@ PLOS|ONE

Check for
updates

G OPEN ACCESS

Citation: Abed S, Behiry AAMR, Ahmad | (2020)
Error metrics determination in functionally
approximated circuits using SAT solvers. PLoS
ONE 15(1): €0227745. https://doi.org/10.1371/
journal.pone.0227745

Editor: Amira M. Idrees, Fayoum University Faculty
of Computers and Information, EGYPT

Received: September 16, 2019
Accepted: December 27,2019
Published: January 14, 2020

Copyright: © 2020 Abed et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information
files. There were no data repository used for the
production of the results presented in the
manuscript. All results produced are a result of
running the open source implementation of the
proposed methodology on the benchmarks, which
the source of have been cited.

Funding: The authors received no specific funding
for this work.

Competing interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Error metrics determination in functionally
approximated circuits using SAT solvers

Sa’ed Abed *, Ali A. M. R. Behiry, Imtiaz Ahmad

Computer Engineering Department, College of Engineering and Petroleum, Kuwait University, Kuwait, Kuwait

* s.abed @ku.edu.kw

Abstract

Approximate computing is an emerging design paradigm that offers trade-offs between out-
put accuracy and computation efforts by exploiting some applications’ intrinsic error resil-
iency. Computation of error metrics is of paramount importance in approximate circuits to
measure the degree of approximation. Most of the existing techniques for evaluating error
metrics apply simulations which may not be effective for evaluation of large complex designs
because of an immense increase in simulation runtime and a decrease in accuracy. To
address these deficiencies, we present a novel methodology that employs SAT (Boolean
satisfiability) solvers for fast and accurate determination of error metrics specifically for the
calculation of an average-case error and the maximum error rate in functionally approxi-
mated circuits. The proposed approach identifies the set of all errors producing assignments
to gauge the quality of approximate circuits for real-life applications. Additionally, the pro-
posed approach provides a test generation method to facilitate design choices, and acts as
an important guide to debug the approximate circuits to discover and locate the errors. The
effectiveness of the approach is demonstrated by evaluating the error metrics of several
benchmark-approximated adders of different sizes. Experimental results on benchmark cir-
cuits show that the proposed SAT-based methodology accurately determines the maximum
error rate and an average-case error within acceptable CPU execution time in one go, and
further provides a log of error-generating input assignments.

Introduction

Approximate computing has emerged as a promising architectural concept which offers new
opportunities to design circuits or systems which can be more compact, faster and/or consume
less power at the cost of a slight loss of accuracy for error-tolerant applications [1]. Error- tol-
erant applications are the ones where precise computational accuracy is not required which
include deep machine learning, image classification, and digital signal processing (DSP) [2].
For example, in DSP applications, human perception is not precise enough to detect a certain
range of errors. Therefore, a product of identical (perceived) quality can be presented with
lower energy costs or higher performance. Chippa et al. [2] estimated that in certain applica-
tions, about 83% of runtime is spent on operations that can be approximated. Different types
of approximations have been reported in literature for the design of approximated circuits [1].

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020

1/19

http://orcid.org/0000-0003-1849-9316
https://doi.org/10.1371/journal.pone.0227745
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227745&domain=pdf&date_stamp=2020-01-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227745&domain=pdf&date_stamp=2020-01-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227745&domain=pdf&date_stamp=2020-01-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227745&domain=pdf&date_stamp=2020-01-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227745&domain=pdf&date_stamp=2020-01-14
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0227745&domain=pdf&date_stamp=2020-01-14
https://doi.org/10.1371/journal.pone.0227745
https://doi.org/10.1371/journal.pone.0227745
http://creativecommons.org/licenses/by/4.0/

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

The form of approximation addressed in this paper is known as functional approximation; in
which the Boolean functions implemented into the circuits are inherently different from the
original ones with a certain threshold of error between the outputs of both functions.

The emergence of approximate computing has led to the need for adequate evaluation
methods for approximate circuits where besides normal metrics such as area, delay, and power
consumption, measurement of error metrics is an important consideration and a key chal-
lenge. Error metrics provide a quantifiable measure to judge exactly how far off an approxi-
mate design is from the correct one, which is critical for the use of approximate circuits in
real-life applications. Some of the error metrics measured by existing approaches include
worst-case error, average case error, error rate (error probability), and maximum bit-flip error
(maximum Hamming distance) [3]. Worst-case error, as the name implies, is the worst possi-
ble deviation in values between the two circuits for a single input assignment, which is rele-
vant, for example, in a DSP application where a worst-case error pixel would stand out.
Average-case error is the expected error mean value to be found across all input assignments.
This would also be seen in a DSP environment where the overall color grading of an approxi-
mated image could be affected by a poor average-case error. Maximum bit-flip error is the
number of incorrect bits in the approximated circuit, which is relevant to memory address
approximation. Error rate is the percentage of input assignments that produce errors in the
approximated design that is an indication of the number of introduced errors in the design by
the approximation process.

The error metrics mentioned earlier are independent from one another. A circuit with a
high error rate does not imply that there is a high maximum bit-flip error or high worst-case
error. The relevancy of an error metric is purely based on the application the design is
intended for. However, determination of error metrics in approximate circuits is a hard prob-
lem [3]. Current error metric evaluation methods suffer from several problems. Simulation-
based approaches have prolonged runtimes, and symbolic BDD [4] representation suffers
from the state explosion problem. Finally, analytical methods are intractable for larger designs.
SAT solver methods [5] have been reported to determine worst-case error and bit-flip error,
but not for the maximum error rate or an average-case error, as will be explained in more
detail in the related work section. SAT solvers are tools that can determine if a Boolean func-
tion is satisfiable; there is a combination of inputs that produces a logic 1.

In this paper, we propose a novel methodology, using SAT solvers to accurately and effi-
ciently determine the maximum error rate and an average-case error. Recent SAT solvers are
quick enough to efficiently check relaxed equivalence in many practical situations. We focus
on the maximum error rate and an average-case error since these are the hardest to compute,
requiring enumeration of all errors and calculation of their values. However, the proposed
approach is applicable and can measure all relevant error metrics, since we generate all inputs
that produce errors (and their corresponding output values), and then can calculate any of
the error metrics. An overview of the proposed methodology is depicted in Fig 1, in which first
the approximated and exact designs are combined using an auxiliary circuit called the

Error Rate

Verilog Description of

Overal

Average Error

Exact Circuit
Vicue BLIF Logic BLIF2CNF
i Description of Miter Script

Verilog Description of
Approximate Circuit

Erred Input

Assignments

Fig 1. Overview of the proposed methodology.
https://doi.org/10.1371/journal.pone.0227745.9001

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 2/19

https://doi.org/10.1371/journal.pone.0227745.g001
https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

approximation miter. The approximation miter transforms both designs into one design with
a single output and the same inputs. The output of the miter is 0 when the two designs match
and are correct. The output of the miter is 1 when the approximated circuit’s output has an
erred bit. This new circuit is fed into the SAT solver to determine the error metrics. The pro-
posed evaluation methodology is important since it provides a relatively fast and reliable way
for designers to evaluate their approximate circuit designs. The effectiveness of the approach is
demonstrated by evaluating the error metrics of several benchmark-approximated adders of
different sizes.

The main contributions of this paper can be summarized as follows:

o We propose a SAT-Solver-based algorithm for all error metrics (particularly the maximum
error rate and an average-case error) in approximated circuits, given an original circuit.

o The method takes advantage of the computational miter to combine the two circuits and
eventually transform the circuit into a CNF format, while saving the original variable map-
ping to the inputs.

o The algorithm can calculate all error metrics and identify the input configurations that pro-
duced them in a single run.

