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ABSTRACT

Motivation: Our goal is to develop a screening platform for quantita-

tive profiling of colony organizations in 3D cell culture models. The 3D

cell culture models, which are also imaged in 3D, are functional assays

that mimic the in vivo characteristics of the tissue architecture more

faithfully than the 2D cultures. However, they also introduce significant

computational challenges, with the main barriers being the effects of

growth conditions, fixations and inherent complexities in segmentation

that need to be resolved in the 3D volume.

Results: A segmentation strategy has been developed to delineate

each nucleus in a colony that overcomes (i) the effects of growth

conditions, (ii) variations in chromatin distribution and (iii) ambiguities

formed by perceptual boundaries from adjacent nuclei. The strategy

uses a cascade of geometric filters that are insensitive to spatial non-

uniformity and partitions a clump of nuclei based on the grouping of

points of maximum curvature at the interface of two neighboring

nuclei. These points of maximum curvature are clustered together

based on their coplanarity and proximity to define dissecting planes

that separate the touching nuclei. The proposed curvature-based par-

titioning method is validated with both synthetic and real data, and is

shown to have a superior performance against previous techniques.

Validation and sensitivity analysis are coupled with the experimental

design that includes a non-transformed cell line and three tumorigenic

cell lines, which covers a wide range of phenotypic diversity in breast

cancer. Colony profiling, derived from nuclear segmentation, reveals

distinct indices for the morphogenesis of each cell line.

Availability: All software are developed in ITK/VTK and are available at

https://vision.lbl.gov/Software/3DMorphometry.

Contact: b_parvin@lbl.gov or hchang@lbl.gov

Supplementary information: Supplementary data are available at
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1 INTRODUCTION

High content screening of cell culture models continue to play a

major role in evaluating therapeutic targets, elucidating aberrant

pathways and identifying novel biomarkers. Traditionally, cell

culture models are based on 2D monolayers that are grown on

plastic, but recent research indicates that cells grown in a 3D

culture often behave more like cells in living organisms. This is

partly due to the cellular organization, cell–cell contact and

unique cell–extracellular matrix (ECM) adhesions and motility

phenotype. 3D cell culture models offer many advantages over

the 2D monolayer systems: (i) Each cell forms an ellipsoid with

dimensions of 10–30 microns (Pampaloni et al., 2007), whereas in

the monolayer system, each cell remains flat with a thickness of a

few microns; (ii) In a 3D system, the entire cell surface is exposed

to neighboring cells and extracellular matrix. In contrast, in a 2D

system, a small percentage of the cell surface is exposed to the

other cells. These differences in shape and surfaces are significant

given that �30% of the genome is known to encode membrane-

bound macromolecules (Wallin and Heijme, 1998). (iii) Studies

have shown that 3D morphological organizations have a pro-

found impact on cellular function, such as morphogenesis

(Fournier et al., 2009), development (Park et al., 2000), response

to therapy (Liu et al., 2004) and patterns of gene expression (Han

et al., 2010). (iv) Unlike conventional 2D models, 3D culture

assays distinguish tumor phenotypes from non-malignant ones,

where the tumor phenotype is often manifested as multicellular

organizations (Peterson et al., 1992). Owing to these differences,

there is a greater need for characterizing and quantifying

organizations through the delineation of each cell. Because the

protocols for nuclear staining are well established, we focus on

delineating nuclear regions, which also provides context for

quantifying multiple endpoints in high content screening. In add-

ition, cell-by-cell analysis enables characterization of heterogen-

eity, which is one of the central challenges and a fundamental

property in cellular systems (Altschuler and Wu, 2010). It has

been suggested that heterogeneity enables cellular systems to

explore a wide range of phenotypic responses, where a specific

subpopulation may serve as a predictor of response to perturb-

ations. An example is shown in Supplementary Figure S1 in the

Supplementary Section.
Given the aforementioned motivation, there is clear gap in

quantitative methods for characterizing multicellular organiza-

tions for the next generation of high content screening systems.

