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Abstract

Approximate computing is an emerging design paradigm that offers trade-offs between out-

put accuracy and computation efforts by exploiting some applications’ intrinsic error resil-

iency. Computation of error metrics is of paramount importance in approximate circuits to

measure the degree of approximation. Most of the existing techniques for evaluating error

metrics apply simulations which may not be effective for evaluation of large complex designs

because of an immense increase in simulation runtime and a decrease in accuracy. To

address these deficiencies, we present a novel methodology that employs SAT (Boolean

satisfiability) solvers for fast and accurate determination of error metrics specifically for the

calculation of an average-case error and the maximum error rate in functionally approxi-

mated circuits. The proposed approach identifies the set of all errors producing assignments

to gauge the quality of approximate circuits for real-life applications. Additionally, the pro-

posed approach provides a test generation method to facilitate design choices, and acts as

an important guide to debug the approximate circuits to discover and locate the errors. The

effectiveness of the approach is demonstrated by evaluating the error metrics of several

benchmark-approximated adders of different sizes. Experimental results on benchmark cir-

cuits show that the proposed SAT-based methodology accurately determines the maximum

error rate and an average-case error within acceptable CPU execution time in one go, and

further provides a log of error-generating input assignments.

Introduction

Approximate computing has emerged as a promising architectural concept which offers new

opportunities to design circuits or systems which can be more compact, faster and/or consume

less power at the cost of a slight loss of accuracy for error-tolerant applications [1]. Error- tol-

erant applications are the ones where precise computational accuracy is not required which

include deep machine learning, image classification, and digital signal processing (DSP) [2].

For example, in DSP applications, human perception is not precise enough to detect a certain

range of errors. Therefore, a product of identical (perceived) quality can be presented with

lower energy costs or higher performance. Chippa et al. [2] estimated that in certain applica-

tions, about 83% of runtime is spent on operations that can be approximated. Different types

of approximations have been reported in literature for the design of approximated circuits [1].
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The form of approximation addressed in this paper is known as functional approximation; in

which the Boolean functions implemented into the circuits are inherently different from the

original ones with a certain threshold of error between the outputs of both functions.

The emergence of approximate computing has led to the need for adequate evaluation

methods for approximate circuits where besides normal metrics such as area, delay, and power

consumption, measurement of error metrics is an important consideration and a key chal-

lenge. Error metrics provide a quantifiable measure to judge exactly how far off an approxi-

mate design is from the correct one, which is critical for the use of approximate circuits in

real-life applications. Some of the error metrics measured by existing approaches include

worst-case error, average case error, error rate (error probability), and maximum bit-flip error

(maximum Hamming distance) [3]. Worst-case error, as the name implies, is the worst possi-

ble deviation in values between the two circuits for a single input assignment, which is rele-

vant, for example, in a DSP application where a worst-case error pixel would stand out.

Average-case error is the expected error mean value to be found across all input assignments.

This would also be seen in a DSP environment where the overall color grading of an approxi-

mated image could be affected by a poor average-case error. Maximum bit-flip error is the

number of incorrect bits in the approximated circuit, which is relevant to memory address

approximation. Error rate is the percentage of input assignments that produce errors in the

approximated design that is an indication of the number of introduced errors in the design by

the approximation process.

The error metrics mentioned earlier are independent from one another. A circuit with a

high error rate does not imply that there is a high maximum bit-flip error or high worst-case

error. The relevancy of an error metric is purely based on the application the design is

intended for. However, determination of error metrics in approximate circuits is a hard prob-

lem [3]. Current error metric evaluation methods suffer from several problems. Simulation-

based approaches have prolonged runtimes, and symbolic BDD [4] representation suffers

from the state explosion problem. Finally, analytical methods are intractable for larger designs.

SAT solver methods [5] have been reported to determine worst-case error and bit-flip error,

but not for the maximum error rate or an average-case error, as will be explained in more

detail in the related work section. SAT solvers are tools that can determine if a Boolean func-

tion is satisfiable; there is a combination of inputs that produces a logic 1.

In this paper, we propose a novel methodology, using SAT solvers to accurately and effi-

ciently determine the maximum error rate and an average-case error. Recent SAT solvers are

quick enough to efficiently check relaxed equivalence in many practical situations. We focus

on the maximum error rate and an average-case error since these are the hardest to compute,

requiring enumeration of all errors and calculation of their values. However, the proposed

approach is applicable and can measure all relevant error metrics, since we generate all inputs

that produce errors (and their corresponding output values), and then can calculate any of

the error metrics. An overview of the proposed methodology is depicted in Fig 1, in which first

the approximated and exact designs are combined using an auxiliary circuit called the

Fig 1. Overview of the proposed methodology.

https://doi.org/10.1371/journal.pone.0227745.g001
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approximation miter. The approximation miter transforms both designs into one design with

a single output and the same inputs. The output of the miter is 0 when the two designs match

and are correct. The output of the miter is 1 when the approximated circuit’s output has an

erred bit. This new circuit is fed into the SAT solver to determine the error metrics. The pro-

posed evaluation methodology is important since it provides a relatively fast and reliable way

for designers to evaluate their approximate circuit designs. The effectiveness of the approach is

demonstrated by evaluating the error metrics of several benchmark-approximated adders of

different sizes.

The main contributions of this paper can be summarized as follows:

• We propose a SAT-Solver-based algorithm for all error metrics (particularly the maximum

error rate and an average-case error) in approximated circuits, given an original circuit.

• The method takes advantage of the computational miter to combine the two circuits and

eventually transform the circuit into a CNF format, while saving the original variable map-

ping to the inputs.

• The algorithm can calculate all error metrics and identify the input configurations that pro-

duced them in a single run.

• We prove the correctness of our approach by testing the algorithm on commonly used

approximate adders and comparing them with the exact adders.

