kynurenine, 
and lysoPC  (P‑16:0) were expected to become more 
effective in diagnosis and differentiation of active TB 
from COPD (Р < 0.05)

•	� The serum levels of palmitic acid, lysoPC (16:0), 3D, 7D, 
11D‑phytanic acid, and kynurenine were significantly 
different between the active TB and pneumonia 
subgroups

•	� LysoPC  (16:0) was the only single metabolite to 
significantly distinguish active TB from the diseases 
other than TB (Р < 0.05).

Discussion

The present study used UPLC‑MS to profile active TB and 
build a statistical model that enabled the identification of 
biomarkers for disease diagnosis based on metabolomic 
research. Findings indicated that 12 metabolites were 
unambiguously altered in serum of active TB patients 
as compared with two other groups  (healthy controls 
and non‑TB disease patients)  [Table  2]. In the following 
discussion, we consider the biological relevance of these 
prominent metabolites and their potential biosignatures for 
the diagnosis of active TB.

Fatty acids
It is universally acknowledged that Mtb preferentially relies 
on fatty acid metabolism to maintain chronic infection.[26] 
When there is persistent infection in the lung tissue, the fatty 
acids, which are metabolized in two ways (in β‑oxidation 
decomposition and the glyoxylate cycle) may be a source 
of carbon and energy of Mtb.[27] In this study, palmitic 
acid, phytanic acid and behenic acid, which decreased 
significantly in the sera of TB patients compared with the 
healthy group, bronchiectasis, and COPD subgroups, may 
be among the products of the fatty acid consumption. In 
addition, palmitic acid, as the most abundant free fatty acid 
in the human body, can induce inhibition of the electron 
transport chain of macrophage, which, in turn, reduces 
adenosine triphosphate production in the mitochondria 
and stimulates the activity of the mitochondrial apoptotic 
pathway. Another study that further supports our findings was 
that the palmitic acid, as one of the active compounds from 
the plant extraction, has some toxicity toward mycobacteria, 
but it is not highly toxic.[28]

Phytanic acid, a 20‑carbon branched chain fatty acid, 
can be used as the substrate of CYP124A1,[29] which is a 
heme‑containing enzyme that belongs to the cytochrome 
p450 superfamily. When CYP124A1 was combined with 
the substrate of phytanic acid, the molecular conformation 
of CYP124A1 changed in favor of lipid oxidation, to play 
a better role in the important biological functions of Mtb.[30] 
Meanwhile, phytanic acid, as a substrate of CYP124A1, 
was consumed.

In our study, behenic acid was detected in a lower 
concentration in the TB group than the healthy and non‑TB 
groups, except for the pneumonia subgroup. Behenic 

Figure  6: Relative abundances of metabolites in tuberculosis 
patients  (T), healthy controls  (O) and nontuberculosis patients  (N). 
The metabolites changed in relative abundance between groups were: 
Palmitic acid, LysoPC (16:0), LysoPC (18:0), phytanic acid, behenic 
acid, phytal, threoninyl‑γ‑glutamate, kynurenine, quinolinic acid, 
presqualene diphosphate, LysoPC (P‑18:1 (9Z)), and LysoPC (P‑16:0). 
Black lines indicates sample means. Asterisks indicate significant 
differences between 2 groups (results from t‑tests corrected for multiple 
testing; *P < 0.05; **P < 0.01).
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acid has been identified as a fatty acid that increases 
cholesterol in humans.[31] Cholesterol has a significant role 
in the development of TB, because it is necessary for the 
good functioning of macrophages and lymphocytes.[32] 

In the macrophage cell membrane, cholesterol directly 
participates in the function of phagocytizing Mtb, while, 
in the lymphocyte membrane, it is involved in the 
differentiation and proliferation of cytotoxic cells. Apart 

Table 3: The ROC curves of the 12 metabolites found to represent potential biomarkers of active TB

Test result variable (s) Area Standard 
error§

Asymptotic 
significant||

Asymptotic 95% confidence 
intervals

Lower bound Upper bound
Palmitic acid* 0.772 0.033 0.000 0.708 0.837
LysoPC_16_0* 0.786 0.032 0.000 0.723 0.850
LysoPC_18_0* 0.720 0.036 0.000 0.650 0.790
3D, 7D, 11D‑phytanic acid* 0.904 0.021 0.000 0.863 0.944
Behenic acid* 0.930 0.019 0.000 0.893 0.966
Phytal* 0.820 0.031 0.000 0.761 0.880
Threoninyl‑γ‑glutamate* 0.964 0.012 0.000 0.941 0.988
LysoPC P18* 0.770 0.033 0.000 0.706 0.834
LysoPC P16* 0.732 0.036 0.000 0.662 0.802
Kynurenine† 0.826 0.032 0.000 0.764 0.888
Quinolinic acid† 0.854 0.033 0.000 0.788 0.919
Presqualene diphosphate† 0.856 0.03 0.000 0.791 0.920
LysoPC (18:0), behenic acid, threoninyl‑ 
γ‑glutamate, and presqualene diphosphate‡

0.991 0.005 0.000 0.982 1.000

*Decreased metabolites, †Increased metabolites, ‡The biomarker combination, §Under the nonparametric assumption, ||Null hypothesis: True 
area = 0.5. TB: Tuberculosis; LysoPC: Lysophosphatidylcholine; ROC: Receiver operating characteristic.