This is partly due to the massive amounts of 3D data that have to

be acquired through confocal or deconvolution microscopy, and

the ambiguities that were present in the 2D assays (Coelho et al.,

2009) must now be resolved in the 3D volume space. In this

article, we propose a pipeline, implemented within the Insight

Segmentation and Registration Toolkit (ITK) and The

Visualization Toolkit (VTK) framework, to delineate each nu-

cleus and to profile morphometric and colony organization. At

an abstract level, our approach is an extension of a previously

developed method for monolayer cell culture models (Wen et al.,

2009). Nevertheless, such an extension has proven to be challen-

ging because of structural heterogeneity and partitioning of

clumped nuclei in a 3D volume. Our approach consists of a*To whom correspondence should be addressed.
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series of filters that remove ambiguities in (i) the nuclear stain
through prior modeling; (ii) the structural heterogeneity through
object level adaptive smoothing; and (iii) the perceptual bound-

aries within a clump of cells by detecting and grouping points of
maximum curvature. These processes are intrinsically compute-
intensive in a 3D volume. As a result, the segmentation strategy

initially detects isolated nuclei and groups of nuclei that are
clumped together prior to subsequent partitioning. The net
result is increased throughput for processing a large amount of

data. The proposed method is referred to as curvature-based
partitioning (CBP) in the remainder of the article.
Organization of the article is as follows. Section 2 provides a

brief review of the motivation, issues and prior research. Section
3 discusses details of the experimental design and computational
approach. Section 4 provides validation results on synthetic and

real data, and compares performance of CBP with the previous
techniques. Section 5 compares morphogenesis of multiple cell

lines in terms of the colony organization. Section 6 concludes the
article.

2 BACKGROUND

In Section 1, we reviewed the prior literature to suggest that the
3D cell culture models are in fact functional assays. As a result,

the utility of these model systems have been on the rise. For
example, in 2008, the growth rate for the number of publications
exploiting 3D cell culture models increased by 153% of the pre-

vious year (www.3dcellculture.com), i.e. from approximately
370–930 publications. This trend indicates the growing import-

ance for multicellular segmentation and profiling. Challenges for
segmenting the 3D colonies are similar to those involving the 2D
assays; they include (i) variation in cellular state and cell shape,

and (ii) the traditional issue of the perceptual boundaries be-
tween adjacent nuclei. Moreover, segmentation of 3D colonies
is aggravated by complex volumetric analysis and cellular growth

in the Matrigel.
The key concepts in delineating nuclei have been watershed

(Chawla et al., 2004) with user intervention, active surface

models (Padfield et al., 2009), gradient flow tracking (GFT) (Li
et al., 2007), atlas-based methods (Qu et al., 2011) and hybrid
methods of seed detection through iterative voting (IV) and geo-

metric partitioning (Han et al., 2011). Interactive techniques are
not amenable for large scale data, and the watershed method is
prone to erroneous partitioning of the image space. On the other

hand, level set method, while having a solid analytical founda-
tion, requires robust initialization and stopping criterion; they

can also benefit from the prior shape models. Of course, any
segmentation technique can benefit from additional constraints,
but creating the necessary diversity of prior models can add to

the complexity. GFT, which is conceptually similar, at an ab-
stract level, to the radial centroid transform (Yang and Parvin,
2003), is sensitive to morphometric aberrations and internal

structure within the nucleus. Whereas, the atlas-based models
assume a prior model of organization, which is (i) nonexistent
for the growth of 3D cell culture models, and (ii) difficult to

generate as a result of cellular and organizational heterogeneity.
The general strategy for segmentation has been to detect a dis-
tinct seed per nucleus [e.g. LoG, radial centroid transform, (IV)]

that is followed through geometric partitioning. These techniques

work well in live cell assays and when each cell, in a whole or-
ganism, has a similar morphology. In contrast, fixed cell assays

may have artifacts that lead to dislocation of constituents, and

cancer cells are well known to have aberrant morphologies. In

addition, multicellular systems, cultured in Matrigel can have

higher background intensity within the colony than outside of

the colony, which complicates cell-by-cell segmentation. The

novelty of our approach is that it incorporates these insights

and overcomes intrinsic barriers associated with the segmenta-

tion of 3D cell culture models.