The remainder of this paper is organized as follows. Various error metrics determination

methods applicable to approximate circuits are presented in Section 2. Section 3 provides an

overview of the terminology and key concepts used in this work, and describes the error met-

rics and the main functionality of a SAT solver. The problem statement and proposed solution

methodology are discussed in Section 4. A proof of method correctness and an evaluation of

the proposed methodology supported by experimental results is described in Section 5. Finally,

conclusions and future research opportunities are presented in Section 6.

Related work

Error metrics are essential tools for of evaluation digital circuits. This is particularly true in the

case of approximate circuits, where it is a tool for measuring the adequate correctness of a

design that is made to not be precisely exact. The degree of acceptance of approximate designs

is usually subjected to many error metrics, such as error rate, maximum bit-flip error, worst-

case error, or average-case error.

Typically, even though worst-case errors can be computed for a specific component, on its

own, the accumulated worst-case error may differ significantly. Therefore, individual analysis

of isolated components is not sufficient for evaluation of approximate circuits. It requires a dif-

ferent set of tools to evaluate the error metrics of larger circuits. Furthermore, different error

metrics have varying significance depending on the circuit’s application. Although error-rate

may not be a significant metric in some applications, where the error significance/worst-case

error may matter more (the value of a pixel), there are several other applications where error-

rate is an important metric (e.g. the number of incorrect memory address computations in a

microprocessor) [6]. Apart from the application-specific significance of error rate, it is a gen-

eral quality metric for approximate designs. Error-rate multiplied with error-significance is

used as a composite quality metric for approximate circuit designs [7].

There have been many designs and synthesis methods for approximate computing circuits,

but not many on precise error metrics [5]. Several approaches determine these metrics, includ-

ing simulation, analytical analysis, Boolean Satisfiability (SAT solvers), and BDDs. Methods of
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formal design verifications to evaluate error metrics have been used and implemented, such as

Bounded Model Checking (BMC). Currently, the techniques used most often to evaluate the

approximate designs are random simulation and error estimation, which are inexact

approaches [8, 9]. When BMC is applied to sequential equivalence checking, the circuit is

unrolled and the overall problem including the properties is solved using a SAT solver [5].

Some error metrics such as error-rate cannot be expressed in terms of Boolean functions effi-

ciently since it requires counting in the solution space, which is a SAT problem [10].

The authors of [5] proposed a methodology and tool to determine precisely how error

behaves in approximated combinational components in sequential circuits. They implemented

the use of an approximation miter and preformed model checking using Property-Directed

Reachability (PDR). They calculated several error metrics and tried to answer multiple verifi-

cation questions. In addition, they attempted to determine the earliest time (in clock cycles)

that can exceed a certain worst-case error, the maximum case error, and the maximum bit-flip

error. They tested their verification package on a number of approximate designs and reported

the results. However, they did not calculate metrics for error rate or average-case error.

Yu et al. [8] presented a case study to analyze the output quality of imprecise adders for

their use in approximate computing. The authors adopted a formal verification of approximate

adders based on BDDs rather than random simulation or error estimation in order to retrieve

exact error analysis. In order to adapt their methods to the BDD, XOR gates were used to

check the equivalence of the outputs followed by a “miter” (a word-wide OR gate). The pro-

posed framework could compute the exact error rates of the designs studied. The methods pro-

vided were able to generate test patterns that cover all possible errors produced by the

imprecise adders. The work of the authors remained to be tested on larger circuits, such as

multiplication. This is an important point, as BDDs suffer from state explosion problems. In

[9], Anteneh et al. presented an automatic test pattern generation approach for approximate

circuits based on Boolean satisfiability. The technique reduced the number of faults and the

testing time, while maintain high fault coverage.

Chandrasekharan et al. [10] proposed an automatic synthesis methodology for approximat-

ing circuits using And-Inverter Graph (AIG) rewriting. The synthesis approach employed

bounds on the approximation errors introduced in the design. The methodology was tested on

a variety of designs and benchmarks. The authors claimed that their results were comparable

with hand-crafted approximate circuits. Their evaluation of error-rate involved using BDDs.

The exact approach used was unique to BDD-based representation. This led to extended run-

times caused by the need for conversion from AIG to BDD. They also presented an algorithm

to calculate bit-flip error using a SAT solver.

Choudhury et al. [11] proposed a concurrent error masking methodology based on the use

of approximate logic circuits. The approach was estimated to mask 88% of targeted errors for a

34% area overhead and 17% power overhead because of the use of approximate circuits. They

evaluated error metrics for their approach via simulation of the approximate logic circuit

designs and employed the use of reliability analysis tools.

Jiang et al. [12] presented a comparative study between approximate multipliers. The

authors provided a review of the different implementations of approximate multipliers’ cur-

rent designs and compared their evaluations. The authors also used Monte Carlo simulation

using MATLAB for error metric determination in their comparison of approximate multipli-

ers. Furthermore, they evaluated the multipliers based on their performance in image sharpen-

ing in the MATLAB environment.

Momeni et al. [13] proposed designs of approximate compressors to be used in multiplica-

tion. Approximate adders were not viable to produce multiplication because of the error accu-

mulation. Previous work had been done on multipliers, but the paper is unique in its use of
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compressors for multiplication. Two approximate compressors and four approximate multi-

pliers were simulated using HSPICE.

Huang et al. [14] provided an overview of imprecise hardware, improved upon imprecise

adders, and proposed imprecise multipliers. They stated that numerical analytical analysis was

a superior method of error metric computation, when compared to simulation. Their method-

ology followed two constraints: the only allowed operations were addition and multiplication,

and input data were independent of one another. The approach used Interval Arithmetic and

Affine Arithmetic for error evaluation. They concluded that their methodology provided

higher speed computation with reasonable estimation close to exhaustive search with runtime

being orders of magnitude less than Monte Carlo simulation.

