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Factor H (FH) is the major plasma alternative 
pathway (AP) complement regulator prevent-
ing uncontrolled C3 activation and host tissue 
damage. The association between FH and age-
related macular degeneration (AMD) (1), atypi-
cal hemolytic uremic syndrome (aHUS) (2–5), 
and membranoproliferative glomerulonephritis 
type II (MPGN2) (6–9) supports the hypothesis 
that AP dysregulation is a unifying pathogenetic 
feature of these diverse conditions. However, 

only MPGN2 and AMD have overt pathologi-
cal similarities. Indeed, AMD-like pathology is 
well recognized in patients with MPGN2 (10). 
The hallmark of AMD is drusen, complement-
containing material that accumulates beneath 
the retinal pigmented epithelium, whereas in 
MPGN2 accumulation of C3 and electron-dense 
material is seen along the glomerular basement 
membrane (GBM). In contrast to these “debris-
associated” conditions, aHUS is characterized by 
renal endothelial injury and thrombosis (throm-
botic microangiopathy) resulting in hemolytic 
anemia, thrombocytopenia, and renal failure.

Although complete FH defi ciency in humans 
(6, 8, 9), pigs (11), and mice (12) is associated with 
reduced C3 and MPGN2, aHUS-associated CFH 
mutations cluster within the carboxy-terminal 
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Factor H (FH) is an abundant serum glycoprotein that regulates the alternative pathway of 

complement-preventing uncontrolled plasma C3 activation and nonspecifi c damage to host 

tissues. Age-related macular degeneration (AMD), atypical hemolytic uremic syndrome 

(aHUS), and membranoproliferative glomerulonephritis type II (MPGN2) are associated with 

polymorphisms or mutations in the FH gene (Cf h), suggesting the existence of a genotype–

phenotype relationship. Although AMD and MPGN2 share pathological similarities with the 

accumulation of complement-containing debris within the eye and kidney, respectively, 

aHUS is characterized by renal endothelial injury. This pathological distinction was refl ected 

in our Cf h association analysis, which demonstrated that although AMD and MPGN2 share 

a Cf h at-risk haplotype, the haplotype for aHUS was unique. FH-defi cient mice have un-

controlled plasma C3 activation and spontaneously develop MPGN2 but not aHUS. We show 

that these mice, transgenically expressing a mouse FH protein functionally equivalent to 

aHUS-associated human FH mutants, regulate C3 activation in plasma and spontaneously 

develop aHUS but not MPGN2. These animals represent the fi rst model of aHUS and 

provide in vivo evidence that effective plasma C3 regulation and the defective control of 

complement activation on renal endothelium are the critical events in the molecular 

pathogenesis of FH-associated aHUS.
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short consensus repeat (SCR) domains of the protein (13), 
are frequently associated with normal C3 and FH levels, and 
result in defective binding of FH to heparin, C3b, and endo-
thelium (14–17). Importantly, clustering of these mutations 
among carboxy-terminal domains would not be expected to 
alter plasma C3 regulation, because this function resides among 
the amino-terminal four SCR domains (17, 18). Therefore, 
we hypothesized that FH-associated aHUS would require 
both eff ective plasma C3 regulation and defective regulation 
on renal endothelium.

RESULTS AND DISCUSSION

That MPGN2 and AMD, but not aHUS, have pathological 
similarities was recapitulated in the at-risk single nucleotide 
polymorphism (SNP; Table S1, available at http://www.jem
.org/cgi/content/full/jem.20070301/DC1) and haplotype 
(Fig. 1) association data derived from a comparative genetic 
analysis, using a minimal set of informative CFH SNPs, in 
Spanish subjects with aHUS, AMD, and MPGN2. No over-
lapping between CFH aHUS-associated at-risk alleles or at-
risk haplotypes was seen with the other conditions, consistent 
with previous data (19, 20). CFH haplotype H1 (-332C, 
c.184G, c.1204C, c.2016A, and c.2808G) was signifi cantly 
 increased in AMD and MPGN2 versus controls but not in 
aHUS patients. Conversely, haplotype H3 (-332T, c.184G, 
c.1204T, c.2016G, and c.2808T) was signifi cantly increased 
in aHUS patients but not in either AMD or MPGN2 patients. 
Notably, haplotype H2 (-332C, c.184A, c.1204T, c.2016A, 
and c.2808G), previously shown to protect from AMD (19), 
was markedly decreased in all three conditions, suggesting that 

