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Abstract: Microbial biofilms occur naturally in many environmental niches and can be a signifi-
cant reservoir of infectious microbes in zoonotically transmitted diseases such as that caused by
Campylobacter jejuni, the leading cause of acute human bacterial gastroenteritis world-wide. The
greatest challenge in reducing the disease caused by this organism is reducing transmission of
C. jejuni to humans from poultry via the food chain. Biofilms enhance the stress tolerance and an-
timicrobial resistance of the microorganisms they harbor and are considered to play a crucial role
for Campylobacter spp. survival and transmission to humans. Unconventional approaches to control
biofilms and to improve the efficacy of currently used antibiotics are urgently needed. This review
summarizes the use plant- and microorganism-derived antimicrobial and antibiofilm compounds
such as essential oils, antimicrobial peptides (AMPs), polyphenolic extracts, algae extracts, probiotic-
derived factors, D-amino acids (DAs) and glycolipid biosurfactants with potential to control biofilms
formed by Campylobacter, and the suggested mechanisms of their action. Further investigation and
use of such natural compounds could improve preventative and remedial strategies aimed to limit
the transmission of campylobacters and other human pathogens via the food chain.
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1. Introduction

Bacteria typically prefer to grow in biofilms and complex communities where they are
protected from physical trauma, host immune responses, desiccation and antimicrobial
agents [1–5]. In this mode, bacteria exude gelatinous exopolymeric substances that are
mostly polysaccharides, proteins and DNA. Progressively, a structured biofilm matrix or
a gel, containing bacteria and exuded elements, is formed. In nature, bacterial biofilms
almost always consist of multiple microbial species, and are readily formed on both biotic
and abiotic surfaces such as tissues, medical devices and prostheses.

Campylobacter jejuni, and its close relative Campylobacter coli, are capable of form-
ing mono and multi-species biofilms [6], and are the most common foodborne bacterial
pathogens. They are the cause of annual diarrhoeal disease for about 10% of the world’s
population (WHO) including 200 million children, resulting in human suffering and high
economic burden [7,8]. The clinical features of C. jejuni gastroenteritis range from mild,
non-inflammatory diarrhoea to severe abdominal cramps and febrile bloody diarrhoea
that requires hospitalisation and antimicrobial chemotherapy. C. jejuni can also cause
post-infection complications, including those associated with acquired immune-mediated
neuropathies of the peripheral nervous system such as Guillian Barré Syndrome (GBS),
resulting in neuromuscular paralysis [9]. Other complications such as meningitis, urinary
tract infections and bacteraemia have also been reported [10,11].

These Campylobacter spp. can be found in water reservoirs, as commensals in the
intestinal tract of animals, particularly birds, and as virulent pathogens in humans. The
animal reservoirs play an important role in transmission of infectious organisms to hu-
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mans and include domestic and wild animals [12–15]. Contaminated animal food prod-
ucts, poultry, in particular, are considered to be a major source of bacteria causing human
campylobacteriosis [10,16]. Campylobacter spp. are also able to survive well in the open-
air farm environment and can be isolated from unpasteurized milk, raw vegetables, soil
and surface water [13,17,18]. Several potential survival mechanisms of Campylobacter spp.
have been suggested, such as stationary phase survival mechanism, stress responses
(i.e., thermal stress response), viable but nonculturable state (VBNC), and, of course, biofilm
formation [19–23]. Biofilms have been implicated in transmission of campylobacter dis-
ease via complex mixed-species communities that form part of the natural microbiota in
chicken caeca and animal intestines. Campylobacteria then persist in surface-type biofilms
on animal food products and packaging [6,14,24,25]. Therefore, similar to other bacterial
pathogens, the ability to form biofilms is an important virulence mechanism in relation to
transmission of disease causing campylobacteria to humans [1,26,27].