Most of the past works used simulation as a means of estimating the error metrics, however,

there have been combined methodology that used simulation and other means to maintain

accuracy of evaluation and avoid exponentially increasing runtime. Venkatesan et al. [15] pro-

posed a methodology for Modeling and Analysis of Circuits for Approximate Computing

(MACACO). MACACO used several methods for its formal verification. Worst-case error was

computed using a pseudo-SAT solver approach. The authors also computed error probability

and average-case error by two means, a BDD package and Monte Carlo-based simulation. The

Monte Carlo simulation method was used to assume scalability, as BDD based computation

was not deemed feasible for all circuits according to the authors.

Similarly, Soeken et al. [16] used BDD-based methods to compute error metrics. This was

to their benefit, as their methodology for synthesizing approximate circuit designs was also

based on BDD minimization of Boolean functions. Therefore, some of the error metrics (error

rate) were calculated during the minimization process. It was stated that because the method-

ology was based on BDDs, the error metric evaluation was not applicable on much larger cir-

cuits in their current implementation. The authors suggested changing the underlying data

structure to AIGs; however, it was not clear if error metrics can be computed efficiently.

Recently, Froehlich et al. [17] proposed a formal three-stage approach for the determination

of all error-metrics for an approximate circuit. The determination of several error-metrics was

facilitated by the main bulk of the work being done by a Gröbner reduction and an Algebraic

Decision Diagram (ADD) that did not need to be repeated for different error metrics. They

used a recursive and hash function to determine the minterms.

Other means of error metric estimation include probabilistic analysis. Mazahir et al. [18]

proposed a generic methodology for calculating the exact probability of occurrence of any

errors in approximate adders and the probability mass function (PMF) of errors for any input

distribution without the need of exhaustive or Monte-Carlo simulation. The methodology was

based on the internal structures of adders and the probability of carry-in/carry-out. It is worth

noting that the proposed approach is specific to approximate adders only, and is applicable

when a combination of approximate adders is used. Later, Qureshi et al. [19] used HOL4 inter-

active theorem, proving for probability distribution and error analysis of three high-speed,

low-latency approximate adders with uniformly distributed inputs. Mazahir et al. [20] pro-

vided a probabilistic analysis of errors in an approximate multipliers construct from given

blocks. The methodology was based on the internal probabilistic behavior of the building

blocks cascading to create larger multipliers. The analysis of [20] was generalized for any input

probability distribution and the probability mass function of error was found. The experimen-

tal results applied the methodology on state-of-the-art multipliers to compute their probability

mass functions and predicted their performance in an image-processing application. The

authors of [21] proposed a probabilistic analysis methodology for analyzing two-part seg-

mented adders and derived the mean error distance and mean square error in the approximate

adders.
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Similarly, Wu et al. [22] adopted an analytical methodology with assumptions on the inputs

to the approximate circuits. They assumed that inputs were uniformly distributed to adders

and thus proposed a method based on the building blocks of approximate adders. The method

was also shown to be able to compute the probability mass function of errors (error distribu-

tion). It was experimentally shown that the procedure was less computationally extensive than

Monte Carlo simulation. It is worth noting that the methods reviewed in [20] and [22] are pre-

cise and are suitable only for block-based multipliers and adders, respectively. Furthermore,

depending on the application and context a hardware component is used in, it might not nec-

essarily be possible to assume a probability distribution for input assignments.

A popular approach to evaluate approximate circuits in the literature is to employ the

approximated circuit on an application it would normally be used for and evaluate its perfor-

mance. This is a popular method because of its simplicity, but the work risks being applicable

only to the tested application. Examples of such works [23, 24] have utilized approximate mul-

tipliers and adders in image processing scenarios. The error metric then is measured on the

test data (input images) and how well the approximate circuits formed the image as opposed

to the ideal situation.

Another important implication of approximate circuit fabrication is the acceptance of faulty

units that fall within the appropriate range of error metrics required. The authors of [25] pre-

sented an approximation-aware test approach to identify approximate-redundant faults. The

proposed approach guaranteed that the faults had effects that fall below the acceptable thresh-

olds using a SAT solver and miter approach, and specific automatic test generation patterns.

It can be noted that the most prominent form of error metric evaluation has been the

Monte Carlo simulation. This might be a feasible way of determining error metrics for smaller

designs. The major issue with the simulation approach is the simulation time that grows expo-

nentially with data width and computation length [14] for evaluating larger approximate

designs. The same issue lies with the analytical approaches as they become harder and more

complicated to deploy with increased design complexity, particularly if accuracy is considered.

The BDD approach can produce exact determinations of error metrics as reported in the

works above. In fact, in some approaches this is favorable, since the synthesis procedure

requires BDD representation in the first place, and therefore, error metrics can be computed

during minimization [16]. Some of the error metrics, such as the error rate, are SAT problems,

since they require counting in the solution space [10]. However, SAT approaches to BMC are

more scalable than their BDD counterparts [26]. Therefore, the goal of this paper is to imple-

ment a SAT solver-based scalable approach in order to enable exact error metrics calculation.

The two-error metrics that have been previously implemented using SAT solvers are the

worst-case error [15] and bit-flip error [10]. These are simpler metrics to calculate using SAT

solvers as they involve searching for a single input assignment in the solution space that leads

to maximum value. This paper aims to add to those approaches by introducing an approach

for calculating the maximum error rate and an average-case error determination via SAT solv-

ing on a CNF representation of an approximated design.

Preliminaries and background

This section will define glosses over important terminology and key concepts required in this

work. The error metrics subsection describes all error metrics, followed by the SAT solver sub-

section, which describes the main functionality of a SAT solver and recent advancements in

the use and applications of SAT solvers. Finally, the miter subsection explains the importance

of an auxiliary circuit and how it is used to manipulate designs in order to feed them into a

SAT solver and extract a result/metric.

Error metrics determination in functionally approx. circuits using SAT solvers

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 6 / 19

https://doi.org/10.1371/journal.pone.0227745


Error metrics

Approximate circuit designs need to be evaluated to determine their usefulness. One of the

important evaluations is how much does the approximated design deviate from the exact one.