« We prove the correctness of our approach by testing the algorithm on commonly used
approximate adders and comparing them with the exact adders.

The remainder of this paper is organized as follows. Various error metrics determination
methods applicable to approximate circuits are presented in Section 2. Section 3 provides an
overview of the terminology and key concepts used in this work, and describes the error met-
rics and the main functionality of a SAT solver. The problem statement and proposed solution
methodology are discussed in Section 4. A proof of method correctness and an evaluation of
the proposed methodology supported by experimental results is described in Section 5. Finally,
conclusions and future research opportunities are presented in Section 6.

Related work

Error metrics are essential tools for of evaluation digital circuits. This is particularly true in the
case of approximate circuits, where it is a tool for measuring the adequate correctness of a
design that is made to not be precisely exact. The degree of acceptance of approximate designs
is usually subjected to many error metrics, such as error rate, maximum bit-flip error, worst-
case error, Or average-case error.

Typically, even though worst-case errors can be computed for a specific component, on its
own, the accumulated worst-case error may differ significantly. Therefore, individual analysis
of isolated components is not sufficient for evaluation of approximate circuits. It requires a dif-
ferent set of tools to evaluate the error metrics of larger circuits. Furthermore, different error
metrics have varying significance depending on the circuit’s application. Although error-rate
may not be a significant metric in some applications, where the error significance/worst-case
error may matter more (the value of a pixel), there are several other applications where error-
rate is an important metric (e.g. the number of incorrect memory address computations in a
microprocessor) [6]. Apart from the application-specific significance of error rate, it is a gen-
eral quality metric for approximate designs. Error-rate multiplied with error-significance is
used as a composite quality metric for approximate circuit designs [7].

There have been many designs and synthesis methods for approximate computing circuits,
but not many on precise error metrics [5]. Several approaches determine these metrics, includ-
ing simulation, analytical analysis, Boolean Satisfiability (SAT solvers), and BDDs. Methods of

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 3/19

https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

formal design verifications to evaluate error metrics have been used and implemented, such as
Bounded Model Checking (BMC). Currently, the techniques used most often to evaluate the
approximate designs are random simulation and error estimation, which are inexact
approaches [8, 9]. When BMC is applied to sequential equivalence checking, the circuit is
unrolled and the overall problem including the properties is solved using a SAT solver [5].
Some error metrics such as error-rate cannot be expressed in terms of Boolean functions effi-
ciently since it requires counting in the solution space, which is a SAT problem [10].

The authors of [5] proposed a methodology and tool to determine precisely how error
behaves in approximated combinational components in sequential circuits. They implemented
the use of an approximation miter and preformed model checking using Property-Directed
Reachability (PDR). They calculated several error metrics and tried to answer multiple verifi-
cation questions. In addition, they attempted to determine the earliest time (in clock cycles)
that can exceed a certain worst-case error, the maximum case error, and the maximum bit-flip
error. They tested their verification package on a number of approximate designs and reported
the results. However, they did not calculate metrics for error rate or average-case error.

Yu et al. [8] presented a case study to analyze the output quality of imprecise adders for
their use in approximate computing. The authors adopted a formal verification of approximate
adders based on BDDs rather than random simulation or error estimation in order to retrieve
exact error analysis. In order to adapt their methods to the BDD, XOR gates were used to
check the equivalence of the outputs followed by a “miter” (a word-wide OR gate). The pro-
posed framework could compute the exact error rates of the designs studied. The methods pro-
vided were able to generate test patterns that cover all possible errors produced by the
imprecise adders. The work of the authors remained to be tested on larger circuits, such as
multiplication. This is an important point, as BDDs suffer from state explosion problems. In
[9], Anteneh et al. presented an automatic test pattern generation approach for approximate
circuits based on Boolean satisfiability. The technique reduced the number of faults and the
testing time, while maintain high fault coverage.

Chandrasekharan et al. [10] proposed an automatic synthesis methodology for approximat-
ing circuits using And-Inverter Graph (AIG) rewriting. The synthesis approach employed
bounds on the approximation errors introduced in the design. The methodology was tested on
a variety of designs and benchmarks. The authors claimed that their results were comparable
with hand-crafted approximate circuits. Their evaluation of error-rate involved using BDDs.
The exact approach used was unique to BDD-based representation. This led to extended run-
times caused by the need for conversion from AIG to BDD. They also presented an algorithm
to calculate bit-flip error using a SAT solver.

Choudhury et al. [11] proposed a concurrent error masking methodology based on the use
of approximate logic circuits. The approach was estimated to mask 88% of targeted errors for a
34% area overhead and 17% power overhead because of the use of approximate circuits. They
evaluated error metrics for their approach via simulation of the approximate logic circuit
designs and employed the use of reliability analysis tools.

Jiang et al. [12] presented a comparative study between approximate multipliers. The
authors provided a review of the different implementations of approximate multipliers’ cur-
rent designs and compared their evaluations. The authors also used Monte Carlo simulation
using MATLAB for error metric determination in their comparison of approximate multipli-
ers. Furthermore, they evaluated the multipliers based on their performance in image sharpen-
ing in the MATLAB environment.

Momeni et al. [13] proposed designs of approximate compressors to be used in multiplica-
tion. Approximate adders were not viable to produce multiplication because of the error accu-
mulation. Previous work had been done on multipliers, but the paper is unique in its use of

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 4/19

https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

compressors for multiplication. Two approximate compressors and four approximate multi-
pliers were simulated using HSPICE.

Huang et al. [14] provided an overview of imprecise hardware, improved upon imprecise
adders, and proposed imprecise multipliers. They stated that numerical analytical analysis was
a superior method of error metric computation, when compared to simulation. Their method-
ology followed two constraints: the only allowed operations were addition and multiplication,
and input data were independent of one another. The approach used Interval Arithmetic and
Affine Arithmetic for error evaluation. They concluded that their methodology provided
higher speed computation with reasonable estimation close to exhaustive search with runtime
being orders of magnitude less than Monte Carlo simulation.

Most of the past works used simulation as a means of estimating the error metrics, however,
there have been combined methodology that used simulation and other means to maintain
accuracy of evaluation and avoid exponentially increasing runtime. Venkatesan et al. [15] pro-
posed a methodology for Modeling and Analysis of Circuits for Approximate Computing
(MACACO). MACACO used several methods for its formal verification. Worst-case error was
computed using a pseudo-SAT solver approach. The authors also computed error probability
and average-case error by two means, a BDD package and Monte Carlo-based simulation. The
Monte Carlo simulation method was used to assume scalability, as BDD based computation
was not deemed feasible for all circuits according to the authors.

Similarly, Soeken et al. [16] used BDD-based methods to compute error metrics. This was
to their benefit, as their methodology for synthesizing approximate circuit designs was also
based on BDD minimization of Boolean functions. Therefore, some of the error metrics (error
rate) were calculated during the minimization process. It was stated that because the method-
ology was based on BDDs, the error metric evaluation was not applicable on much larger cir-
cuits in their current implementation. The authors suggested changing the underlying data
structure to AIGs; however, it was not clear if error metrics can be computed efficiently.

Recently, Froehlich et al. [17] proposed a formal three-stage approach for the determination
of all error-metrics for an approximate circuit. The determination of several error-metrics was
facilitated by the main bulk of the work being done by a Grébner reduction and an Algebraic
Decision Diagram (ADD) that did not need to be repeated for different error metrics. They
used a recursive and hash function to determine the minterms.