2. Campylobacter spp. Biofilm Formation and Regulation

The formation of biofilms significantly increases the ability of C. jejuni to survive
in extreme conditions [28,29]. For instant, biofilm encased campylobacter cells survive
twice as long under atmospheric conditions, and had been shown to form strong biofilms
under aerobic condition [15,30]. Biofilm formation is also recognized as a potential reser-
voir for antimicrobial resistance and is known to facilitate exchange of resistance genes
between pathogenic and commensal bacteria [31]. This is particularly pertinent in case of
Campylobacter spp., including C. jejuni and C. coli, which exhibit intrinsic resistance to many
antimicrobial agents and are naturally conjugative [32–34]. In addition, Campylobacter spp.
are becoming increasingly resistant to the most frequently prescribed antibiotics such as
erythromycin, tetracycline and fluoroquinolones, and have been listed by WHO as a prior-
ity pathogen for the development of new antibiotics [35,36]. The usage of antibiotics in food
animals to control, prevent and treat infections, and to enhance growth, has been implicated
in an increased resistance to multiple antibiotics by Campylobacter spp. [37]. Majority of
C. jejuni and C. coli are now resistant to at least one of the currently used antibiotics, such
as penicillin, trimethoprim, sulfamethoxazole, rifampicin and vancomycin [37], requiring
alternative treatments with either gentamicin or third-generation cephalosporins [38].

Several studies have shown that C. jejuni strains are able to attach to, and form mono-
or mixed-species biofilms with other bacterial species such as Pseudomonas aeruginosa,
Escherichia coli, Staphylococcus simulans, Enterococcus faecalis, Salmonella spp., Flavobacterium spp.,
and Corynebacterium spp. [6,39,40]. The evidence from these recent publications suggests
that the composition of Campylobacter spp. biofilms is similar to that formed by other
organisms. While there has been some investigation of the extracellular matrix components
of C. jejuni biofilms, the architecture and the composition of these are yet to be fully
characterized. C. jejuni NCTC strain 11168 was reported to produce an extracellular fibre-
like material as a component of its biofilm, structurally resembling a net-like matrix [8].
Such matrices contribute to biofilm-mediated antimicrobial resistance, either by acting as a
diffusion barrier or by binding directly to antimicrobial agents and preventing their access to
the biofilm-encased cells [26]. The extracellular DNA (eDNA) is important for establishment
and maintenance of C. jejuni biofilm [41,42], and appears to be a crucial component of
the extracellular matrix of mature biofilms as degradation of eDNA results in reduction
of biofilm formation by C. jejuni [41–43]. Interestingly, Gaasbeek et al. [44] found that a
C. jejuni Mu-like prophage-integrated element 1 (CJIE1) containing strain, a non-naturally
transformable strain, has a gene encoding an extracellular DNase (eDNase, CJE0256), and
eDNase activity could be detected. It is interesting to note that no eDNase activity could be
found in naturally transformable C. jejuni strains such as NCTC11168 and 81116.

Most of our current knowledge of Campylobacter spp. biofilm architecture is sum-
marised in Figure 1. In the first stage of biofilm formation, planktonic cells attach to the
surface via two types of interaction: cell-surface and cell-cell interactions using flagella,
fimbriae, amyloid-like fibrils and outer membrane proteins [45–47]. This process is critical
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for bacterial adhesion and is influenced by the properties of both bacterial cells and the
surface [48,49]. Secondly, after initial attachment, the cells start production of extracellular
polymeric substance (EPS) consisting of polysaccharides, extracellular DNA (eDNA) [42],
proteins [50], lipids and other glycosylated polymers, in order to initiate micro-colonies
and progress to the third stage of a mature biofilm [51,52]. In a mature biofilm, EPS acts as
an adhesive between cells and supports the intricate three-dimensional (3D) structure of
the biofilm, protecting the cells from toxic compounds such as antibiotics, but allowing the
movement of fluid and nutrients [53]. Finally, cell death and autolysis serve as a trigger for
the mature biofilm to detach and release cells into the environmental niche in a process
called dispersion [54]. Biofilm dispersion is believed to be crucial for the propagation
and self-renewal of bacterial communities [53,55] and contributes to bacterial survival,
pathogenicity and most importantly, disease transmission [53,56,57].

The understanding of gene regulation of C. jejuni biofilm formation is still limited.
There are a number of genes known to be involved in the biofilm formation process and in-
clude those responsible for motility and chemotaxis [58–60], lipooligosaccharide biosynthe-
sis [58,59,61,62], N-linked protein glycosylation, capsular polysaccharides (CPS) [58,62,63],
and stress response proteins. Quorum sensing (QS), which allows the bacteria to regulate
population cell density in biofilms was also found to play a role in Campylobacter biofilm
formation and to contribute to host colonisation [40,60,64,65]. However, an important mes-
senger, the intercellular bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP),
which plays an essential role in the transition between sessile and motile lifestyles in many
other organisms [66], or its homologue, is yet to be found in the C. jejuni genome.
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Figure 1. Cycle of biofilm development. (A) Planktonic cells swim and attach to surfaces (cell-to-
surface and cell-to-cell) resulting in the formation of microcolonies. Mature biofilms can return
to a planktonic lifestyle through dispersion and released seed cells complete the cycle of biofilm
development. (B) Representative scanning electron microscopy (SEM) images of C. jejuni cultured
under microaerobic conditions.