In the class of functionally-approximated circuits, the approximated circuits are typically com-

pared to the original exact designs to determine the disparity between the two designs. Error

rate is a challenging metric to calculate, as it includes checking the probability of error bits

overall in the design. Let f be a Boolean function that represents the exact design such that f:
Bn!Bm and another Boolean function f̂ : Bn ! Bm represents the approximate circuit. Using

this notation, the worst-case error is defined as:

ewcð f ; f̂ Þ ¼ maxjintð f ðxÞÞ � intð f̂ ðxÞÞj ð1Þ

Eq (1) represents the maximum possible difference between the outputs of the two designs,

given that we represent the output of both circuits as integer values [9].

Similarly, bit-flip error can be defined as:

ebf ð f ; f̂ Þ ¼ maxð
Pm� 1

i¼0
½ fiðxÞ � f̂ iðxÞ�Þ ð2Þ

Eq (2) denotes bit-flip error, or the maximum number of bits that differ in both outputs.

The error metrics mentioned above have been previously calculated using SAT solver

approaches. As noted from Eqs (1) and (2), these error metrics focus on finding a maximum

value, which is a single point in the solution space. This makes the problem far more approachable

as a binary search technique can be employed along with a specifically designed auxiliary circuit

to calculate both metrics. Binary search reduces the computational complexity of the problem.

Error-rate and average-case error are more computationally intensive as they require itera-

tion over all solutions/errors possible. Error rate can be stated as:

eerð f ; f̂ Þ ¼
P

x2Bn ½ f ðxÞ 6¼ f̂ ðxÞ�
2n ð3Þ

This can be read as the fraction of inputs that produce a different output pattern in the

approximated circuit other than the exact one [10]. This requires a count of the number of

errors between the two circuits (the numerator in Eq (3)) which is also known as the #SAT

problem.

Finally, the average-case error can be expressed by:

eacðf ; f̂ Þ ¼
P

x2Bn jintðf ðxÞÞ � intðf̂ ðxÞÞj
2n ð4Þ

Eq (4) can be explained as the summation of the absolute difference of outputs of the two

circuits produced by every input assignment divided by the number of possible input assign-

ments. Obviously, for the input assignments that do not produce errors, the value inside the

summation is zero. Therefore, we need only to perform the summation for values of x that pro-

duce errors.

SAT solver

The SAT problem considers a Boolean expression and checks if there is an input assignment

(s) that result in the Boolean expression returning a true value. This Boolean expression is

input into the SAT solver in the form of a combination of logical clauses. Modern SAT solvers

are capable of quickly traversing BDDs and solving millions of propositional clauses in accept-

able time frame [5].
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SAT solvers have picked up steam as a promising tool to approach many research problems.

The applicability of SAT solvers does not just lie in the Boolean network plane. The work of

[27] used a SAT-based formulation for calculating the logical-capacity of VIA-configurable

structures ASIC (VCSA) fabric. The model used the physical properties of a problem and for-

mulated them into Boolean terms and clauses to be processed by the SAT solver. Another proj-

ect [28], used a SAT solver to determine short-circuit conditions in logical circuits. Short-

circuits in a logic circuit can be induced by several causes such as: a designer connecting two

outputs of a module, assuming certain unreliable assumptions. The authors modeled the tran-

sistors in the circuit as a graph and tried ensuring that there was no way the power source was

connected to the ground via any path. They transformed this problem into a series of Boolean

clauses that were then checked by the SAT solver.

There are multiple variations of SAT solving methods (all with the same goal). The details

of implementation of such solvers is deemed outside the scope of this paper. However, for the

concerned interested reader, information on the SAT solvers relevant to this work is available

in [29]. The SAT solver used for this project is a backtracking-based non-blocking SAT solver.

Meaning the SAT solver searches for the counter-examples one by one with backtracking with-

out storing the counter examples back into the original problem. This specific strategy was

chosen simply because it proved to be the best in practice and used the least amount of

memory.

SAT solvers accept a specific format of several Boolean clauses. Therefore, one must change

the problem at hand of equivalence checking two circuits (and hence average-case error/error-

rate calculation) into a SAT problem. This requires us to first combine both circuits into one

in order to feed it into the SAT solver.

Auxiliary circuits

In order to take advantage of the SAT solver to check equivalence between the two circuits,

one must first transform the circuit into a form the SAT solver can use. SAT solvers operate on

a number of clauses to determine if they can all be satisfied. Digital circuits can have any num-

ber of outputs. Therefore, an auxiliary circuit is built around the exact and approximated

designs in order to convert it into a single output and evaluate the desired error metric.

Assuming the exact circuit is the black box F and the approximated circuit is the black box G,

then the auxiliary circuit can be seen in Fig 2. The general block diagram shows the structure

of the auxiliary circuit such that both circuits G and F have the same inputs and both of their

outputs lead to the error block, which is the error determination block that produces the error

value e or assists in finding e. The structure of the error determination block differs based on

the type of error metric to be determined. The error determination block can simply check if

all the outputs from both circuits are equivalent, or it can contain comparators or arithmetic

operations to evaluate specific error metric.

Fig 2. Block diagram of auxiliary circuit.

https://doi.org/10.1371/journal.pone.0227745.g002
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Proposed methodology

The following subsections present our proposed solutions to the problem of error metrics

determination in approximate circuits. The proposed solution consists of three main stages as

shown in Fig 3.