Other means of error metric estimation include probabilistic analysis. Mazahir et al. [18]
proposed a generic methodology for calculating the exact probability of occurrence of any
errors in approximate adders and the probability mass function (PMF) of errors for any input
distribution without the need of exhaustive or Monte-Carlo simulation. The methodology was
based on the internal structures of adders and the probability of carry-in/carry-out. It is worth
noting that the proposed approach is specific to approximate adders only, and is applicable
when a combination of approximate adders is used. Later, Qureshi et al. [19] used HOL4 inter-
active theorem, proving for probability distribution and error analysis of three high-speed,
low-latency approximate adders with uniformly distributed inputs. Mazahir et al. [20] pro-
vided a probabilistic analysis of errors in an approximate multipliers construct from given
blocks. The methodology was based on the internal probabilistic behavior of the building
blocks cascading to create larger multipliers. The analysis of [20] was generalized for any input
probability distribution and the probability mass function of error was found. The experimen-
tal results applied the methodology on state-of-the-art multipliers to compute their probability
mass functions and predicted their performance in an image-processing application. The
authors of [21] proposed a probabilistic analysis methodology for analyzing two-part seg-
mented adders and derived the mean error distance and mean square error in the approximate
adders.

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 5/19

https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

Similarly, Wu et al. [22] adopted an analytical methodology with assumptions on the inputs
to the approximate circuits. They assumed that inputs were uniformly distributed to adders
and thus proposed a method based on the building blocks of approximate adders. The method
was also shown to be able to compute the probability mass function of errors (error distribu-
tion). It was experimentally shown that the procedure was less computationally extensive than
Monte Carlo simulation. It is worth noting that the methods reviewed in [20] and [22] are pre-
cise and are suitable only for block-based multipliers and adders, respectively. Furthermore,
depending on the application and context a hardware component is used in, it might not nec-
essarily be possible to assume a probability distribution for input assignments.

A popular approach to evaluate approximate circuits in the literature is to employ the
approximated circuit on an application it would normally be used for and evaluate its perfor-
mance. This is a popular method because of its simplicity, but the work risks being applicable
only to the tested application. Examples of such works [23, 24] have utilized approximate mul-
tipliers and adders in image processing scenarios. The error metric then is measured on the
test data (input images) and how well the approximate circuits formed the image as opposed
to the ideal situation.

Another important implication of approximate circuit fabrication is the acceptance of faulty
units that fall within the appropriate range of error metrics required. The authors of [25] pre-
sented an approximation-aware test approach to identify approximate-redundant faults. The
proposed approach guaranteed that the faults had effects that fall below the acceptable thresh-
olds using a SAT solver and miter approach, and specific automatic test generation patterns.

It can be noted that the most prominent form of error metric evaluation has been the
Monte Carlo simulation. This might be a feasible way of determining error metrics for smaller
designs. The major issue with the simulation approach is the simulation time that grows expo-
nentially with data width and computation length [14] for evaluating larger approximate
designs. The same issue lies with the analytical approaches as they become harder and more
complicated to deploy with increased design complexity, particularly if accuracy is considered.
The BDD approach can produce exact determinations of error metrics as reported in the
works above. In fact, in some approaches this is favorable, since the synthesis procedure
requires BDD representation in the first place, and therefore, error metrics can be computed
during minimization [16]. Some of the error metrics, such as the error rate, are SAT problems,
since they require counting in the solution space [10]. However, SAT approaches to BMC are
more scalable than their BDD counterparts [26]. Therefore, the goal of this paper is to imple-
ment a SAT solver-based scalable approach in order to enable exact error metrics calculation.
The two-error metrics that have been previously implemented using SAT solvers are the
worst-case error [15] and bit-flip error [10]. These are simpler metrics to calculate using SAT
solvers as they involve searching for a single input assignment in the solution space that leads
to maximum value. This paper aims to add to those approaches by introducing an approach
for calculating the maximum error rate and an average-case error determination via SAT solv-
ing on a CNF representation of an approximated design.

Preliminaries and background

This section will define glosses over important terminology and key concepts required in this
work. The error metrics subsection describes all error metrics, followed by the SAT solver sub-
section, which describes the main functionality of a SAT solver and recent advancements in
the use and applications of SAT solvers. Finally, the miter subsection explains the importance
of an auxiliary circuit and how it is used to manipulate designs in order to feed them into a
SAT solver and extract a result/metric.

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 6/19

https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

Error metrics

Approximate circuit designs need to be evaluated to determine their usefulness. One of the
important evaluations is how much does the approximated design deviate from the exact one.
In the class of functionally-approximated circuits, the approximated circuits are typically com-
pared to the original exact designs to determine the disparity between the two designs. Error
rate is a challenging metric to calculate, as it includes checking the probability of error bits
overall in the design. Let fbe a Boolean function that represents the exact design such that f:

B"—B™ and another Boolean function f : B* — B™ represents the approximate circuit. Using
this notation, the worst-case error is defined as:

e, (f.f) = maxlint(f(x)) — int(f (x))| (1)

Eq (1) represents the maximum possible difference between the outputs of the two designs,
given that we represent the output of both circuits as integer values [9].
Similarly, bit-flip error can be defined as:

ey (f.f) = max(Z1 [f(x) @ F,(x)]) (2)

Eq (2) denotes bit-flip error, or the maximum number of bits that differ in both outputs.

The error metrics mentioned above have been previously calculated using SAT solver
approaches. As noted from Eqs (1) and (2), these error metrics focus on finding a maximum
value, which is a single point in the solution space. This makes the problem far more approachable
as a binary search technique can be employed along with a specifically designed auxiliary circuit
to calculate both metrics. Binary search reduces the computational complexity of the problem.

Error-rate and average-case error are more computationally intensive as they require itera-
tion over all solutions/errors possible. Error rate can be stated as:

eer(fa_]?) _ ZxEB” [f(;) #f(x)] (3)

This can be read as the fraction of inputs that produce a different output pattern in the
approximated circuit other than the exact one [10]. This requires a count of the number of
errors between the two circuits (the numerator in Eq (3)) which is also known as the #SAT
problem.

Finally, the average-case error can be expressed by:

o () = Dm0 i) W

Eq (4) can be explained as the summation of the absolute difference of outputs of the two
circuits produced by every input assignment divided by the number of possible input assign-
ments. Obviously, for the input assignments that do not produce errors, the value inside the
summation is zero. Therefore, we need only to perform the summation for values of x that pro-
duce errors.

SAT solver

The SAT problem considers a Boolean expression and checks if there is an input assignment
(s) that result in the Boolean expression returning a true value. This Boolean expression is
input into the SAT solver in the form of a combination of logical clauses. Modern SAT solvers
are capable of quickly traversing BDDs and solving millions of propositional clauses in accept-
able time frame [5].

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 7/19

https://doi.org/10.1371/journal.pone.0227745

@ PLOS | O N E Error metrics determination in functionally approx. circuits using SAT solvers

SAT solvers have picked up steam as a promising tool to approach many research problems.
The applicability of SAT solvers does not just lie in the Boolean network plane. The work of
[27] used a SAT-based formulation for calculating the logical-capacity of VIA-configurable
structures ASIC (VCSA) fabric. The model used the physical properties of a problem and for-
mulated them into Boolean terms and clauses to be processed by the SAT solver. Another proj-
ect [28], used a SAT solver to determine short-circuit conditions in logical circuits. Short-
circuits in a logic circuit can be induced by several causes such as: a designer connecting two
outputs of a module, assuming certain unreliable assumptions. The authors modeled the tran-
sistors in the circuit as a graph and tried ensuring that there was no way the power source was
connected to the ground via any path. They transformed this problem into a series of Boolean
clauses that were then checked by the SAT solver.