3. Natural Antibiofilm Compounds

Biofilm-disrupting and antimicrobial properties of many naturally occurring com-
pounds against pathogens have been previously explored [67–69]. Such compounds
(Table 1) include different plant extracts and their components (e.g., containing polyphe-
nols), essential oils (e.g., containing carvacrol) and marine inhabitants (algae extracts), and
a number of these have been tested against campylobacters.
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Table 1. Antibiofilm activity of natural compounds with their mechanism of action.

Compounds Mechanism of Action Strains MIC * References

Plant-derived compounds

Essential oils
(EOs)

- Cinnamaldehyde

- breakdown of
the extracellular
matrix

- inhibit the
activity of AI-2
molecules

C. jejuni NCTC 11168
C. coli
C. jejuni S-8
C. jejuni NCTC 81-176
C. jejuni RC039

1.76 mg/L (75.64 mM) [70,71]

- Clove oil 0.05–0.4 mg/mL [72]

- Eugenol 2.69 mg/L (60.9 mM) [73]

- Carvacrol 31.25 mg/L (66.56 mM) [74]

- Lavender essential oil 1 mg/mL [75]

- Juniper essential oil 1 mg/mL [74,76]

- (-)-α-Pinene 125 mg/L [77]

Plant extracts

- Grapefruit seed
extract (GSE)

- break-down the
outer
membranes

- inhibit the
activity of AI-2
molecules

C. jejuni NCTC 11168
C. jejuni S-8
C. jejuni F38011
C. jejuni 180ip
C. jejuni 238ip
C. coli

60 mg/L [78]

- Citrus limon peel
extract 225 µg/mL [79]

- Ethanol solution
extract (EREE) 64–1024µg/mL [80]

- Green tea
(epigallocatechin
gallate)

50 µg/mL [81,82]

- Polyphenolic extracts 0.15–0.3 mg/L [83]

- Resveratrol 0.1–0.2 mg/mL [84]

- Diallyl sulphide 0.04 mg/mL [85]

Antimicrobial
peptides (AMPs) Puroindoline A (PinA)

- quorum
sensing-
mediated
inhibition of
EPS production.

C. jejuni 81-176 512 µg/mL [56,86,87]

Microorganism-derived compounds

Algae extracts Delisea pulchra extract
- inhibit the

activity of AI-2
molecules

C. jejuni NCTC 11168 230 µg/mL [88]

D-amino acids
(DAs)

- D-Methionine
- D-Tryptophan
- D-Serine
- D-Alanine

- consequence of
incorporation of
the DAs into
the cell.

- breakdown of
the extracellular
matrix such
as EPS

C. jejuni NCTC 11168 5–100 mM [47]

Probiotic-
derived
factors

- Bacteriocin
- Reuterin

- interfering with
DNA synthesis

- interfering with
the membrane
integrity of
bacterial cells

C. jejuni
C. coli

0.025–32 µg/mL
1.5–5.8 µM

[89]
[90]

Glycolipid
Biosurfactant Sophorolipid - lysis of the cell

membrane
C. jejuni subsp. jejuni
33560 0.003% [88]

* Minimum inhibitory concentrations (MIC) as determined by the broth microdilution method described in individual references.

3.1. Plant-Derived Compounds

Essential oils (EOs) derived from plants are promising antimicrobial compounds,
with over ~300 commercially available EOs. Many EOs (e.g., cinnamon oil, clove oil and
lavender essential oil) exhibit antibacterial, antibiofilm and antifungal properties which
have a wide range of applications in the food and dietary supplement industry [91–95]. EOs
are also reported to prevent biofilm formation on abiotic surfaces, which has encouraged
the development of alternative disinfection strategies, targeting contaminated surfaces and
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equipment used in food processing [96–99]. Moreover, EOs have been added to animal feed
and water as taste enhancers for livestock nutrients and as growth promoters, particularly
in poultry and porcine farming [94,100,101]. Here, we describe some compounds that
exhibit promising antimicrobial and antibiofilm activities against campylobacters.