Yosys [30] receives the approximate and exact designs, combines them and produces the

design as a BLIF (through Yosys). Then, a script processes the BLIF file into a CNF file to

enable it to be fed to the SAT solver, and finally, runs the modified ALLSAT solver to deter-

mine error metrics for the resulting combined design. Yosys is used to apply the combinational

miter, as well as to synthesize the circuit into simple gates/cells. The script is designed to print

out a variable mapping that preserves the CNF IDs of the variables of interest that are the

inputs and outputs of both circuits. This information is essential to the modified SAT solver to

be able to extract the differences between the two circuits and calculate average-case error. The

algorithm depends on the fact that both error rate and average-case error require complete

coverage of all the errors in the solution space to determine the exact error metric value. There-

fore, the SAT solver approach is used to search through the solution space and generate all the

error-producing assignments. The number of these assignments can be used to calculate the

error rate metric using Eq (2). The input assignments generated can then be simulated for

both circuits and used with Eq (4) to calculate average-case error. This form of simulation is

cheaper as the run time does not scale with the number of inputs to the circuits. The runtime

scales only with the number of unique errors in the circuit. Although the worst possible situa-

tion for this approach would be if the number of errors is 2n (i.e. every input assignment leads

to an error). This is highly unlikely as the circuit usually has a great deal fewer errors than that

and synthesis approaches provide an upper limit on number of introduced errors. The modi-

fied SAT solver can list the inputs and outputs of the two circuits when errors occur between

them. However, listing of the output differences is optional and is not needed for any calcula-

tions, but is left as an option for interested designers.

Auxiliary circuits

The following subsections show examples of the auxiliary circuitry needed to evaluate the max-

imum error rate and an average-case error. The error rate auxiliary circuit is simply an approx-

imation miter that compares, bit by bit, each of the outputs of the two circuits. In case of the

average-case error, some form of accumulator would need to be built around the absolute dif-

ference of the two circuits. This is just for clarification and the actual implementation uses an

approximation miter for both circuits.

Maximum error rate. In the case of error rate, the error determination block is an

approximation miter, which is basically ORing the equivalence of each output of both circuits.

To illustrate this design concept, we assume a simple design where F and G have three outputs;

the structure of the error rate would look like Fig 2. Each output in the circuits F and G are

XORed to determine their equivalence. As shown in Fig 2, the outputs (f0,g0), (f1,g1) and (f2,

Fig 3. Detailed proposed methodology.

https://doi.org/10.1371/journal.pone.0227745.g003
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g2) are XORed. Hence, any of these XORed outputs will return a logic 1 wherever their outputs

are not equivalent. Therefore, the overall output of the approximation miter will be 1 whenever

the output of the approximated circuit G does not match the output of the exact circuit F. The

error rate can then be computed as expressed in Eq (3).

Eq (3) represents the global OR of the XORs of each output in both systems (where m is the

number of outputs). The number of such inputs that produce a 1 value in the miter are added

up and divided by 2n to determine the error rate of the approximated system (where n is the

number of inputs). Therefore, the addition of the auxiliary circuit turns the two designs into

one design with the same number of inputs n and one output e, where e can only be 1 when

the two sub-designs are not equivalent [16].

Average-case error. Average-case error metric resembles error rate in that it is not con-

cerned with a single output value. Average-case error includes all the possible errors generated

by the approximated design. The circuit to calculate the error can be visualized as a combina-

tion of the circuits in Figs 2 and 4. The circuit in Fig 2 is used to detect the existence of an

error. The circuit in Fig 4 is then used to calculate the value of that error and accumulate it

across all input assignments. Therefore, practically the implemented solution is running the

SAT solver on the circuit in Fig 2 to enumerate the input assignments that produce errors.

Those input assignments are used to create a test bench for the circuit. The average-case error

can then be calculated by using Eq (4).

It is important to note is that not all n input variables must appear in a solution. The vari-

ables that do not appear in a path can be considered do-not cares, as they do not affect the out-

put of the miter. One of the advantages of this process is that it does not need to include every

variable and therefore the use of do-not cares can list several input assignments at once and

hence the numeration of errors can be summarized. The number of input assignments repre-

sented by a path is equal to 2c input assignments where c is the number of do-not cares.

SAT solving

Maximum error rate. Error rate involves counting the number of solutions which satisfy

the SAT problem. This can be denoted as the ALLSAT problem, which is searching through

the solution space for all input assignments that satisfy a circuit. It can be noted that the #SAT

problem, which is counting the number of satisfying input assignments, is enough to solve the

maximum error rate metric alone. However, in order to aid the algorithm in calculating the

average-case error and error rate in one step, we propose the ALLSAT solution. The ALLSAT

is an incremental running of the SAT solver in order to collect all counter examples that lead

to satisfying the miter. Note that ALLSAT solver stores implications from past iterations in

order to speed up future iterations. This gives the algorithm another advantage that enumer-

ates the input assignments that lead to errors, which can be very useful for debugging pur-

poses. We propose an algorithm that combines all the details mentioned to determine the

Fig 4. Total error approximation miter example.

https://doi.org/10.1371/journal.pone.0227745.g004
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maximum error rate and average case error as shown in Algorithm 1. Furthermore, using the

ALLSAT solution for both error-metrics allows us to only use one auxiliary circuit (Fig 2)

instead of having to apply both for the two different metrics.

__________________________________________________________________________
Algorithm 1: Error Metric Computation Algorithm
__________________________________________________________________________

Input: Verilog Circuit F, Verilog Circuit G
Output: Maximum Error Rate MER, Average-case Error AVG, Set of coun-
terexamples L

1: M = ApplyMiter (F, G)
2: MBLIF = WriteBlif (M)
3: [CNF, MAP] = BLIF2CNF (MBLIF)
4: [MER, AVG, L] = MOD_ALLSAT (CNF, MAP)

__________________________________________________________________________

Algorithm 1. General Algorithm of Proposed Methodology

The algorithm that takes both the exact and approximate designs, denoted as Verilog Cir-

cuits F and G, respectively, as indicated in Algorithm 1. The algorithm returns the maximum

error rate and average-case error as a result at the function’s termination and has the option to

return the set of error-producing input assignments L. Line 1 shows a Boolean network con-

structed from F and G by combining them in miter M and adding the auxiliary circuit shown

in Fig 2 using Yosys. The newly-developed Boolean Network M is then written in BLIF format

as shown by Line 2. The algorithm calls a script BLIF2CNF in Line 3 to convert this combined

BLIF circuit into CNF format to be fed into the modified SAT solver in Line 4. The script

turns all variable names into index numbers, and therefore a separate map file of all-important

variable indexes is printed. This map file contains the variable indexes for the shared inputs of

both combined circuits and the individual outputs of both the exact and approximate circuits.