3 APPROACH

One of the barriers in delineating a multicellular colony system

has to do with separating touching nuclei in 3D. The basic idea

for segmentation is to use curvature feature to detect perceptual

boundaries (e.g. touching adjacent nuclei); however, curvature

can be noisy as a result of structural nucleoli, which is respon-

sible for transcribing ribosomal RNA. Therefore, the first step is

to interpolate nucleoli (e.g. smoothing) through harmonic cut

(Yang and Parvin, 2003). Furthermore, 3D segmentation is in-

trinsically compute intensive, which motivates for a more oppor-

tunistic policy for quantitative analysis. These insights are the
basis of the organization and integration of filters shown in

Figure 1. Accordingly, the method integrates a cascade of filter

operations to eliminate ambiguities in a stepwise fashion. (i) The

approach replaces the original image with harmonic cut, where

inter-nuclei structural details (e.g. nucleoli) are interpolated for

smoothness. (ii) An initial segmentation delineates isolated nuclei

or clumps of nuclei from the background. These segmented re-

gions provide the basis for decomposing the space through

Voronoi partitioning. (iii) Simultaneously, the clumped nuclei

are separated along their overlapping regions. These overlapping

regions are detected using curvature maxima and clustered to

define dissecting planes. (iv) The aggregate of dissecting planes
and Voronoi partitioning are then combined to define polytopes

where segmentation can be refined locally. Lastly, each deli-

neated nucleus is validated with its surface curvature properties.

Each of these steps is discussed below.

3.1 Materials and methods

3D cell cultures are grown in Matrigel using on-top method (Lee

et al., 2007) for one non-transformed line MCF10A (Michigan

Cancer Foundation), and three malignant lines of MCF7, MDA-

MB-231 (Monroe Dunaway Anderson metastatic breast) and

MDA-MB-468. All cell lines are breast epithelial lines that

Fig. 1. Steps in segmentation of nuclei in a 3D cell culture model. The

partitioning of the clumped nuclei consists of four distinct operations

3088

C.C.Bilgin et al.

Please note, t
paper
paper 
,
paper
www.3dcellculture.com
,
 to 
,
-
(RCT) 
(
,
RCT
)
a 
,
I
,
II
III
IV
are


have been obtained from American Type Culture Collection.
The malignant lines are selected for their genetic and morpho-

metric diversity. From a genetic perspective, MCF7 is estrogen
and progesterone positive (ERþ, PRþ) as well as ERBB2�;

MDA-MB-468 is ERBB2þ; and MDA-MB-231 is triple negative
(e.g. ER�, PR� and ERBB2�). From a morphometric perspec-

tive, MCF7, MDA-MB-468 and MDA-MB231 maintain a
‘mass’, ‘grape-like’ and ‘stellate’ colony organization per nomen-

clature (Han et al., 2010). All colonies are fixed and stained with
40,6-diamidino-2-phenylindole (DAPI). These diverse cell lines

were specifically selected, as they provide a wide range of pheno-
typic diversity for validation and sensitivity analysis. For

MCF10A and MCF7, samples were collected on days 2, 5, 7
and 12. For MDA-MB-231 and MDA-MB-468, samples were

fixed and stained for days 2, 5 and 7. For the latter two lines, the
experiment was discontinued after day 7 as a result of nearby

colonies merging because of their invasive growth property.
Samples were imaged with a Zeiss LSM710 confocal with pixel

size of 0.25 in X and Y and 1 micron in Z dimensions. All images
were scaled isotropically for processing and visualization.

3.2 Elliptic features and harmonic cut filtering

The first step is to replace the original scaled image stack (e.g.

isotropic representation of the image) with a smooth version by
removing the structural heterogeneity. It is important that

smoothing is performed at object level as opposed to pixel
level (e.g. anisotropic diffusion). In this context, smoothing

aims at detecting and interpolating subcellular structures such
as nucleoli. These structures are detected using elliptic features,

and interpolation is performed with the harmonic cuts (Yang
and Parvin, 2003).