There are multiple variations of SAT solving methods (all with the same goal). The details
of implementation of such solvers is deemed outside the scope of this paper. However, for the
concerned interested reader, information on the SAT solvers relevant to this work is available
in [29]. The SAT solver used for this project is a backtracking-based non-blocking SAT solver.
Meaning the SAT solver searches for the counter-examples one by one with backtracking with-
out storing the counter examples back into the original problem. This specific strategy was
chosen simply because it proved to be the best in practice and used the least amount of
memory.

SAT solvers accept a specific format of several Boolean clauses. Therefore, one must change
the problem at hand of equivalence checking two circuits (and hence average-case error/error-
rate calculation) into a SAT problem. This requires us to first combine both circuits into one
in order to feed it into the SAT solver.

Auxiliary circuits

In order to take advantage of the SAT solver to check equivalence between the two circuits,
one must first transform the circuit into a form the SAT solver can use. SAT solvers operate on
a number of clauses to determine if they can all be satisfied. Digital circuits can have any num-
ber of outputs. Therefore, an auxiliary circuit is built around the exact and approximated
designs in order to convert it into a single output and evaluate the desired error metric.
Assuming the exact circuit is the black box F and the approximated circuit is the black box G,
then the auxiliary circuit can be seen in Fig 2. The general block diagram shows the structure
of the auxiliary circuit such that both circuits G and F have the same inputs and both of their
outputs lead to the error block, which is the error determination block that produces the error
value e or assists in finding e. The structure of the error determination block differs based on
the type of error metric to be determined. The error determination block can simply check if
all the outputs from both circuits are equivalent, or it can contain comparators or arithmetic
operations to evaluate specific error metric.

0
3 G g1 o ;) .
92 Y gl
XOR
—>
P) o— e
0 XOR
= F 1 >\ OR
XOR

Fig 2. Block diagram of auxiliary circuit.
https://doi.org/10.1371/journal.pone.0227745.9002

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 8/19

https://doi.org/10.1371/journal.pone.0227745.g002
https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

Proposed methodology

The following subsections present our proposed solutions to the problem of error metrics
determination in approximate circuits. The proposed solution consists of three main stages as
shown in Fig 3.

Yosys [30] receives the approximate and exact designs, combines them and produces the
design as a BLIF (through Yosys). Then, a script processes the BLIF file into a CNF file to
enable it to be fed to the SAT solver, and finally, runs the modified ALLSAT solver to deter-
mine error metrics for the resulting combined design. Yosys is used to apply the combinational
miter, as well as to synthesize the circuit into simple gates/cells. The script is designed to print
out a variable mapping that preserves the CNF IDs of the variables of interest that are the
inputs and outputs of both circuits. This information is essential to the modified SAT solver to
be able to extract the differences between the two circuits and calculate average-case error. The
algorithm depends on the fact that both error rate and average-case error require complete
coverage of all the errors in the solution space to determine the exact error metric value. There-
fore, the SAT solver approach is used to search through the solution space and generate all the
error-producing assignments. The number of these assignments can be used to calculate the
error rate metric using Eq (2). The input assignments generated can then be simulated for
both circuits and used with Eq (4) to calculate average-case error. This form of simulation is
cheaper as the run time does not scale with the number of inputs to the circuits. The runtime
scales only with the number of unique errors in the circuit. Although the worst possible situa-
tion for this approach would be if the number of errors is 2" (i.e. every input assignment leads
to an error). This is highly unlikely as the circuit usually has a great deal fewer errors than that
and synthesis approaches provide an upper limit on number of introduced errors. The modi-
fied SAT solver can list the inputs and outputs of the two circuits when errors occur between
them. However, listing of the output differences is optional and is not needed for any calcula-
tions, but is left as an option for interested designers.

Auxiliary circuits

The following subsections show examples of the auxiliary circuitry needed to evaluate the max-
imum error rate and an average-case error. The error rate auxiliary circuit is simply an approx-
imation miter that compares, bit by bit, each of the outputs of the two circuits. In case of the
average-case error, some form of accumulator would need to be built around the absolute dif-
ference of the two circuits. This is just for clarification and the actual implementation uses an
approximation miter for both circuits.

Maximum error rate. In the case of error rate, the error determination block is an
approximation miter, which is basically ORing the equivalence of each output of both circuits.
To illustrate this design concept, we assume a simple design where F and G have three outputs;
the structure of the error rate would look like Fig 2. Each output in the circuits F and G are
XORed to determine their equivalence. As shown in Fig 2, the outputs (f0,g0), (f1,g1) and (2,

Yosys

Application of - BLIF Logic BLF2CNF
H Miter H Sinbests H Description of Miter Script

/Output Variable

Verilog Description of put/
rouit Mapping by CNF ID

‘Approximate Ci

Differences

Fig 3. Detailed proposed methodology.
https://doi.org/10.1371/journal.pone.0227745.9003

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 9/19

https://doi.org/10.1371/journal.pone.0227745.g003
https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

g0 >
1 G E
g2 o ©8 5
=2 ©
Pl S8 £ [Total
28 3 Error
0 <38 <
5 F 1 |
f2 2|

Fig 4. Total error approximation miter example.

https://doi.org/10.1371/journal.pone.0227745.g004

g2) are XORed. Hence, any of these XORed outputs will return a logic 1 wherever their outputs
are not equivalent. Therefore, the overall output of the approximation miter will be 1 whenever
the output of the approximated circuit G does not match the output of the exact circuit F. The
error rate can then be computed as expressed in Eq (3).

Eq (3) represents the global OR of the XORs of each output in both systems (where m is the
number of outputs). The number of such inputs that produce a 1 value in the miter are added
up and divided by 2" to determine the error rate of the approximated system (where n is the
number of inputs). Therefore, the addition of the auxiliary circuit turns the two designs into
one design with the same number of inputs # and one output e, where e can only be 1 when
the two sub-designs are not equivalent [16].

Average-case error. Average-case error metric resembles error rate in that it is not con-
cerned with a single output value. Average-case error includes all the possible errors generated
by the approximated design. The circuit to calculate the error can be visualized as a combina-
tion of the circuits in Figs 2 and 4. The circuit in Fig 2 is used to detect the existence of an
error. The circuit in Fig 4 is then used to calculate the value of that error and accumulate it
across all input assignments. Therefore, practically the implemented solution is running the
SAT solver on the circuit in Fig 2 to enumerate the input assignments that produce errors.
Those input assignments are used to create a test bench for the circuit. The average-case error
can then be calculated by using Eq (4).

It is important to note is that not all # input variables must appear in a solution. The vari-
ables that do not appear in a path can be considered do-not cares, as they do not affect the out-
put of the miter. One of the advantages of this process is that it does not need to include every
variable and therefore the use of do-not cares can list several input assignments at once and
hence the numeration of errors can be summarized. The number of input assignments repre-
sented by a path is equal to 2 input assignments where c is the number of do-not cares.

SAT solving

Maximum error rate. Error rate involves counting the number of solutions which satisfy
the SAT problem. This can be denoted as the ALLSAT problem, which is searching through
the solution space for all input assignments that satisfy a circuit. It can be noted that the #SAT
problem, which is counting the number of satisfying input assignments, is enough to solve the
maximum error rate metric alone. However, in order to aid the algorithm in calculating the
average-case error and error rate in one step, we propose the ALLSAT solution. The ALLSAT
is an incremental running of the SAT solver in order to collect all counter examples that lead
to satisfying the miter. Note that ALLSAT solver stores implications from past iterations in
order to speed up future iterations. This gives the algorithm another advantage that enumer-
ates the input assignments that lead to errors, which can be very useful for debugging pur-
poses. We propose an algorithm that combines all the details mentioned to determine the

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 10/19

https://doi.org/10.1371/journal.pone.0227745.g004
https://doi.org/10.1371/journal.pone.0227745

@ PLOS | O N E Error metrics determination in functionally approx. circuits using SAT solvers

maximum error rate and average case error as shown in Algorithm 1. Furthermore, using the
ALLSAT solution for both error-metrics allows us to only use one auxiliary circuit (Fig 2)
instead of having to apply both for the two different metrics.