This is useful because the output corresponding to an input can be extracted directly from the

counterexample provided by the SAT solver as shown in Algorithm 2. The modified SAT

solver MOD-ALLSAT then uses the CNF file and the variable map in order to calculate maxi-

mum error rate (MER), average-case error (AVG), and optionally the list of error- producing

input assignments (counterexamples) denoted as L.

__________________________________________________________________________
Algorithm 2: Modified ALLSAT Algorithm (MOD-ALLSAT)
__________________________________________________________________________

Input: CNF File CNF, Variable I/O Map MAP
Output: Maximum Error Rate MER, Average-case Error AVG, Set of coun-
terexamples L

1: AVG = 0
2: ER = 0
3: While CNF is satisfiable do
4: CEX = SAT (CNF) {CEX is a total variable assignment}
5: [input, output1, output2] = ExtractRelevantVariables (CEX, MAP)
6: Add input to L
7: AVG = AVG + | int(output1)–int (output2) |
8: ER ++
9: Update Stored SAT Solving Implications
10: end while
11: MER = ER/2n

12: AVG = AVG/2n

__________________________________________________________________________

Algorithm 2. Modified ALLSAT Solver Algorithm
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A more detailed view of the modified ALLSAT solver (MOD-ALLSAT) used in Algorithm

1 can be seen in Algorithm 2. The MOD-ALLSAT algorithm takes a CNF file and a variable

map as inputs and calculates error-rate (ER), average-case error (AVG), and optionally pro-

duces the list of counterexamples L. The variables ER and AVG are initialized to zero at the

beginning of the algorithm. The ALLSAT solver begins to iteratively find errors in the CNF

file. The SAT solver knows that there are no more remaining errors and it can terminate the

search, when the problem is no longer satisfiable (Line 3). The SAT solver then works on the

CNF file until a satisfying solution (counterexample) is found (Line 4). This solution is pre-

sented as a total variable assignment CEX to all inputs, outputs and intermediate variables. It is

therefore obvious to state that the value of the single output of the miter will be logic 1 for any

satisfying variable assignment. However, for our intended purposes, many intermediate vari-

ables are not needed, and in fact, we only care about the original inputs and outputs of both

circuits. As seen in Line 5, the assignments the SAT solver found to these relevant variables are

extracted from the counterexample. The assigned input is added to the list of error-producing

input assignments (Line 6). The two outputs corresponding to the outputs of the original exact

and approximate circuits are also extracted. We consider the absolute difference between the

integer representation of each value output1 and output2 and accumulate it in the variable

AVG (Line 7). In Line 8, the variable ER is incremented to count error-producing input assign-

ments. The SAT solver then updates its internal information before reiterating the entire pro-

cess until termination (Line 9). This information may include storing intermediate variable

implications it learned to avoid redundant processing, as well as taking note of the input

assignment it found in the past loop iteration. This is done in order to eventually eliminate all

error-producing input assignments and thus making the problem not satisfiable.

A clarifying analogy to this would be deleting the path that has led to the 1 node in the BDD

representation so it cannot be followed again. The SAT solver does this iteratively until eventu-

ally the equation cannot be satisfied anymore. This means all errors have been detected. The

ALLSAT solver is also special in that it does not start from scratch on every iteration (it learns

from previous iterations).

After terminating the search, the variable ER now contains the numerator of Eq (3) for

maximum error rate calculation. The variable AVG also contains the numerator of Eq (4). The

error-rate and average-case error can then be computed by dividing both these variables by 2n,

where n is the number of inputs (Lines 11–12). Then the algorithm finishes execution and out-

puts the error-rate in variable ER, average-case error in variable AVG, and optionally the list of

error-producing inputs L. It is worth nothing that both errors are calculated in one go of the

SAT solver and with the same auxiliary circuit (the approximation miter).

Methodology correctness–an illustrative example. In order to prove the correctness of

the designed methodology, a naïve example was developed for testing. A simple exact ripple

carry 4-bit adder and an “approximated” 4-bit adder were written in Verilog. The “approxi-

mated” adder was a normal ripple carry adder that added one to every value it calculated to

artificially introduce errors. For example, in the approximated adder: 1+1 = 3, 2+2 = 5, etc.

Following the steps of Algorithm 1, the inputs to the algorithm are two circuits: an exact

one F (the ripple carry 4-bit adder), and the approximated circuit (adder that increments valid

result by one) G. The two circuits are 4-bit adders; therefore, they have 5 outputs each. Yosys is

used to apply a miter that XORs each of the 5 outputs to the corresponding output in the other

circuit and ORs the result of all the XORs (Line 1). The resulting circuit is produced from

Yosys to be converted into a CNF file (Line 2) so it can be fed to the ALLSAT solver. The ALL-

SAT solver runs on this representation of the miter combining the two circuits (Line 3) and

begins to extract all the errors (differences) between them.
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Now, since the approximate adder was made to increment one to the result of the exact

adder, this means that all input statements produced errors. Hence, the error-rate is 100%

(Line 4) and the number of errors (the cardinality of set L) is 256 (8 inputs to the miter circuit,

4 per adder). Lastly, the average-case error is calculated by adding each of the differences gen-

erated by all input assignments and dividing by the number of possible assignments. Since the

approximate circuit simply outputs the result of the exact adder plus one, then the difference

in all errors is one. Therefore, the total accumulated difference is 256 (256 errors of value, 1

each), calculated in Line 7 of the algorithm. The average error rate is then 256/256 (Line 9)

such as in Eq 4, equaling 1. All numbers mentioned in this example were achieved practically

using the proposed methodology and reported by the SAT solver.