Let I, Im and Imn be the image intensity, with image partial
derivatives in m and mn directions, respectively. In scale-space

theory, the elliptic features are defined by IxxIyy � I2xy. This def-
inition is extended to 3D, and the elliptic points are then found

using Ixx � Iyy4I2xy ^ Ixx � Izz4I2xz ^ Iyy � Izz4I2yz. These elliptic
features correspond to bright punctate regions within the nucleus

when the determinant of the Hessian is negative. The bright el-
liptic features are interpolated with their immediate background

through harmonic cut, which minimizes the functional
1
2

RRR
E I

2
x þ I2y þ I2z dxdydz. The Euler–Lagrange solution to this

optimization is the Laplace equation r2I ¼ Ixx þ Iyy þ Izz ¼ 0,
which defines a harmonic function. This step has a single par-

ameter that corresponds to the scale of smoothing, and is set at
� ¼ 4. Figure 2b and c shows the original image and the effect of

harmonic cut, respectively. The solution to the Laplacian is
included in the Supplementary Section S2.

3.3 Initial segmentation

To increase computational throughput, individual nucleus and
clumps of nuclei are delineated from the background using an

initial segmentation. The staining is highly variable as a result of
the cell states. The problem is further complicated with hetero-

geneous background signal within and outside of the colony.
These complications hinder any type of global thresholding

(e.g. Otsu); therefore, delineation must be within a local neigh-
borhood. Simultaneously, the initial segmentation increases com-

putational throughput, as a complex problem is reduced to

smaller subproblems. One strategy for detecting of the initial

seeds is through application of the bright elliptic features, as
outlined in section 3.2. These feature detectors (i) respond to

the local spatial topography, (ii) are invariant to the signal

strength (e.g. variable staining) and (iii) have improved noise
immunity because of Gaussian smoothing kernel. An example

of initial seed detection for one slice of image is shown in
Figure 2d. These initial seeds are subsequently refined through

geodesic level sets, where fragmented blobs, within a nucleus,
can be merged. Let I be in the image intensity, u be the impli-

cit representation of the evolving surface, g be the image gradi-
ent, then the initial segmentation of the nuclear regions are

estimated by solving the following evolution equation
@u
@t ¼ gðIÞjruj�þ rgðIÞ � jruj where g ¼ 1

1þjrðIÞjp and� ¼ div
�
ru
jruj

�
(Caselles et al., 1997). The net result is that fragmented seeds,
within a nucleus, are merged subject to the gradient constraint.

3.4 Partitioning clumped nuclei

The partitioning approach builds on the observation that when

two adjacent nuclei overlap they form folds, and principle curva-
ture along the fold is significantly increased (e.g. curvature

maxima). These points of maximum curvature are used to
detect the boundaries between the overlapping nuclei and separ-

ate them. Once identified, these points are clustered on the basis

of proximity and coplanarity. A plane is then fit to each cluster.
These planes are used to partition the volume into subdivisions,

whereby a local segmentation could be performed more faith-
fully. Each of these steps is shown in Figure 3 and summarized in

the next sections.

3.4.1 Curvature computation Curvature can be estimated either

from 3D volumetric data or calculated from segmented surfaces.
In the proposed pipeline, curvature features are first estimated

from volumetric data for initial partitioning the space. Having
segmented each nucleus, we then use surface curvature, in section

3.6, for validation. Volumetric curvature is computed from differ-
ential geometric properties (e.g. partial derivative) of a 3D image

stack (Thirion andGourdon, 1995). Once the maximum principal
curvature values are localized, they are thresholded to identify the

curvature maxima. These maxima points correspond to regions
between two overlapping adjacent nuclei. The details of curvature

computation are included in the Supplementary Section S3.

3.4.2 Clustering points of maximum curvature and plane
fitting Computed curvature maxima convey the boundaries

Fig. 2. Harmonic cut filtering and seed detection on a 2D slice: (a, b)

original 3D volume and a slice in the middle of the stack; (c) detection

of dark elliptic regions followed by harmonic cuts removes small punctate

internal structures corresponding to nucleoli; and (d) results of initial seed

detection from bright elliptic regions. Initial seeds, labeled in red, are frag-

mented within one of the nuclei; however, these seeds are merged through

the application of geodesic level set to hypothesize an initial segmentation
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between the touching nuclei. Points of maximum curvature form

a ring on a specific plane P for two adjacent nuclei. Using this

observation, we group points of maximum curvature to find a set

of planes for decomposing the colony into individual nuclei.