Algorithm 1: Error Metric Computation Algorithm

Input: Verilog Circuit F, Verilog Circuit G
Output: Maximum Error Rate MER, Average-case Error AVG, Set of coun-
terexamples L

1: M = ApplyMiter (F, G)

2: MBLIF = WriteBlif (M)

3: [CNF, MAP] = BLIF2CNF (MBLIF)

4: [MER, AVG, L] = MOD ALLSAT (CNF, MAP)

Algorithm 1. General Algorithm of Proposed Methodology

The algorithm that takes both the exact and approximate designs, denoted as Verilog Cir-
cuits F and G, respectively, as indicated in Algorithm 1. The algorithm returns the maximum
error rate and average-case error as a result at the function’s termination and has the option to
return the set of error-producing input assignments L. Line 1 shows a Boolean network con-
structed from F and G by combining them in miter M and adding the auxiliary circuit shown
in Fig 2 using Yosys. The newly-developed Boolean Network M is then written in BLIF format
as shown by Line 2. The algorithm calls a script BLIF2CNF in Line 3 to convert this combined
BLIF circuit into CNF format to be fed into the modified SAT solver in Line 4. The script
turns all variable names into index numbers, and therefore a separate map file of all-important
variable indexes is printed. This map file contains the variable indexes for the shared inputs of
both combined circuits and the individual outputs of both the exact and approximate circuits.
This is useful because the output corresponding to an input can be extracted directly from the
counterexample provided by the SAT solver as shown in Algorithm 2. The modified SAT
solver MOD-ALLSAT then uses the CNF file and the variable map in order to calculate maxi-
mum error rate (MER), average-case error (AVG), and optionally the list of error- producing
input assignments (counterexamples) denoted as L.

Algorithm 2: Modified ALLSAT Algorithm (MOD-ALLSAT)

Input: CNF File CNF, Variable I/0 Map MAP
Output: Maximum Error Rate MER, Average-case Error AVG, Set of coun-
terexamples L

1: AVG =0

2: ER =0

3: While CNF is satisfiable do

4. CEX = SAT (CNF) {CEX is a total variable assignment}

5: [input, outputl, outputl2] = ExtractRelevantVariables (CEX, MAP)
6: Add input to L

7 AVG = AVG + | int(outputl)-int (outputl2) |

8: ER ++

9: Update Stored SAT Solving Implications

10: end while
11: MER = ER/2"
12: AVG = AVG/2"

Algorithm 2. Modified ALLSAT Solver Algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 11/19

https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

A more detailed view of the modified ALLSAT solver (MOD-ALLSAT) used in Algorithm
1 can be seen in Algorithm 2. The MOD-ALLSAT algorithm takes a CNF file and a variable
map as inputs and calculates error-rate (ER), average-case error (AVG), and optionally pro-
duces the list of counterexamples L. The variables ER and A VG are initialized to zero at the
beginning of the algorithm. The ALLSAT solver begins to iteratively find errors in the CNF
file. The SAT solver knows that there are no more remaining errors and it can terminate the
search, when the problem is no longer satisfiable (Line 3). The SAT solver then works on the
CNF file until a satisfying solution (counterexample) is found (Line 4). This solution is pre-
sented as a total variable assignment CEX to all inputs, outputs and intermediate variables. It is
therefore obvious to state that the value of the single output of the miter will be logic 1 for any
satisfying variable assignment. However, for our intended purposes, many intermediate vari-
ables are not needed, and in fact, we only care about the original inputs and outputs of both
circuits. As seen in Line 5, the assignments the SAT solver found to these relevant variables are
extracted from the counterexample. The assigned input is added to the list of error-producing
input assignments (Line 6). The two outputs corresponding to the outputs of the original exact
and approximate circuits are also extracted. We consider the absolute difference between the
integer representation of each value output! and output2 and accumulate it in the variable
AVG (Line 7). In Line 8, the variable ER is incremented to count error-producing input assign-
ments. The SAT solver then updates its internal information before reiterating the entire pro-
cess until termination (Line 9). This information may include storing intermediate variable
implications it learned to avoid redundant processing, as well as taking note of the input
assignment it found in the past loop iteration. This is done in order to eventually eliminate all
error-producing input assignments and thus making the problem not satisfiable.

A clarifying analogy to this would be deleting the path that has led to the 1 node in the BDD
representation so it cannot be followed again. The SAT solver does this iteratively until eventu-
ally the equation cannot be satisfied anymore. This means all errors have been detected. The
ALLSAT solver is also special in that it does not start from scratch on every iteration (it learns
from previous iterations).

After terminating the search, the variable ER now contains the numerator of Eq (3) for
maximum error rate calculation. The variable AVG also contains the numerator of Eq (4). The
error-rate and average-case error can then be computed by dividing both these variables by 2",
where n is the number of inputs (Lines 11-12). Then the algorithm finishes execution and out-
puts the error-rate in variable ER, average-case error in variable AVG, and optionally the list of
error-producing inputs L. It is worth nothing that both errors are calculated in one go of the
SAT solver and with the same auxiliary circuit (the approximation miter).

Methodology correctness-an illustrative example. In order to prove the correctness of
the designed methodology, a naive example was developed for testing. A simple exact ripple
carry 4-bit adder and an “approximated” 4-bit adder were written in Verilog. The “approxi-
mated” adder was a normal ripple carry adder that added one to every value it calculated to
artificially introduce errors. For example, in the approximated adder: 1+1 = 3, 2+2 =5, etc.

Following the steps of Algorithm 1, the inputs to the algorithm are two circuits: an exact
one F (the ripple carry 4-bit adder), and the approximated circuit (adder that increments valid
result by one) G. The two circuits are 4-bit adders; therefore, they have 5 outputs each. Yosys is
used to apply a miter that XORs each of the 5 outputs to the corresponding output in the other
circuit and ORs the result of all the XORs (Line 1). The resulting circuit is produced from
Yosys to be converted into a CNF file (Line 2) so it can be fed to the ALLSAT solver. The ALL-
SAT solver runs on this representation of the miter combining the two circuits (Line 3) and
begins to extract all the errors (differences) between them.

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 12/19

https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

Now, since the approximate adder was made to increment one to the result of the exact
adder, this means that all input statements produced errors. Hence, the error-rate is 100%
(Line 4) and the number of errors (the cardinality of set L) is 256 (8 inputs to the miter circuit,
4 per adder). Lastly, the average-case error is calculated by adding each of the differences gen-
erated by all input assignments and dividing by the number of possible assignments. Since the
approximate circuit simply outputs the result of the exact adder plus one, then the difference
in all errors is one. Therefore, the total accumulated difference is 256 (256 errors of value, 1
each), calculated in Line 7 of the algorithm. The average error rate is then 256/256 (Line 9)
such as in Eq 4, equaling 1. All numbers mentioned in this example were achieved practically
using the proposed methodology and reported by the SAT solver.