Experimental results

The methodology was implemented using a combination of tools on the library of approximate

adders [31]. The Yosys package was used to read two separate Verilog circuit designs (one for

the exact and one for the approximated circuit). The Yosys package, with the help from the

ABC [32] verification package, was then used to apply the miter circuit, such as the one shown

in Fig 2. This design was then synthesized and written into BLIF format. The BLIF format was

converted to CNF format (which is a combination of logic clauses) in order to be fed into the

SAT solver. This led to a numbering of all variables, which then lose their name when converted

to the CNF file. The mapping between the variable names is saved in a map for future process-

ing. The SAT solver used was a modified ALLSAT non-blocking clause solution based on Min-

iSAT [27]. The solver prints out all input assignments leading to errors and can print out

individual error values as well. The solver accumulates all the errors and calculates the average

error value. All experiments were carried out on a machine running Linux with an Intel1 core

i7 CPU @ 2.9 GHz and 16 GB of memory. Implementation of the described methodology can

be obtained at: https://github.com/AliRady/error-metrics-determination/

Experimental results on benchmark adders

Tables 1 and 2 contain the results of running the proposed methodology on a library of 8-bit

and 16-bit approximate adders (which have 16 and 32 effective inputs, respectively). The first

column denotes the name of the circuit. The size of the approximated adders in basic cells/

gates is reported in the second column. In addition, the size of the merged circuit when apply-

ing the miter to the approximate adder and the exact ripple carry adder is reported in the

Gates in Miter in the third column. Yosys reported all sizes after synthesizing the circuits into

basic logic cells. The total number of errors shown in column 4 is the cardinality of the

counter-example set found by the ALLSAT solver, which is then used to calculate maximum

error rate using Eq (3). The summation of errors in column 5 is the total sum of the absolute

difference between the two circuits over all input assignments, used in average-case error cal-

culation. The tables then contain the results of the two metrics: maximum error rate and aver-

age-case error in columns 6 and 7, respectively. The last column represents the processing

time over the BLIF file containing the two circuits to be compared. The CPU time with numer-

ation shows the required time to run our methodology including the generation of the file list-

ing the inputs that generates the errors.

Maximum error rate quantifies the probability that given any two input statements, the out-

puts of the two adders would be different. The average-case error is a mean value of how large

the error would be. For example, there is an 18.75% chance to get an inaccurate output when

using the ACA_II_N8_Q4 approximate adder. The expected value of this error (the difference

between the two outputs) is 7.5. The main bulk of the CPU time is spent on the SAT solving
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phase of the methodology, as the application of the miter has negligible processing time. As

expected, the CPU time jumps significantly between the 8-bit adders and the 16-bit adders,

because the search space grows exponentially with more inputs, making it more compute-

intensive to find errors.

The error rate numbers for all the approximate adders exactly matched the ones mentioned

in [16], validating that they are correct. The paper did not report an average-case error and

therefore the validity of the average-case error results is based on the tests performed with pre-

determined results. All numbers reported are exact, therefore achieving them is complex,

which is reflected in the runtimes. It is not a challenging task to provide limitations on the met-

rics, such as terminating the program when a certain error-rate or a certain average-case error

Table 2. Evaluation of 16-bit approximate adder library.

Approximate Adder Gates in Approx.

Adder

Gates in

Miter

Total Number of

Errors

Sum of

Errors

(x10)

Max. Error Rate

/Probability

Average -case

Error

CPU Time with

Numeration (sec)

ACA_II_N16_Q4 75 202 2052587520 879.39 47.79 2047.5 4.435

ACA_II_N16_Q8 104 162 251658240 1097.29 5.86 2554.83 1.414

ACA_I_N16_Q4 103 226 1462239232 879.39 34.05 2047.5 3.937

ETAII_N16_Q4 75 214 2052587520 879.39 47.79 2047.5 4.442

ETAII_N16_Q8 104 176 251658240 206.12 5.86 479.91 1.412

GDA_St_N16_M4_P4 110 197 251658240 54.76 5.86 127.5 1.421

GDA_St_N16_M4_P8 119 201 7864320 0.3221 0.18 7.5 0.473

GeAr_N16_R2_P4 81 206 496238592 219.69 11.55 511.5 1.713

GeAr_N16_R4_P4 104 192 251658240 54.76 5.86 127.5 1.401

GeAr_N16_R4_P8 89 169 7864320 0.3221 0.18 7.5 0.472

GeAr_N16_R6_P4 114 168 132120576 13.53 3.08 31.5 0.882

https://doi.org/10.1371/journal.pone.0227745.t002

Table 1. Evaluation of 8-bit approximate adder library.

Approximate Adder Gates in Approx.

Adder

Gates in

Miter

Total Number of

Errors

Sum

of Errors

Max. Error

Rate/

Probability

Average-case

Error

CPU Time with Numeration

(sec)

ACA_II_N8_Q4 39 83 12288 491520 18.75 7.5 0.125

ACA_I_N8_Q5 52 81 3072 229376 4.67 3.5 0.031

GDA_St_N8_M4_P2 39 82 12288 1545024 18.75 23.58 0.138

GDA_St_N8_M4_P4 37 64 1536 295488 2.34 4.51 0.011

GDA_St_N8_M8_P1 26 94 39424 2064384 60.16 31.5 0.337

GDA_St_N8_M8_P2 35 106 19712 2660192 30.08 40.59 0.163

GDA_St_N8_M8_P3 45 104 8192 1272896 12.5 19.42 0.116

GDA_St_N8_M8_P4 44 117 3072 229376 4.67 3.5 0.034

GDA_St_N8_M8_P5 63 123 1024 98304 1.56 1.5 0.010

GDA_St_N8_M8_P6 70 131 256 32768 0.39 0.5 0.004

GeAr_N8_R1_P1 26 83 39424 5320432 60.16 81.18 0.348

GeAr_N8_R1_P2 35 85 19712 3077560 30.08 46.96 0.165

GeAr_N8_R1_P3 47 80 8192 491520 12.5 7.5 0.101

GeAr_N8_R1_P4 52 74 3072 229376 4.69 3.5 0.034

GeAr_N8_R1_P5 43 88 1024 98304 1.56 1.5 0.010

GeAr_N8_R1_P6 45 61 256 32768 0.39 0.5 0.0013

GeAr_N8_R2_P2 39 81 12288 1553472 18.75 23.70 0.138

GeAr_N8_R2_P4 37 75 1536 245440 2.34 3.75 0.009

https://doi.org/10.1371/journal.pone.0227745.t001
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is exceeded. Moreover, the authors in [17] did not claim their work to be 100% accurate to the