Cinnamon oil (Cinnamomum cassia) and clove oil (Eugenia caryophyllus) are reported
to have bioactive compounds such as cinnamaldehyde (CA), eugenol (EG) and carvacrol
(CR) [92]. These compounds act as antimicrobial and antibiofilm agents against many
pathogens including P. aeruginosa, Salmonella Typhimurium, Streptococcus mutans and
Listeria monocytogenes [102–105]. CA, EG and CR also exhibit an ability to significantly
decrease Campylobacter spp. biofilms and remove the biofilms from stainless steel and
polystyrene surfaces [71–74,106]. Several studies revealed the effectiveness of CR to reduce
C. jejuni in vitro and in vivo [107–112]. For instance, Wagle et al. [106] found that the
minimum inhibitory concentration (MIC) of CR (at 0.002%) was able to reduce the C. jejuni
adhesion to primary chicken enterocytes (in an in vitro model of chicken intestinal physiol-
ogy) up to 1.5 log cfu/mL as compared with control. Interestingly, CR downregulated the
expression of C. jejuni colonisation factors, critical for persistence in the chicken gut, such as
chemotaxis (aspartate chemoreceptor, CcaA), interactions with host cells (aspA) and anaero-
bic respiration (NapB). Similar to that, šimunović et al. [112] demonstrated that CR (MIC
0.0032%), as a pure compound or in synergistic combinations with thymoquinone, and
rosmarinic acid, not only has antimicrobial activity against C. jejuni but also can increase
the antibiotic susceptibility of C. jejuni by inhibiting the efflux pump activity. Unfortunately,
further attempts to determine antibacterial properties of CR against C. jejuni using the
broiler chicken model were inconsistent. Arsi et al. [113] reported that CR supplemented
feed at 0.5–1% could significantly reduce Campylobacter counts in broiler chicks, either
alone or in combination with thymol. However, their results could not be replicated in
other trials, reportedly due to absorption of those compounds before they reach their target,
the small intestine and caeca of chickens, or effects of other enteric microflora [109]. To
improve the in vivo outcomes, Allaoua et al. [109] used a CR-based product, solid galenic
CR formulation, designed to delay the CR release to allow it to reach the caeca of broiler
chickens in order to control C. jejuni. This new formulation was aimed to preserve the
antibacterial efficacy of CR against C. jejuni by allowing CR to reach the caeca and large
intestine at an effective concentration (at MIC 0.02 mg/mL), which significantly decreased
the C. jejuni caecal load (by 1.5 log). Kelly et al. [108] also reported that CR was able to
reduce Campylobacter cell adhesion and invasion of chicken intestinal primary cells and
also biofilm formation in vitro. They also showed that CR was able to delay colonisation
of chicken broilers by inducing changes in gut microflora. Campylobacter spp. was only
detected at 35 days of life in the treatment groups compared with the control group where
the colonisation occurred at 21 days. Reducing the number of campylobacteria in the
chicken intestine is a goal of most studies as quantitative risk assessment models indicate
that a reduction of C. jejuni numbers on a broiler carcass by 100-fold (or 2 log units) could
result in a significant reduction, by 30 times, in the incidence of campylobacteriosis [114].
Even a relatively small reduction in C. jejuni numbers in the chicken cecum by 1 log10 CFU
can reduce the public health risk by more than 50% [8]. In addition, CR had a significant
effect on E. coli numbers in the cecum of the chickens in treatment groups. Similarly,
Szott et al. [111] found that CR additive could reduce C. jejuni counts in vivo by 1.17 log
(up to 28 days of age); however, CR did not successfully reduce Campylobacter caecal coloni-
sation in 33-day-old broilers. Interestingly, addition of CR to the diet decreased feed intake
increased feed conversion rates and body weight at all levels of supplementation [115].
Similarly, combining basic diet with cinnamon oil (0.3 g of cinnamon oil per kg) could
enhance daily weight gain of broiler chickens by 5.1% [116]. One more potential advan-
tage of using CR is its effect on probiotic bacteria where the additional proliferation of
probiotic bacteria such as Lactobacillus and Bifidobacteria spp. has been proposed to be a
potential mechanism of inhibiting avian colonisation by disease-causing organisms such as
Campylobacter spp. [91,117]. The important benefit, all studies agree, is that CR is safe to
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use as a dietary supplement in the chicken diet and could improve poultry health, feed
efficiency, and delay Campylobacter colonisation in chickens.