Experimental results

The methodology was implemented using a combination of tools on the library of approximate
adders [31]. The Yosys package was used to read two separate Verilog circuit designs (one for
the exact and one for the approximated circuit). The Yosys package, with the help from the
ABC [32] verification package, was then used to apply the miter circuit, such as the one shown
in Fig 2. This design was then synthesized and written into BLIF format. The BLIF format was
converted to CNF format (which is a combination of logic clauses) in order to be fed into the
SAT solver. This led to a numbering of all variables, which then lose their name when converted
to the CNF file. The mapping between the variable names is saved in a map for future process-
ing. The SAT solver used was a modified ALLSAT non-blocking clause solution based on Min-
iSAT [27]. The solver prints out all input assignments leading to errors and can print out
individual error values as well. The solver accumulates all the errors and calculates the average
error value. All experiments were carried out on a machine running Linux with an Intel ® core
i7 CPU @ 2.9 GHz and 16 GB of memory. Implementation of the described methodology can
be obtained at: https://github.com/AliRady/error-metrics-determination/

Experimental results on benchmark adders

Tables 1 and 2 contain the results of running the proposed methodology on a library of 8-bit
and 16-bit approximate adders (which have 16 and 32 effective inputs, respectively). The first
column denotes the name of the circuit. The size of the approximated adders in basic cells/
gates is reported in the second column. In addition, the size of the merged circuit when apply-
ing the miter to the approximate adder and the exact ripple carry adder is reported in the
Gates in Miter in the third column. Yosys reported all sizes after synthesizing the circuits into
basic logic cells. The total number of errors shown in column 4 is the cardinality of the
counter-example set found by the ALLSAT solver, which is then used to calculate maximum
error rate using Eq (3). The summation of errors in column 5 is the total sum of the absolute
difference between the two circuits over all input assignments, used in average-case error cal-
culation. The tables then contain the results of the two metrics: maximum error rate and aver-
age-case error in columns 6 and 7, respectively. The last column represents the processing
time over the BLIF file containing the two circuits to be compared. The CPU time with numer-
ation shows the required time to run our methodology including the generation of the file list-
ing the inputs that generates the errors.

Maximum error rate quantifies the probability that given any two input statements, the out-
puts of the two adders would be different. The average-case error is a mean value of how large
the error would be. For example, there is an 18.75% chance to get an inaccurate output when
using the ACA_II_N8_Q4 approximate adder. The expected value of this error (the difference
between the two outputs) is 7.5. The main bulk of the CPU time is spent on the SAT solving

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 13/19

https://github.com/AliRady/error-metrics-determination/
https://doi.org/10.1371/journal.pone.0227745

@ PLOS | O N E Error metrics determination in functionally approx. circuits using SAT solvers

Table 1. Evaluation of 8-bit approximate adder library.

Approximate Adder | Gates in Approx. Gates in Total Number of Sum Max. Error Average-case CPU Time with Numeration
Adder Miter Errors of Errors Rate/ Error (sec)
Probability
ACA_II_N8_Q4 39 83 12288 491520 18.75 7.5 0.125
ACA_I_N8_Q5 52 81 3072 229376 4.67 3.5 0.031
GDA_St_N8_M4_P2 39 82 12288 1545024 18.75 23.58 0.138
GDA_St_N8_M4_P4 37 64 1536 295488 2.34 4.51 0.011
GDA_St_N8_MS8_P1 26 94 39424 2064384 60.16 315 0.337
GDA_St_N8_M8_P2 35 106 19712 2660192 30.08 40.59 0.163
GDA_St_N8_M8_P3 45 104 8192 1272896 12.5 19.42 0.116
GDA_St_N8_M8_P4 44 117 3072 229376 4.67 35 0.034
GDA_St_N8_M8_P5 63 123 1024 98304 1.56 1.5 0.010
GDA_St_N8_M8_P6 70 131 256 32768 0.39 0.5 0.004
GeAr_N8_R1_P1 26 83 39424 5320432 60.16 81.18 0.348
GeAr_N8_R1_P2 35 85 19712 3077560 30.08 46.96 0.165
GeAr_N8_R1_P3 47 80 8192 491520 12.5 7.5 0.101
GeAr_N8_R1_P4 52 74 3072 229376 4.69 3.5 0.034
GeAr_N8_R1_P5 43 88 1024 98304 1.56 1.5 0.010
GeAr_N8_R1_P6 45 61 256 32768 0.39 0.5 0.0013
GeAr_N8_R2_P2 39 81 12288 1553472 18.75 23.70 0.138
GeAr_N8_R2_P4 37 75 1536 245440 2.34 3.75 0.009

https://doi.org/10.1371/journal.pone.0227745.t001

phase of the methodology, as the application of the miter has negligible processing time. As
expected, the CPU time jumps significantly between the 8-bit adders and the 16-bit adders,
because the search space grows exponentially with more inputs, making it more compute-
intensive to find errors.

The error rate numbers for all the approximate adders exactly matched the ones mentioned
in [16], validating that they are correct. The paper did not report an average-case error and
therefore the validity of the average-case error results is based on the tests performed with pre-
determined results. All numbers reported are exact, therefore achieving them is complex,
which is reflected in the runtimes. It is not a challenging task to provide limitations on the met-
rics, such as terminating the program when a certain error-rate or a certain average-case error

Table 2. Evaluation of 16-bit approximate adder library.

Approximate Adder | Gatesin Approx. | Gatesin Total Number of Sum of Max. Error Rate Average -case CPU Time with
Adder Miter Errors Errors /Probability Error Numeration (sec)
=)
ACA_II_N16_Q4 75 202 2052587520 879.39 47.79 2047.5 4.435
ACA_II_N16_Q8 104 162 251658240 1097.29 5.86 2554.83 1.414
ACA_I_N16_Q4 103 226 1462239232 879.39 34.05 2047.5 3.937
ETAII_N16_Q4 75 214 2052587520 879.39 47.79 2047.5 4.442
ETAII_N16_Q8 104 176 251658240 206.12 5.86 479.91 1.412
GDA_St_N16_M4_P4 110 197 251658240 54.76 5.86 127.5 1.421
GDA_St_N16_M4_P8 119 201 7864320 0.3221 0.18 7.5 0.473
GeAr_N16_R2_P4 81 206 496238592 219.69 11.55 511.5 1.713
GeAr_N16_R4_P4 104 192 251658240 54.76 5.86 127.5 1.401
GeAr_N16_R4_P8 89 169 7864320 0.3221 0.18 7.5 0.472
GeAr_N16_Ré6_P4 114 168 132120576 13.53 3.08 31.5 0.882

https://doi.org/10.1371/journal.pone.0227745.t1002

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 14/19

https://doi.org/10.1371/journal.pone.0227745.t002
https://doi.org/10.1371/journal.pone.0227745.t001
https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

8-bit Approx. Adders 16-bit Approx. Adders

04
= 035 o

w

o
w
IS

0.25

w

N

= 015

CPU Time (seconds
o © <
[o

CPU Time (seconds)

-

0.05
(L] [] (]
0 oo o e ol 2o
0 50 100 150 0 50 100 150 200 250
Gates Gates

o

Fig 5. Plots of number of gates in miter vs. CPU time for 8-bit and 16-bit adders.
https://doi.org/10.1371/journal.pone.0227745.g005

is exceeded. Moreover, the authors in [17] did not claim their work to be 100% accurate to the
actual error metrics (as they did not provide the values for the errors). In addition, they did
not provide all the input combinations that produced errors and they only calculated the met-
rics. Furthermore, they computed the time for each stage and then calculated each error metric
individually. However, our work provides all the input configurations that produce the errors
and calculates all error metrics in one run.