Geometric grouping is performed on the basis of proximity

and coplanarity of the points using Euclidean clustering and

RANdom SAmple Consensus (RANSAC) (Fischler and Bolles,

1981). To fit planes to the points of maximum curvature, the

iterative RANSAC method is used. In this approach, a model

is fitted to the points of maximum curvature using the RANSAC

algorithm; the inliers are found and removed from the dataset.

The remaining dataset is used for fitting more models when pos-

sible. The output of this step is a set of plane models that will be

used to partition the clumps of nuclei.

3.4.3 Binary space partitioning of clumped nuclei RANSAC
provides a natural way to cluster points of maximum curvature

based on coplanarity and proximity. The clustered points of

curvature maxima define planes that can partition a clump of

nuclei into individual nucleus. It should be noted that the parti-

tioning space is exponential in the number of planes, i.e. for n

planes there are Oð2nÞ subdivisions. Therefore, we use an ap-

proach similar to binary space partitioning with auto-partitions,

which allows the partition complexity to become Oðn2Þ (De Berg

et al., 2008).
Denote the volume to be partitioned by V. Also denote each

cluster of points of maximum curvature by C and the set of all

clusters by SC. Each cluster of points of maximum curvature

defines a plane P with the set of all the planes defined by the

clusters by SP. In our partitioning algorithm, the volume V is

divided by a plane Pi 2 Sp into two halves, with one half falling

to the negative side of the dividing plane ðV�Þ, and the other half

falling on the positive side of the plane ðVþÞ. The plane Pi also

separates the set SC into two S�C and SþC , respectively. Each

subdivision is further divided with the planes into their respected
subspace recursively. Within each subdivision, defined by the
intersecting planes computed from points of maximum curva-

ture, connected components are performed and the disconnected
objects are further partitioned using Voronoi partitioning.

3.4.4 Adaptive Merging Despite a robust set of geometric op-
erations, previous steps may lead into fragmentation of a nucleus
via binary space partitioning. Therefore, a policy to validate each

of the hypothesized subdivisions is needed. A dissecting plane for
a subdivision is considered invalid when the corresponding
points of maximum curvature for that plane lie on a different

subdivision. For example, in Figure 3, polytope 2 is invalid as
there are no curvature maxima on the polytope. Partitions with
invalid planes are identified and merged back to an adjacent

partition in the opposite side of the plane.

3.5 Refinement of the initial segmentation

As a result of the (i) variations in the background signal within
and outside of the colony, (ii) intrinsic artifacts in imaging a 3D
colony at different Z positions and (iii) heterogeneity in the cell

states, refinement of the initial segmentation is needed for a more
accurate representation. In this step, the geodesic level sets
method is applied one more time within the refined space of

the polytope for improved delineation.

3.6 Validation of geometric constraints

The computational pipeline can benefit from additional valid-
ation to assure that geometric constraints are satisfied. For ex-
ample, our analysis reveals that the computation of the image

curvature, described in section 3.4.1, may miss a clump of nuclei
because of the scale of the fold between two adjacent nuclei. This
problem is more significant in the Z direction because of its lower

resolution and potential accidental alignment of two overlapping

Fig. 3. Steps in delineating the nuclear architecture
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nuclei along the Z direction. Validation of the geometric con-

straints is based on building surface meshes and computing sur-

face curvatures. The same partitioning strategy, as in section
3.4.2, is also used to partition a polytope further.

After building a triangular mesh (e.g. discrete marching

cubes), the discrete Gaussian surface curvature at vertex v is

found by measuring the excess angle at vertex v made by the

incident triangles. Specifically, Kv ¼ 2��
P
i

�i, where �i ’s are

the interior angles of all triangles meeting at vertex v. On the

other hand, the mean curvature for the surface is the sum of the

dihedral angles at e made by the incident triangle normals

weighted by the edge lengths, Hv ¼
P

e2E lðeÞ�e. Having calcu-

lated the mean and Gaussian curvatures, the principal curvatures

are calculated, these values are then thresholded, and if enough

data points exist, they are used to partition the polytopes as

described previously. Details and visual examples are given in

Supplementary Section S4.