actual error metrics (as they did not provide the values for the errors). In addition, they did

not provide all the input combinations that produced errors and they only calculated the met-

rics. Furthermore, they computed the time for each stage and then calculated each error metric

individually. However, our work provides all the input configurations that produce the errors

and calculates all error metrics in one run.

From the results, several approximate adders have the same error-rate but different aver-

age-case error, such as the ACA_II_N8_Q4 and the GDA_St_N8_M4_P2. The error metrics

can therefore be used to categorize circuits into more than one category. Even if the two

approximate adders are equally likely to produce an error, the one with a higher average-case

error will produce errors that (on average) deviate more from the exact value. This information

gives insight to the designer who may value errors that are more impactful over area or power

improvements, or vice versa. It is also not impossible for two structurally different adders to

have the same value for both metrics, leaving the design choices up to other error metrics or

area/power considerations.

To discuss the effect of different design parameters on the runtime of the methodology, the

CPU time is reported. Firstly, the effect of the miter size in gates/cells on the runtime is

explored in Fig 5.

The first noticeable difference between the two graphs is the jump in CPU time between the

8-bit adders and the 16-bit adders. This is due to the search space doubling with every introduced

input variable, leading to an exponential growth. The other noticeable fact is that there is no pat-

tern to the scatter graphs and hence a more influential variable affecting the CPU time. This factor

can be demonstrated by looking at Figs 6 and 7. The CPU time is directly proportional to the

maximum error rate and an average-case error in the circuit. As the error-rate or average-case

error increases, the CPU time increases linearly for both the 8-bit and the 16-bit benchmark sets.

The CPU time scales with the maximum error rate because the higher the maximum error

rate the more the number of errors that need to be discovered, therefore more work.

Fig 5. Plots of number of gates in miter vs. CPU time for 8-bit and 16-bit adders.

https://doi.org/10.1371/journal.pone.0227745.g005

Fig 6. Plots of maximum error rate vs. CPU time for 8-bit and 16-bit adders.

https://doi.org/10.1371/journal.pone.0227745.g006
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The average-case error metric has more to do with the severity of the error, i.e., the average

absolute difference between the two circuits in value when considering both their outputs as

integers. For example, two approximate circuits might both have one error. But one of them

has the error in the most significant bit and the other in the least significant bit. Therefore,

they both end up taking the same CPU time to process but different average-case error.

Finally, this effect is consistent even if both benchmarks sets are considered together. How-

ever, in order to plot both benchmarks sets together, we need to consider the number of exist-

ing errors (Total Number of Errors in Tables 1 and 2) as the size of the search spaces are

different. The resulting plot indeed produces a linear relation as shown in Fig 8.

The proposed SAT solving methodology was shown to be applicable to the new error met-

rics studied by deriving correct error metric results to the benchmark circuits. The approach

provided a quantifiable measurement of the two error metrics in one step to exactly determine

the difference between the approximate and the correct design. This is done by providing the

set of all error-producing assignments and the errors produced by them to determine the prac-

ticality of approximate circuits.

Conclusion and future works

Approximate computing has gained enormous research attention recently by providing a

trade-off between computational accuracy and computation effort for the emerging inherent

error-tolerant applications. However, to reap the promising benefits of approximate comput-

ing, fast and accurate error metrics evaluation methodology is of paramount importance.

Fig 7. Plots of average-case error vs. CPU time for 8-bit and 16-bit adders.

https://doi.org/10.1371/journal.pone.0227745.g007

Fig 8. Plots of number of errors vs. CPU time for all benchmarks.

https://doi.org/10.1371/journal.pone.0227745.g008
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Error metrics are a crucial factor in the usefulness of approximate circuits in real-life applica-

tions. The relevant importance of an error metric is application dependent, and hence, there

should be efficient procedures to accurately determine all error metrics. In this paper, two key

error metrics were considered that have not been addressed before using a SAT solver method-

ology. However, the approach is applicable to evaluate all relevant error metrics. In our opin-

ion, this may be the first work to propose SAT solver method for the evaluation of all relevant

error metrics in approximate computing. Experimental results using several benchmark

approximate adders with varying sizes showed the feasibility of the proposed SAT based meth-

odology. There are some key advantages to the approach, as it provides the set of all error-pro-

ducing assignments and optionally the errors produced by them. Moreover, it offers a test

generation method to facilitate design choices and acts as an important guide to debug the

approximate circuits (perhaps there is an error where it should not be). The proposed work

was effective in processing the two error metrics in one go, and provided a log of error-gener-

ating input assignments in a reasonable timeframe. It was shown experimentally that the pro-

cessing time of the methodology increases, as expected, rapidly with a few inputs but only

linearly with the number of errors it needs to detect.

However, several challenges remain that open interesting research opportunities for future

work to realize the full potential of the emergent approximate computing paradigm. It includes

the study of the correlation of metrics with each other and with approximation techniques, as

well as the evaluation of combined error-metrics and their impact (e.g. Hamming distance) on

different applications. Another important extension of this work will be experimenting with

the internal algorithm of the SAT solver and discovering if different algorithms might behave

better with some circuits and worse with others. The development of parallelized ALLSAT

solvers is likely to be a valuable addition in terms of speed of processing.
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