From the results, several approximate adders have the same error-rate but different aver-
age-case error, such as the ACA_II_N8_Q4 and the GDA_St_N8_M4_P2. The error metrics
can therefore be used to categorize circuits into more than one category. Even if the two
approximate adders are equally likely to produce an error, the one with a higher average-case
error will produce errors that (on average) deviate more from the exact value. This information
gives insight to the designer who may value errors that are more impactful over area or power
improvements, or vice versa. It is also not impossible for two structurally different adders to
have the same value for both metrics, leaving the design choices up to other error metrics or
area/power considerations.

To discuss the effect of different design parameters on the runtime of the methodology, the
CPU time is reported. Firstly, the effect of the miter size in gates/cells on the runtime is
explored in Fig 5.

The first noticeable difference between the two graphs is the jump in CPU time between the
8-bit adders and the 16-bit adders. This is due to the search space doubling with every introduced
input variable, leading to an exponential growth. The other noticeable fact is that there is no pat-
tern to the scatter graphs and hence a more influential variable affecting the CPU time. This factor
can be demonstrated by looking at Figs 6 and 7. The CPU time is directly proportional to the
maximum error rate and an average-case error in the circuit. As the error-rate or average-case
error increases, the CPU time increases linearly for both the 8-bit and the 16-bit benchmark sets.

The CPU time scales with the maximum error rate because the higher the maximum error
rate the more the number of errors that need to be discovered, therefore more work.

8-bit Approx. Adders 16-bit Approx. Adders
0.4 5
2 035 9 o) -9
4
o 0.25 [T
[02 L
(1] i (1]
£ 0.5 .) £2 o
£ ooa = = il
= a2l e
& 005 | 4 5 4
o ® 0
0 20 40 60 80 0 20 40 60
Error Rate (Percentage) Error Rate (Percentage)

Fig 6. Plots of maximum error rate vs. CPU time for 8-bit and 16-bit adders.

https://doi.org/10.1371/journal.pone.0227745.9006

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 15/19

https://doi.org/10.1371/journal.pone.0227745.g005
https://doi.org/10.1371/journal.pone.0227745.g006
https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

8-bit Approx. Adders 16-bit Approx. Adders
0.4 5
@ 035 LS « °
° ® ©
£ 03 : c4 |
o S50
g 025 g 3 -
% 02 <
E 015 . E 2 a.
TS 5, [o-® °
a zle
$ 005 | G e
0 0
0 20 40 60 80 100 0 1000 2000 3000
Average-case Error (decimal) Average-case Error (decimal)

Fig 7. Plots of average-case error vs. CPU time for 8-bit and 16-bit adders.
https://doi.org/10.1371/journal.pone.0227745.9007

The average-case error metric has more to do with the severity of the error, i.e., the average
absolute difference between the two circuits in value when considering both their outputs as
integers. For example, two approximate circuits might both have one error. But one of them
has the error in the most significant bit and the other in the least significant bit. Therefore,
they both end up taking the same CPU time to process but different average-case error.

Finally, this effect is consistent even if both benchmarks sets are considered together. How-
ever, in order to plot both benchmarks sets together, we need to consider the number of exist-
ing errors (Total Number of Errors in Tables 1 and 2) as the size of the search spaces are
different. The resulting plot indeed produces a linear relation as shown in Fig 8.

The proposed SAT solving methodology was shown to be applicable to the new error met-
rics studied by deriving correct error metric results to the benchmark circuits. The approach
provided a quantifiable measurement of the two error metrics in one step to exactly determine
the difference between the approximate and the correct design. This is done by providing the
set of all error-producing assignments and the errors produced by them to determine the prac-
ticality of approximate circuits.

Conclusion and future works

Approximate computing has gained enormous research attention recently by providing a
trade-off between computational accuracy and computation effort for the emerging inherent
error-tolerant applications. However, to reap the promising benefits of approximate comput-
ing, fast and accurate error metrics evaluation methodology is of paramount importance.

8-bit and 16-bit Approx. Adders

(9]

(6]

IS
[]

w

N

CPU Time (seconds)

0 500000000 1E+09 1.5E+09 2E+09 2.5E+09
Number of Errors

Fig 8. Plots of number of errors vs. CPU time for all benchmarks.

https://doi.org/10.1371/journal.pone.0227745.9008

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 16/19

https://doi.org/10.1371/journal.pone.0227745.g007
https://doi.org/10.1371/journal.pone.0227745.g008
https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

Error metrics are a crucial factor in the usefulness of approximate circuits in real-life applica-
tions. The relevant importance of an error metric is application dependent, and hence, there
should be efficient procedures to accurately determine all error metrics. In this paper, two key
error metrics were considered that have not been addressed before using a SAT solver method-
ology. However, the approach is applicable to evaluate all relevant error metrics. In our opin-
ion, this may be the first work to propose SAT solver method for the evaluation of all relevant
error metrics in approximate computing. Experimental results using several benchmark
approximate adders with varying sizes showed the feasibility of the proposed SAT based meth-
odology. There are some key advantages to the approach, as it provides the set of all error-pro-
ducing assignments and optionally the errors produced by them. Moreover, it offers a test
generation method to facilitate design choices and acts as an important guide to debug the
approximate circuits (perhaps there is an error where it should not be). The proposed work
was effective in processing the two error metrics in one go, and provided a log of error-gener-
ating input assignments in a reasonable timeframe. It was shown experimentally that the pro-
cessing time of the methodology increases, as expected, rapidly with a few inputs but only
linearly with the number of errors it needs to detect.

However, several challenges remain that open interesting research opportunities for future
work to realize the full potential of the emergent approximate computing paradigm. It includes
the study of the correlation of metrics with each other and with approximation techniques, as
well as the evaluation of combined error-metrics and their impact (e.g. Hamming distance) on
different applications. Another important extension of this work will be experimenting with
the internal algorithm of the SAT solver and discovering if different algorithms might behave
better with some circuits and worse with others. The development of parallelized ALLSAT
solvers is likely to be a valuable addition in terms of speed of processing.

Author Contributions

Conceptualization: Sa’ed Abed, Imtiaz Ahmad.

Data curation: Sa’ed Abed.

Formal analysis: Sa’ed Abed, Ali A. M. R. Behiry, Imtiaz Ahmad.
Investigation: Sa’ed Abed, Ali A. M. R. Behiry, Imtiaz Ahmad.
Methodology: Sa’ed Abed, Ali A. M. R. Behiry, Imtiaz Ahmad.

Project administration: Sa’ed Abed.

Resources: Sa’ed Abed.

Software: Sa’ed Abed, Ali A. M. R. Behiry.

Supervision: Sa’ed Abed.

Validation: Sa’ed Abed, Ali A. M. R. Behiry, Imtiaz Ahmad.
Visualization: Sa’ed Abed, Imtiaz Ahmad.

Writing - original draft: Sa’ed Abed, Ali A. M. R. Behiry, Imtiaz Ahmad.
Writing - review & editing: Sa’ed Abed, Ali A. M. R. Behiry, Imtiaz Ahmad.

References
1. Mittal S. A survey of techniques for approximate computing. ACM Computing Surveys. 2016; 48(4):
62:1-62:33.

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 17/19

https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

Chippa VK, Chakradhar ST, Roy K, Raghunathan A. Analysis and characterization of inherent applica-
tion resilience for approximate computing. 50th ACM/EDAC/IEEE Design Automation Conference
(DAC), Austin, TX, 2013; 1-9. https://doi.org/10.1145/2463209.2488873

Keszocze O, Soeken M, Drechsler R. The complexity of error metrics. Information Processing Letters,
2018; 139: 1-7.

Holik L, Lengal O, Rogalewicz A, Sekanina L, Vasicek Z, Vojnar T. Towards formal relaxed equivalence
checking in approximate computing methodology. 2nd Workshop on Approximate Computing (WAPCO
2016), 2016; HIPEAC, 1-6.