4 VALIDATION AND COMPARISON

Quantification of the multicellular organization requires success-

ful delineation of each nucleus. The proposed computational

pipeline was (i) evaluated with synthetic and manually annotated

images, (ii) compared with alternative methods and (iii) applied

to a dataset of MCF10A, MCF7, MDA-MB-231 and MDA-

MB-468 cell lines that are fixed in culture at days 2, 5 and 7

for quantifying morphogenesis. The importance of this experi-

mental design is that genetically diverse cell lines provide a sig-

nificant phenotypic diversity for proof of concept and validation.

Comparison is performed against watershed-based techniques
such as marker-based watershed, IV and GFT (Li et al., 2007)

based on the availability of the source code.

Synthetic Data: The efficacy of the proposed method is eval-

uated using synthetically generated datasets. The experimental

setup involves 50 randomly generated colonies where nuclei,

with ellipsoidal geometry, are placed on the surface of a sphere

that represents a colony. Each ellipsoidal nucleus is randomly

placed and rotated on the colony sphere. Having constructed a

synthetic volume, the images are corrupted with four types of

noise models: (i) additive Gaussian noise, (ii) speckle noise, (iii)

shot noise and (iv) salt and pepper noise. A peak signal-to-noise

ratio (PSNR) of 9 dB is used for all the experiments. PSNR is

given by 10 � log10
MAX2

I

MSE

� �
, where MAXI is the maximum inten-

sity value and MSE is the mean squared error between the noise

and the input signal. The parameter setting for the experiments is

as follows: for initial segmentation � ¼ 20, ts ¼ 0:05; for image

curvature detection �� ¼ 3; and for plane fitting �p ¼ 50 and

�T ¼ 3 are used. In all four cases, the nuclei are correctly deli-

neated from each other. A sample of each test case is shown in

Figure 4 along with segmentation using proposed method and

classical watershed technique. Table 1 summarizes precision and

recall for all of the experiments subject to multiple noise

conditions.
Real Data: In all, 70 image stacks (e.g. 70 colonies) were

manually annotated from two independent datasets for valid-

ation and comparative analysis. Results are represented at

three levels: (i) comparison with the watershed-based techniques,

(ii) visualization of colony organization for different cell lines

and (iii) precision and recall over annotated dataset. The param-

eter setting for processing the real data was identical to the syn-

thetic dataset as in the previous section. Variations up to 20%

had no impact on the final outcome. (i) Figure 5 shows a sample

of segmentation results and comparison with variants of water-

shed-based method. (ii) Figure 6 shows a sample of segmented

colony organization for each of the four cell lines. (iii) Table 2

shows superior precision and recall against alternative methods

for the annotated dataset. Potential failures are (a) accidental

alignment between two adjacent nuclei that form a partial fold

Fig. 4. First column illustrates Gaussian, speckle, shot and salt and

pepper noise models on four randomly generated colonies. The segmen-

tation of each colony is provided in the second column, and the water-

shed results are given in the third column

Table 1. Object level precision for synthetic data

Algorithm Gaussian Shot Speckle Median

CBP precision 1.0 1.0 1.0 1.0

CBP recall 1.0 1.0 1.0 1.0

CBP F-measure 1.0 1.0 1.0 1.0

IV precision 0.96 0.90 0.99 0.93

IV recall 0.97 1.0 1.0 0.84

IV F-measure 0.97 0.95 0.99 0.88

GFT precision 0.84 0.81 0.75 0.91

GFT recall 0.59 0.49 0.50 0.64

GFT F-measure 0.69 0.61 0.60 0.75

Note: Object level precision recall values for the synthetic datasets with different

noise models are given. PSNR is set to 9dB.
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with insufficient information for partitioning them (shown in

Supplementary Section S5) and (b) sequential RANSAC infer-

ring incorrect partitioning because of its greedy nature; however,

multi-RANSAC (Isack and Boykov, 2012) should reduce the

frequency of incorrect plane fitting. On average, each stack is

about 512� 512� 80 pixels and the processing time is �2min/

stack with an 800 Mb of memory usage.