Lavender essential oil (LEO) has antiviral activity against Herpes simplex virus type 1 [118];
antibacterial activity against piperacillin-resistant E. coli J53 R1, chloramphenicol-resistant
L. monocytogenes L120, S. aureus MRSA and P. aeruginosa [119–122]; and antifungal activity
against Aspergillus niger and Aspergillus tubingensis [123]. LEOs also show an antibiofilm
activity against C. jejuni with MIC ranged from 0.2 mg/mL to 1 mg/mL [124]. LEOs were
reported to downregulate a range of genes (i.e., Cj0719c, kpsS, lgt, maf4, waaC and Cj1467),
involved in the initial attachment of Campylobacter spp. cells to abiotic and biotic surfaces.
Adaszynska et al. [122] have evaluated the effect of LEO on chicken production by adding
LEO to drinking water given to broiler chickens. The results of the experiments not only
showed a significant inhibition of microbial growth, but also a significant increase in the
body weight of the chickens in the groups receiving LEO as compared with the control
group. Similarly, juniper essential oil (JEO) had shown potent anti-adherent effects against
C. jejuni [67,74,76,125], where flavonoid-rich fractions from juniper, at 1 mg/mL, were able
to inhibit attachment of C. jejuni cells to polystyrene by up to 70–99%, and reduced the
invasion of INT407 cells by 76%. α- and β-pinene are another example of essential oil
components from Alpinia katsumadai seeds that can have antimicrobial, antimalarial, and
antioxidant effects [77,126–128]. The antimicrobial activities of (-)-α-pinene were reported
against Campylobacter spp. in vitro; however, (-)-α-pinene alone showed a low efficacy
with MIC50 > 500 mg/L required to inhibit 50% of the strains, but when (-)-α-pinene
was combined with antibiotics ciprofloxacin and erythromycin, strong potentiating effects
against different Campylobacter strains were observed. The concentrations of antibiotics
could be decreased from 1 mg/mL to 0.002 mg/mL for ciprofloxacin, and from 512 mg/mL
to <1 mg/mL for erythromycin [129]. Possible applications of such natural compounds
could be in food packaging to maintain food quality and reduce cross-contamination, or
as feed additives to increase weight gain of chickens and by reducing the costs associated
with antimicrobial feed additives.

Citrus Extracts (CE) have been widely used in many applications in pharmaceuticals
and food industry due to their properties as antimicrobial, insecticidal and antifungal
agents [130,131]. CEs showed the ability to reduce the biofilm formation of pathogenic
bacteria, for example, Staphylococcus spp., Pseudomonas spp. and E. coli due to their an-
timicrobial activity [132–134]. Castillo et al. [79] found that treatment with CE (such as
citron, bitter orange, lime, lemon and tangerine) elicits a strong inhibitory effect, up to
75 %, on C. jejuni biofilm formation. This compound could also decrease the activity of
C. jejuni quorum-sensing signalling (AI-2 QS) [79]. As another example, grapefruit seed
extract (GSE), widely used in the food industry as a safe and effective preservative [135],
has an antibiofilm and antibacterial activity against methicillin-resistant S. aureus (MRSA),
vancomycin-resistant S. aureus (VRSA) and E. coli [135–137]. GSE can also inhibit C. jejuni
growth and its adhesion to abiotic and biotic surfaces (at a minimum bactericidal concen-
tration (MBC) of 60 mg/L) [78,138]. GSE consists of many phenolic compounds such as
anthocyanins, catechins, flavonols, phenolic acids and proanthocyanidins. Among them,
phenolic acids, catechins and proanthocyanidins have a strong inhibitory effects on C. jejuni
growth [78]. Phenolic acids and catechins could also inhibit the growth of Campylobacter
strains, with MIC range between 10 and 100 mg/L, which could be useful for the control of
Campylobacter transmission through the foods chain. In addition, dietary supplements that
contain grape seed as a source of phenolic compounds, have shown to promote higher body
weight gain in broilers [139]. Further advantage of GSE phenolic compounds is offered by
their effectiveness against Gram-positive bacteria via inhibition of the cell wall biosynthesis,
and Gram-negative bacteria via break-down of the outer membranes [135,138,140,141].
Currently, GSE is used commercially as a dietary supplement and, therefore, has the po-
tential to be safely used at different points of the food chain to reduce the transmission
of campylobacteriosis.
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Ethanol solution extract (EREE): Plant-based ethanol extracts have been previously
used to control food-borne pathogens and multidrug-resistant bacteria [142–144]. For
example, Euodia ruticarpa ethanol solution extract (EREE) contains bioactive components,
such as evodiamine, rutaecarpine and evocarpine which have shown promising antimicro-
bial activities against S. aureus MRSA, mycobacterial strains, and C. jejuni which are able
to inhibit cell adhesion and biofilm formation [80,144–146]. EREE exhibited antibiofilm
and anti-AI-2 QS properties against C. jejuni at MIC from 64 to 1024µg/mL [80], indicating
that quinolinone alkaloids have potential to reduce the cell-surface bacterial attachment by
interfering with the QS system.