this haplotype may be associated with increased FH regulatory 
activity and reduced AP activation. A strong correlation be-
tween the CFH genotypes and the pathological outcome is 
further supported by the observation that the carboxy-terminal 
CFH mutations, frequently found in aHUS patients (2–5), 
were not detected in either healthy controls or subjects with 
MPGN2 or AMD (Table S2). These genetic data support the 
hypothesis that distinct functional alterations in FH are critical 
in the pathogenesis of aHUS and AMD/MPGN2.

To test this hypothesis and to establish that a combination 
of eff ective plasma C3 regulation and defective regulation on 
renal endothelium is required for aHUS to develop, we 
generated transgenic mice expressing a mouse FH protein 
(FH∆16-20) that lacked the terminal fi ve SCR domains (Fig. 
2 A), the equivalent mouse location of the majority of aHUS-
associated FH human mutations (13). These animals were in-
tercrossed with FH-defi cient (Cf h−/−) mice to generate mice 
expressing either the mutant protein alone (Cf h−/−.FH∆16-20) 
or in combination with the full-length mouse protein 
(Cf h+/−.FH∆16-20). Cf h−/−.FH∆16-20 mice were viable, 
and FH∆16-20 was detectable in plasma (Fig. 2 B) at levels 
comparable to FH in Cf h+/− mice (Fig. 2 C). Analogous to 
aHUS-associated FH human mutants, FH∆16-20 retained 
complement regulatory activity but showed impaired bind-
ing to heparin and human umbilical vein endothelial cells 
(HUVECs) in vitro (Fig. 3).

Cf h−/− mice have secondary plasma C3 depletion (12), 
enabling us to assess the ability of FH∆16-20 to regulate AP 
activation in vivo by measuring C3 levels in the Cf h−/−.
FH∆16-20 mice. C3 levels were signifi cantly higher in the 

Figure 1. Association analysis of CFH haplotypes with aHUS, AMD, 

and MPGN2 within a single population. Schematic illustration of the 

CFH exon structure demonstrating the location of the fi ve SNPs included 

in these studies. These SNPs represent a minimal informative set for 

genetic variation within the CFH gene. CFH haplotypes with a frequency 

>3% are shown. The frequency of each CFH haplotype was compared 

with the controls and the aHUS, AMD, and MPGN2 cohorts, and the 

p-values and the OR were calculated. Risk haplotypes are shaded red, 

whereas protective haplotypes are shaded in green.p-values were derived 

using the two-sided Fisher’s exact test. OR and 95% confi dence interval 

(95% CI) are shown. See Table S1 for individual CFH SNP allele frequencies 

in patients with these conditions. The nucleotide and amino acid numbering 

refer to the translation start site (A in ATG is +1; Met is +1), as recom-

mended by the Human Genome Variation Society.
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Cf h−/−.FH∆16-20 mice compared with Cf h−/− littermate 
controls (Fig. 4 A). C3 levels in Cf h+/−.FH∆16-20 mice 
were also signifi cantly higher compared with age-matched 
Cf h+/− mice, reaching wild-type C3 levels (Fig. 4 A). Thus, 
FH∆16-20 retained the ability to regulate plasma C3 activa-
tion in vivo. Spontaneous GBM C3 deposition is seen in 
Cf h−/− mice (12). To assess the ability of FH∆16-20 to regu-
late C3 activation within the kidney, we compared glomeru-
lar C3 staining in 3-wk-old Cf h−/−.FH∆16-20, Cf h+/−.
FH∆16-20, and Cf h−/− mice (Fig. 4 B). In striking contrast 

to the linear GBM C3 staining pattern evident in the Cf h−/− 
mice, only a granular mesangial C3 staining pattern was 
detected in Cf h−/−.FH∆16-20 mice. Thus, FH∆16-20 also 
effi  ciently prevented accumulation of C3 along the GBM.