5 MORPHOGENESIS COMPARISON

Comparison needs to be performed in context. For example, it is

well known that MCF10A and MCF7 have a well-contained

symmetrical organization, whereas MDA-MB-231 and MDA-

MB-468 have more invasive growth properties. Therefore, mor-

phogenesis analysis is performed by comparing (i) MCF10A

against MCF7 and (ii) all four lines simultaneously. In both

cases, colony organization is multiparametrically profiled with

the Delaunay triangulation.
In the first case, the MCF10A line is a non-transformed line,

whereas the MCF7 line is tumorigenic one. Non-transformed

lines should form a hollow sphere by day 10, i.e. cells inside the

colony should go through apoptosis. Thus, a potential index for

lumen formation is the distribution of distances of nuclei to the

center of the convex hull (CH) in a colony. Depending on the type

of cell lines, during the colony growth, the distance of some of the

nuclei to the center of the CH is increased, whereas others may

remain unchanged. There are a number of ways to visualize cel-

lular organization for quality control, as seen in Figure 7a, which

shows a distribution of distance of nuclei to the center of the CH

for MCF10A. Our investigation indicates that a preferred index

for lumen formation, lumenosity, is the volume of the CH that

excludes nuclear information, where the CH is generated from the

centroids of nuclei in a colony. Computation of CH is supported

by the VTK library. The evolutions of the lumenosity indices for

MCF10A andMCF7 are shown in Figure 7b, which is consistent

with the published literature asMCF7 does not form a lumen (e.g.

a hollow sphere) (Kenny et al., 2007).
In the second case, colony organization is quantified across

the four cell lines, as shown in Figure 7c and d. In contrast to

MCF10A and MCF7, the other two lines have an invasive mor-

phogenesis. Among computed colony indices, ‘Colony

Elongation’ and ‘Mean Edge Length’ were identified to be dis-

criminative between the four cell lines. Colony Elongation is

Fig. 6. Two examples of MCF10A (a,b), MCF7 (c,d), MDA-MB-468

(e,f) and MDA-MB-231 (g,h) cell lines on day 7

Fig. 5. Comparison with watershed-based methods on a stack of

MCF10A cell line. (a) An example input is given. The results of

watershed, marker based watershed and the proposed curvature-based

partitioning (CBP) is provided in (b), (c) and (d) respectively

Table 2. Pixel and object level precision recall values for the annotated

dataset

Measurement Type Watershed Marker-based

watershed

GFT IV CBP

B/F precision 0.95 0.84 0.95 0.97 0.86

B/F recall 0.44 0.52 0.82 0.79 0.84

B/F F-measure 0.60 0.58 0.88 0.87 0.85

Object precision 0.75 0.88 0.88 0.87 0.97

Object recall 0.67 0.72 0.87 0.86 0.95

Object F-measure 0.71 0.80 0.88 0.87 0.96

Note: B/F stands for Background/Foreground.
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calculated as the ratio of �1=�2 where �1 � �2 � �3 are the
lengths of principal moments of the colony. For MCF10A and

MCF7 lines, the elongation of the colony is significantly lower
compared with the 231 and 468 cell lines at day 7. There is also a
2-fold difference between the 231 and 468 cell lines and
MCF10A, which indicates invasiveness of these cell lines. The

mean edge length of these colonies is used as an index to measure
the dispersion of the nuclei in the colony space. Both 231 and 468
lines are showing increased mean edge lengths in our experiments

as a result of increased proliferation (Fig. 7(d)).

6 CONCLUSION

With the increasing demand for high content screening of 3D cell

culture models, the CBP method is a highly effective approach
for segmentation and subsequent profiling. Evaluation and test-
ing of CBP have been tightly coupled with the experimental

design that consists of four cell lines with a significant genetic
diversity and distinct phenotypic signatures. Comparison of CBP
with the alternative methods demonstrates superior performance

in terms of the error rates. Furthermore, multiparametric repre-
sentation for the colony organization has identified indices that
capture aberrant and normal morphogenesis in these four cell
lines. The software has been developed in ITK/VTK framework

for improved portability and memory use.
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It is clear that MCF10A forms a lumen, but MCF7 does not. (c, d) MDA-MB-468 and MDA-MB-231 have non-symmetrical growth properties
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