Polyphenolic extracts: Similar to other natural products, polyphenols extracted from
plants have been reported to have antimicrobial and antibiofilm activities [68,147–151]. For
example, polyphenol-rich cranberry and other berry extracts have strong antibiofilm effect
on dual-species Streptococcus mutans-Candida albicans biofilms and sole Streptococcus mutans
biofilms [152,153]. Similarly, polyphenolic components found in spray-dried olive mill
wastewater (OMWW-SD) inhibit Campylobacter spp. biofilm formation and promote biofilm
dispersion [84]. Those polyphenols, mainly secoiridoid and hydroxycinnamic acid deriva-
tives with MIC ranged between 0.15 to 0.3 mg/mL, were able to inhibit biofilm formation by
Campylobacter strains between 50–92%, depending on concentration. In addition, gallic acid
and taxifolin significantly affected CmeABC multidrug efflux pump expression resulting
in increased bacterial susceptibility to ciprofloxacin and erythromycin in C. jejuni isolates,
where 8 µg/mL of the phenolic compounds combined with ciprofloxacin and erythromycin
reduced the MIC of those antibiotics 4–32-fold [154]. Green tea is also rich in naturally
occurring polyphenolics such as epicatechin (EC), gallocatechin (GC), gallocatechin gallate
(GCG), epigallocatechin (EGC), epicatechin gallate (ECG) and epigallocatechin gallate
(EGCG). These compounds have potent antioxidant activity and antimicrobial proper-
ties [155–157]. The extracted EGCG exhibits antimicrobial activity and anti-AI-2 QS activity
against E. coli [134], and inhibited C. jejuni biofilm formation by 75% at concentrations of
31 to 125 µg/mL [83]. This study suggested that green tea extract could be used to restrict
growth of C. jejuni by interfering with biofilm formation and QS activity, as well as facilitate
the performance and health of broilers [158,159].

Another compound to be considered is a commonly used dietary supplement, resver-
atrol (3,5,4′-trihydroxystilbene). It is produced by several plants and can be found in skin
of blueberries and grapes. Resveratrol has been reported to inhibit biofilm formation
and to disperse established biofilms and also has an inhibitory activity against a range
of bacterial pathogens [85,160]. The antibiofilm activity of resveratrol, with up to 94%
C. jejuni, and C. coli biofilm inhibition at MIC of 0.1–0.2 mg/mL, suggests a potential use
of this compound as antibiofilm agent in poultry meat processing, food preparation and
packaging. Together, these findings suggest that the use of polyphenolic extracts could
be used to limit campylobacterial growth and biofilm formation in animal food products
processing, particularly poultry, and consequently enhance food safety and limit the use of
chemical additives or preservatives.