Figure 7: (a) The receiver operating characteristic (ROC) curve of metabolites that were decreased in the active tuberculosis (TB) group compared 
with controls. ROC curves of metabolites for which the serum concentrations were significantly decreased in the active TB group compared 
with controls. The ROC curves of each metabolite that was decreased in concentration in the TB group sera showed a moderate distinguishing 
efficiency. (b) The receiver operating characteristic (ROC) curve of metabolites that were increased in the active tuberculosis (TB) group compared 
with controls. ROC curves of metabolites for which the serum concentrations were significantly increased in the active TB group compared 
with controls. The ROC curves of each metabolite that was increased in concentration in the TB group sera showed a moderate distinguishing 
efficiency. (c) The receiver operating characteristic (ROC) curve of the biomarker combination identified as a putative serum signature of active 
tuberculosis (TB).The ROC curve of the combination of lysophosphatidylcholine (18:0), behenic acid, threoninyl‑γ‑glutamate, and presqualene 
diphosphate showed excellent distinguishing efficiency between patients with active TB and controls.
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from this, cholesterol also has the functions of activating 
lymphocytes, CD4+ T cells, CD8+ T cells, and γ‑T cells, 
and promoting the release of interferon and tumor necrosis 
factor‑α, all of which effects are effective in killing Mtb. 
A previous study showed that TB patients universally had 
a lowered concentration of total serum cholesterol.[33] Due 
to this, the decreased concentration of behenic acid, as a 
cholesterol‑raising fatty acid, in sera of TB patients may 
further explain the hypocholesteremia status in TB.[34]

Lysophosphatidylcholines
Lysophosphatidylcholine  (P‑18:1(9Z)), lysoPC  (P‑16:0), 
lysoPC  (16:0), and lysoPC  (18:0) formed one cluster of 
metabolites that were present at lower levels in the active 
TB group and significantly differed between the healthy and 
non‑TB groups. LysoPCs impair nitric oxide (NO) production 
and endothelium‑dependent vasorelaxation. Moreover, 
lysoPC levels have been shown to be negatively correlated 
with NO levels.[36] Other research has pointed out that the 
generation of NO by activated macrophages could control 
mycobacterial infection in the murine system.[35] A low 
lysoPC level may accelerate Mtb infection by reducing the 
generation of NO. Additionally, another finding that TB can 
induce macrophage apoptosis by inhibition of phospholipase 
A2[37‑39] could also explain the low concentrations of lysoPCs 
in patients with active TB, a finding that is consistent with 
the previous report by Weiner et al.[24]

Amino acids
Our data showed an increase in the levels of two 
amino acids  (kynurenine and QUIN), and a decrease in 
threoninyl‑γ‑glutamate in sera from TB patients relative to 
those of healthy controls, suggesting alterations in protein 
metabolism during active TB. Amino acid metabolism 
is complicated, involving a large number of metabolites. 
Gluconeogenesis, proteolysis, and oxidative catabolism 

contribute to amino acid balance. Tryptophan (TRP) is an 
essential amino acid that has various important biological 
functions. Kynurenine, as the downstream metabolite of 
TRP, can be accumulated by enhancing the activity of 
indoleamine 2, 3‑dioxygenase‑1 (IDO‑1), which is widely 
known as the rate‑limiting enzyme in TRP metabolism.[40] In 
addition, kynurenine can regulate human T cells, which are 
well known as the main anti‑TB immunological cell type.

Quinolinic acid, a neuroactive metabolite of the 
kynurenine pathway, can induce the expression of several 
proinflammatory cytokines and chemokines. These findings 
support the concept that the TRP‑kynurenine pathway can 
influence immune functions through the effects of TRP 
depletion and the accumulation of kynurenine and QUIN, 
suggesting that the TRP degradation pathway controlled by 
IDO‑1 is involved in the pathogenesis of pulmonary TB.[41] 
QUIN, a neuroactive metabolite of the kynurenine pathway, 
can induce the expression of several proinflammatory 
cytokines and chemokines.[42] In addition, imbalances in 
TRP metabolism have been linked to cancer‑related immune 
escape and implicated in lung cancer.[43]

Threoninyl‑γ‑glutamate exhibited the most excellent efficiency 
with an AUC value of 0.964 (95% CI: 0.941–0.988) [Table 3 
and Figure  7a], is a dipeptide composed of threonine 
and γ‑glutamate. Some dipeptides are known to have 
physiological or cell‑signaling effects, although most are 
simply short‑lived intermediates on their way to specific 
amino acid degradation pathways following further 
proteolysis. This dipeptide has not yet been identified in 
human tissues or biofluids; hence, it is classified as an 
“expected” metabolite.