Chandrasekharan A, Soeken M, GrofBe D, Drechsler R. Precise error determination of approximated
components in sequential circuits with model checking. Proceedings of the 53rd Annual Design Auto-
mation Conference (DAC ’16), Austin, Texas, ACM, NY, USA, 2016; Article 129, 1-6.

Lingamneni A, Enz C, Nagel JL, Palem K, Piguet C. Energy parsimonious circuit design through proba-
bilistic pruning. Design, Automation & Test in Europe, Grenoble, 2011; 1-6.

Han J, Orshansky M. Approximate computing: An emerging paradigm for energy-efficient design. 18th
IEEE European Test Symposium (ETS), Avignon, 2013: 1-6.

Yu C; Ciesielski M. Analyzing imprecise adders using BDDs—A Case Study. IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), Pittsburgh, PA, 2016; 152—157.

Gebregiorgis A, Tahoori MB. Test pattern generation for approximate circuits based on Boolean
Satisfiability," 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence,
Italy, 2019; 1028—1033. https://doi.org/10.23919/DATE.2019.8714898

Chandrasekharan A, Soeken M, GroBBe D, Drechsler R. Approximation-aware rewriting of AlGs for error
tolerant applications. Proceedings of the 35th International Conference on Computer-Aided Design
(ICCAD'16), ACM, New York, NY, USA, 2016; Article 83, 1-8.

Choudhury MR, Mohanram K. Low cost concurrent error masking using approximate logic circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2013; 32(8):1163—
1176.

Jiang H, Liu C, Maheshwari N, Lombardi F, Han J. A comparative evaluation of approximate multipliers.
IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), Beijing, 2016; 191—
196.

Momeni A, Han J, Montuschi P, Lombardi F. Design and analysis of approximate compressors for multi-
plication. IEEE Transactions on Computers, 2015; 64(4):984-994.

Huang J, Lach J, Robins G. A methodology for energy-quality tradeoffs using imprecise hardware. Pro-
ceedings of the 49th Annual Design Automation Conference (DAC '12), 2012; 504-509.

Venkatesan R, Agarwal A, Roy K, Raghunathan A. MACACO: Modeling and analysis of circuits for
approximate computing. IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
San Jose, CA, 2011; 667-673.

Soeken M, GroBBe D, Chandrasekharan A, Drechsler R. BDD minimization for approximate computing.
21st Asia and South Pacific Design Automation Conference (ASP-DAC), Macau, 2016; 474—479.

Froehlich S, GroBe D, Drechsler R. One method—all error-metrics: A three-stage approach for error-
metric evaluation in approximate computing. 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Florence, Italy, 2019; 284-287. https://doi.org/10.23919/DATE.2019.8715138

Mazahir S, Hasan O, Hafiz R, Shafique M, Henkel J. Probabilistic error modeling for approximate
adders. IEEE Transactions on Computers, 2017; 66(3):515-530. https://doi.org/10.1109/TC.2016.
2605382

Qureshi A, Hasan O. Formal probabilistic analysis of low latency approximate adders. IEEE Transac-
tions on Computers-Aided Design of Integrated Circuits and Systems, 2019; 38(1):177—-189.

Mazahir S, Hasan O, Hafiz R, Shafique M. Probabilistic error Analysis of approximate recursive multipli-
ers. IEEE Transactions on Computers, 2017; 66(11):1982—-1990. https://doi.org/10.1109/TC.2017.
2709542

Celia D, Vasudevan V, Chandrachoodan N. Probabilistic error modeling for two-part segmented
approximate adders. 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence,
2018; 1-5. https://doi.org/10.1109/ISCAS.2018.8351273

WuY, LiY, Ge X, Qian W. An accurate and efficient method to calculate the error statistics of block-
based approximate adders. arXiv preprint arXiv:1703.03522 [Preprint]. 2017 [cited 2019]. Available
from: https://arxiv.org/pdf/1703.03522.

Akbari O, Kamal M, Afzali-Kusha A, Pedram M. RAP-CLA: A Reconfigurable approximate carry look-
ahead adder. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018; 65(8): 1089-1093.
https://doi.org/10.1109/TCSI1.2016.2633307

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 18/19

https://doi.org/10.1145/2463209.2488873
https://doi.org/10.23919/DATE.2019.8714898
https://doi.org/10.23919/DATE.2019.8715138
https://doi.org/10.1109/TC.2016.2605382
https://doi.org/10.1109/TC.2016.2605382
https://doi.org/10.1109/TC.2017.2709542
https://doi.org/10.1109/TC.2017.2709542
https://doi.org/10.1109/ISCAS.2018.8351273
https://arxiv.org/pdf/1703.03522
https://doi.org/10.1109/TCSII.2016.2633307
https://doi.org/10.1371/journal.pone.0227745

@ PLOS|ONE

Error metrics determination in functionally approx. circuits using SAT solvers

24,

25.

26.

27.

28.

29.

30.
31.

32.

Schlachter J, Camus V, Palem KV, Enz C. Design and applications of approximate circuits by gate-level
pruning. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2017; 25(5):1694—1702.
https://doi.org/10.1109/TVLSI.2017.2657799

Chandrasekharan A, EggersgliB S, GroB3e D, Drechsler R. Approximation-aware testing for approxi-
mate circuits. 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju,
2018; 239-244. https://doi.org/10.1109/ASPDAC.2018.8297312

Cabodi G, Camurati P, Quer S. Can BDDs compete with SAT solvers on bounded model checking?.
Proceedings of the 39th annual Design Automation Conference (DAC ’02). Austin, Texas. ACM, New
York, NY, USA, 2002; 117-122.

Bem VD, Marranghello FS, Reis Al, Ribas RP. SAT-based formulation for logical capacity evaluation of
VIA-configurable structured ASIC. IEEE Transactions on Emerging Topics in Computing, 2017; 5
(2):247-259. https://doi.org/10.1109/TETC.2016.2644381

Afonso J, Monteiro J. Analysis of short-circuit conditions in logic circuits. Design, Automation & Test in
Europe Conference & Exhibition (DATE 2017), Lausanne, 2017; 824—829. https://doi.org/10.23919/
DATE.2017.7927102

Toda T, Soh T. Implementing efficient all solutions SAT solvers. J. Exp. Algorithmics, 2016; 21
(1.12):1-44. hitps://doi.org/10.1145/2975585.
Wolf C. Yosys open synthesis suite, 2016.

Shafique M, Ahmad W, Hafiz R, Henkel J. A Low latency generic accuracy configurable adder. 52nd
ACM/EDAC/IEEE Design Automation Conference & Exhibition (DAC), San Francisco, CA, 2015; 1-6.
https://doi.org/10.1145/2744769.2744778

Berkeley Logic Synthesis and Verification Group (2019) ABC: A System for Sequential Synthesis and
Verification. Release YMMDD. http://www.eecs.berkeley.edu/~alanmi/abc/. Accessed 22 April 2019.

PLOS ONE | https://doi.org/10.1371/journal.pone.0227745 January 14, 2020 19/19

https://doi.org/10.1109/TVLSI.2017.2657799
https://doi.org/10.1109/ASPDAC.2018.8297312
https://doi.org/10.1109/TETC.2016.2644381
https://doi.org/10.23919/DATE.2017.7927102
https://doi.org/10.23919/DATE.2017.7927102
https://doi.org/10.1145/2975585
https://doi.org/10.1145/2744769.2744778
http://www.eecs.berkeley.edu/~alanmi/abc/
https://doi.org/10.1371/journal.pone.0227745