Organosulfur compounds: Organosulfur compounds derived from garlic (Allium sativum)
such as allicin, ajoenes and diallyl sulphide, have shown antimicrobial activity against a
vast range of pathogens [161–163]. These compounds also have been tested as antimicrobial
wash for poultry meat to reduce the number of C. jejuni cells [81,82,163]. Organosulfur
compounds could be a safer and cheaper alternative to commonly used antimicrobials,
such as peracetic acid (PAA), in an effort to reduce contamination during pre- and post-chill
carcass and broiler parts treatments [164]. Remarkably, diallyl sulphide was not only able to
destroy the EPS structure of the C. jejuni biofilm but also eliminated planktonic and sessile
cells [82]. Diallyl sulphide, and other bioactive organosulfur compounds, have potential
for reducing bacterial cell adherence, inhibiting production of AI-2 QS molecule, and
enhancing disruption of cell surface structure of this pathogen. Wagle et al. [81] showed
that the application of organosulfur compounds such as diallyl sulphide as antimicrobial
wash in postharvest poultry could significantly reduce C. jejuni numbers on poultry meat.
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Antimicrobial peptides (AMPs) are naturally occurring peptides produced by many
multicellular organisms as a first-line immune defence. Many AMPs exhibit broad-
spectrum antimicrobial activity which can target both Gram-positive and -negative bacte-
ria [165–168]. Wheat proteins puroindolines, present in Triticum aestivum endosperm, are
found in two major isoforms, puroindoline A (PinA) and puroindoline B (PinB). Both have
antimicrobial properties due to presence of tryptophan-rich domains (TRDs) [168,169].
TRD-rich peptides have a high affinity for the negatively charged lipids in the bacterial
membranes and have antimicrobial effect against many pathogens such as E. coli, S. aureus,
L. monocytogenes, and Aspergillus flavus [169,170]. The mode of action of PinA is via mem-
brane destabilization, while PinB targets DNA by inhibiting DNA replication [171,172]. In
case of Campylobacter strains, PinA has been shown to affect both, bacterial growth and
biofilm formation [168]. PinA could inhibit C. jejuni 81–176 biofilm formation at the concer-
tation of 512 µg/mL and growth at 16–32 µg/mL. Interestingly, using PinA in combination
with erythromycin and ciprofloxacin, antibiotics commonly used to treat C. jejuni infections,
was more effective in reducing C. jejuni growth than using any antibiotic alone, indicating
a potential use for PinA as an enhancer of antibiotic efficacy.

3.2. Microorganism-Derived Compounds

Algae extracts: Many antibacterial compounds have been identified in marine or-
ganisms including algal classes such as the Bacillariophyceae (diatoms), Chlorophyceae,
Chrysophyceae, Rhodophyceae and Phaeophyceae [173–175]. Algal extracts containing bioac-
tive compounds such as fatty acids and furanone [176–178], have been widely used for
pharmaceutical and industrial applications. For example, the long-chain fatty acids in the
green microalga Planktochlorella nurekis has been reported to have antibacterial activity
against many pathogens, including C. jejuni, at concentrations between 0.75–6 mg/mL [179].
Brominated furanone is a naturally occurring polyphenolic compound with antimicrobial
properties that can be extracted from Delisea pulchra algae. This compound can exert an-
tibiofilm activity against C. jejuni, by interfering with AI-2 QS, at MBC 230 µg/mL [83,175].
Such algae have been previously used as safe food additives for poultry [180], as their rich
nutrients enhance growth performance and product quality with a possible additional
benefit of reducing human food-borne illness.

D-amino acids (DAs): While most proteins are composed of L-amino acids, D-amino
acids, DAs, can be found in cell walls of many bacteria. Interestingly, addition of external
DAs had been shown to have antibiofilm properties in a variety of species such as B. subtilis,
S. aureus and P. aeruginosa [181–184]. Moreover, the use of DAs in various combinations
enhanced the activity of antimicrobial agents such as colistin, ciprofloxacin and rifampin,
frequently used to treat P. aeruginosa and S. aureus [185]. For C. jejuni, a mixture of D-serine,
D-Tryptophane and D-methionine at concentration 5 mM was found to be able to inhibit
the biofilm formation or disrupt mature biofilm. Moreover, DAs disrupted the ability of
C. jejuni to form biofilm (up to 70%) by incorporating into peptidoglycan and inducing the
disassembly of matrix-associated amyloid fibrils, or by a breakdown of EPS that surrounds
the biofilm. DAs were also able to enhance the efficacy of D-Cycloserine (DCS) against
C. jejuni by up to 32% [47]. DAs appear to be promising antibiofilm compounds and should
be further investigated.

Probiotic-derived factors: Several studies have reported the ability of probiotic organ-
isms, such as Lactobacillus spp., to secrete probiotic factors (e.g., bacteriocin and reuterin)
which have shown antimicrobial activities against various enteric pathogens such as E. coli,
and Vibrio cholerae [186]. In addition, these factors have also been reported to have a ben-
eficial effects on the intestinal epithelium through an improvement of intestinal barrier
function leading to reduced permeability to pathogens [187]. For example, bacteriocins
of probiotic Lactobacilli, are naturally produced as secondary metabolites, display antimi-
crobial, antiviral and antifungal activities. Bacteriocins have been recognized as non-toxic
alterative antibiotics against gastrointestinal infections [188,189]. Bacteriocins had also
shown antibiofilm activity against P. aeruginosa PAO1 and B. subtilis BM19. Bacteriocins act
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by interfering with the membrane integrity of bacterial cells leading to cell death [186]. Sev-
eral bacteriocins have been isolated and characterized from commensal bacteria in chicken
intestines, such as Enterococcus faeciu (E50-52) and Lactobacillus salivarius (e.g., OR-7) and
can inhibit proliferation of Campylobacter spp. [90,188,190]. For instance, feeding bacteri-
ocins E50-52, MIC ranged from 0.025 to 32 µg/mL, to broiler chickens reduced C. jejuni cell
numbers by more than 99% in the caeca [90].