Terpenoid compounds
One of the most prominent clusters of metabolites in our 
study represented terpenoid compounds, including PSDP 
and phytal. The latter compound, which to date has never 
been identified or associated with TB, belongs to the family 
of diterpenes. However, it is reported that elisapterosin B, 
one kind of diterpenes extracted from plants, could inhibit 
the growth of Mtb.[44] Thus, the relationship between phytal 
and disease as well as its involvement in disease mechanisms 
is open to further study.

Presqualene diphosphate, an intermediate in the biosynthesis 
of terpenoids, was found at higher levels in the active TB 
group and significantly differed between the active TB 
and cancer subgroups by an order of magnitude. PSDP 
exerts an intercellular signal for the down‑regulation of 
superoxide in neutrophils,[45] which is widely known to 
play a central role in host defense, inflammation, and tissue 
damage.[46] PSDP, an endogenous PI3K inhibitor, directly 
inhibited recombinant human p110‑pI3K activity, which 
can activate polymorphonuclear neutrophils (PMN). PMN is 
the primary initial immune effectors of acute inflammation, 
and potentially PMN products released into surrounding 
tissues contribute to lung and respiratory injury. A negative 
correlation between PSDP and PMN was observed. The 

Table 4: P  values for comparisons between the active 
TB group and each subgroup of the Non‑TB group

Items LC COPD Pulmonitis Bronchiectasis
Palmitic acid 0.0723 0.0000† 0.0010† 0.0230*
LysoPC (16:0) 0.0000† 0.0000† 0.0030† 0.0040*
LysoPC (18:0) 0.0000† 0.4820 0.2000 0.5460
3D, 7D, 11D‑phytanic 
acid

0.0000† 0.0000† 0.0380* 0.0080*

Behenic acid 0.0000† 0.0000† 0.3320 0.0150
Phytal 0.0010* 0.0000† 0.0790 0.0030*
Threoninyl‑γ‑glutamate 0.0000† 0.0120* 0.0690 0.2890
Kynurenine 0.0020* 0.0060† 0.0210* 0.0080*
Quinolinic acid 0.0000† 0.1110 0.2800 0.2420
Presqualene 
diphosphate

0.0000† 0.0820 0.1900 0.2250

LysoPC (P‑18:1 (9Z)) 0.0000† 0.0320* 0.8820 0.1940
LysoPC (P‑16:0) 0.0000† 0.0000* 0.1870 0.0020*
*P < 0.05, †P < 0.01. Application Mann-whitney U‑test in 
TB group and each subgroup. TB: Tuberculosis; LysoPC: 
Lysophosphatidylcholine; COPD: Chronic obstructive pulmonary 
disease; LC: Liquid chromatography.
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observed increase in the serum concentration of PSDP may 
be an indicator of TB inflammatory progression. PSDP, after 
the initial acute inflammatory state, may act to limit tissue 
injury by inhibiting phospholipase D, phosphoinositol‑3 
kinase, and superoxide anion generation, thus providing 
protection for the host tissues. In addition, PSDP, a 
well‑recognized intermediate of cholesterol biosynthesis, 
exists in immune effector cells and is a potential regulator 
of the cellular response in host defense. The increased PSDP 
in TB patients may be a response to Mtb in host defense, 
which could also explain the result of this study.

Conclusions

Metabolic profiling approaches based on UPLC‑MS were 
successfully used to distinguish TB patients from the 
controls and establish a TB‑specific metabolite profiling. 
Twelve metabolites were identified to be significantly 
different among patient groups, with moderate performance 
of diagnostic value indicating that these biomarkers may 
potentially be involved in disease mechanisms. Most of the 
identified metabolites were mainly involved in fatty acid, 
amino acid, and lipid metabolism pathways, leading to a 
number of new hypotheses to better clarify the reasons for 
their differential abundance in active TB, including:
•	 �The decrease of palmitic acid, 3D, 7D, 11D‑phytanic 

acid and behenic acid supported that the fatty acid was 
preferentially utilized by Mtb, and these metabolites may 
be one of the results of fatty acid consumption

•	 �Terpenoid compounds may have an important role in the 
processes of infection and host resistance to TB infection

•	 �Mtb infection may produce enhanced activity of the 
TRP ‑kynurenine pathway, and kynurenine and QUIN, as 
the TRP downstream metabolites, may affect the immune 
function of patients with TB

•	 �The lower levels of lysoPCs observed in the active TB group 
may accelerate Mtb infection by reducing the generation of 
NO, which is produced by activated macrophages

•	 �Multiple logistic regression analysis was performed in 
the 12 metabolites identified as a signature of active TB, 
and the combination of lysoPC  (18:0), behenic acid, 
threoninyl‑γ‑glutamate, and PDSP was calculated to 
represent the best diagnostic value with the AUC value 
of 0.991 (95% CI: 0.982–1.000). Thus, this combination 
of metabolites may prove to be a metabolic profile that 
can be used for the diagnosis of TB.
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