Another example of probiotic-produced antimicrobial compound is reuterin, which is
produced as a byproduct of anaerobic fermentation of glycerol by Lactobacillus reuteri [89].
The main active antimicrobial fraction of reuterin is acrolein. Acrolein is proposed to
interfere with DNA synthesis by inhibiting the activity of bacterial ribonucleotide reduc-
tase [89,191]. Several studies found that reuterin and reuterin-related compounds exhibit
antimicrobial and antibiofilm activities against wide range of Gram-positive and -negative
bacteria including B. subtilis, Clostridium difficile, E. coli, Fusobacterium nucleatum, Listeria spp.
and P. aeruginosa [67,89,191–194]. Reuterin also suppressed the growth of Campylobacter
strains with MIC range between 1.5 to 5.8 µM. Use of bacteriocins and reuterin compounds
appears to be a promising avenue to explore for control of campylobacters in poultry and
poultry products by adding these natural products as feed additives in poultry diet [195].

Glycolipid Biosurfactant: Glycolipids, with potential anticancer and antimicrobial ac-
tivities, already have a wide range of therapeutic applications including in pharmaceutical,
food, and petroleum industries [196]. Sophorolipid is one of glycolipid molecules produced
by the yeast Starmerella bombicola with antimicrobial and antibiofilm activities against food-
borne pathogens such as E. coli, Salmonella spp. and C. jejuni [88,197,198]. Sophorolipid acts
by inducing lysis of the cell membrane of pathogens, resulting in the release of cytoplasm
contents [88,199]. Sophorolipid is a promising natural antimicrobial compound composed
of biodegradable carbohydrate-based molecules with mild cytotoxicity, which makes them
very attractive for the poultry industry [88,200]. One suggested application of sophorolipid
is in the preservation and decontamination of meat products [88,200,201]. Silveira et al. [88],
found that the combination of sophorolipid and lactic acid to treat Campylobacters cells
resulted in an additive interaction and reduced the concentration required to treat campy-
lobacters by 50%. Although lactic acid is commonly used in the poultry industry [202,203]
and is approved by Food and Drug Administration (FDA), the treatment may negatively
affect product quality by inducing changes in colour and flavour [204]. The combination
of sophorolipid and lactic acid at reduced concentrations could provide an alternative
treatment which would minimise the microbial contamination and preserve the aesthetic
appeal and flavour of the foodstuffs.

4. Concluding Remarks

Solving the problem of gastroenteritis due to C. jejuni is an important challenge not
only for improving the microbiological safety of food worldwide, but for reducing the
enormous economic burden of hospitalisation, treatment, and loss of productivity caused
by infection with these organisms. We postulate that the ability of C. jejuni to integrate into
mixed-species biofilms is central for the efficient intestinal colonisation of the avian host and
its transmission to human host. As is the case with other enteric pathogens, abolishing the
ability to integrate into such a biofilm, will effectively limit transmission of this pathogen
and reduce the incidence of disease in the human population. Therefore, innovative
approaches of targeting zoonotic pathogens at the point of transmission from animal hosts
to humans have an enormous potential to reduce or eliminate human infections, limiting
the need for hospitalisation, treatment and vaccination.

Using natural products to disrupt the chain of pathogen transmission by using these
as animal food additives, packaging disinfectants and bacterial growth inhibitors, offers
great potential for an antibiotic-free path for foodstuffs from farm to fork. Furthermore, the
application of natural compounds to enhance the efficacy of antibiotics, currently used to treat
food-borne infections, offers additional advantages in our fight against the rise of antibiotic
resistance. Further investigation of practical application of naturally occurring antibiofilm
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and antimicrobial compounds is required in order to progress the development of future
preventative and therapeutic strategies to control the transmission of food borne diseases.
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