During our initial observations, all Cf h−/−.FH∆16-20 
mice developed hematuria and anasarca or died before 12 wk 
of age. Hence, we monitored cohorts of Cf h−/−.FH∆16-20 
(n = 15) and Cf h+/−.FH∆16-20 (n = 11) mice over an 8-wk 
period. At 8 wk, 9 out of the 15 Cf h−/−.FH∆16-20 mice 
(60%) had developed hematuria and anasarca, necessitating 
death, whereas all Cf h+/−.FH∆16-20 animals remained well. 
Renal histology in the Cf h−/−.FH∆16-20 mice with hema-
turia demonstrated thrombotic microangiopathy (Fig. 5 A). 
Endothelial damage characteristic of thrombotic microangi-
opathy was evident on ultrastructural examination of these 
animals (Fig. 5 B). Importantly, electron-dense GBM depos-
its, an ultrastructural feature of MPGN2 that we have previ-
ously shown to be present at this age in Cf h−/− mice (12), 
were absent. No renal histological abnormalities were seen in 
the 8-wk-old Cf h+/−.FH∆16-20 mice, and in a separate 
cohort of Cf h+/−.FH∆16-20 mice (n = 4), renal histology 
remained normal at 6 mo (unpublished data).

In all of the Cf h−/−.FH∆16-20 mice with hematuria, 
there was signifi cant elevation of blood urea (median = 31.8 
mmol/liter, range = 26.3–42.8 mmol/liter; n = 8) compared 
with normal values in the age-matched Cf h+/−.FH∆16-20 
mice (median = 10 mmol/liter, range = 4.8–16.5 mmol/
liter; n = 11; P = 0.0003; Table S3, available at http://www
.jem.org/cgi/content/full/jem.20070301/DC1). Red cell 
fragmentation was evident on the peripheral blood fi lms in 
all of the Cf h−/−.FH∆16-20 mice with hematuria (Fig. 5 C, 
arrows). Furthermore, these mice had signifi cantly reduced 
platelet counts (median = 64 × 109 platelets/liter, range = 
28–291 platelets/liter; n = 7) compared with normal values 
in the Cf h+/−.FH∆16-20 mice (median = 517 × 109 platelets/
liter, range = 445–584 platelets/liter; n = 4; P = 0.0061). 
Thus, renal thrombotic microangiopathy in Cf h−/−.FH∆16-20 
mice was associated with renal failure, red cell fragmentation, 
and thrombocytopenia, all cardinal features of aHUS. Immuno-
fl uorescence studies in the Cf h−/−.FH∆16-20 mice with 
hematuria showed C3 deposition along the endothelium and 
within the smooth muscle of renal arteries (Fig. 5 D, i), in 
addition to abnormal deposition within the glomerular 
mesangium and capillary walls (Fig. 5 D, iii). In contrast, 
no abnormal C3 staining was seen in age-matched Cf h+/−.
FH∆16-20 mice (Fig. 5 D, ii and iv). Thus, consistent with 
the in vitro data, FH∆16-20 failed to regulate C3 activation 
on renal endothelium.

That a degree of plasma C3 regulation is required to enable 
thrombotic microangiopathy to develop derived from our ob-
servations in a second transgenic line (Cf h−/−.FH∆16-20low) 
with a median plasma FH∆16-20 level of only 2% of normal 
wild-type FH levels. Median plasma C3 levels were 34.8 mg/
liter (range = 20.7–50.1 mg/liter; n = 6), signifi cantly less 
than the median value measured in the Cf h−/−.FH∆16-20 
mice (79.5 mg/liter; P < 0.001) but greater than median C3 

Figure 2. The development of Cf h−/−.FH𝚫16-20 mice. (A) Sche-

matic representation of the mouse FH protein and the mutant mouse 

FH∆16-20 protein. SCR domains are numbered incrementally from the 

amino terminus. Complement regulatory domains are localized within 

SCR domains 1–4 (black line), whereas the equivalent location of the ma-

jority of aHUS-associated human mutations is within SCR domains 16–20 

(red line). (B) Western blot of plasma probed with a polyclonal anti–mouse 

FH antibody from wild-type (lane 1), Cf h+/−.FH∆16-20 (lane 2), and 

Cf h−/−.FH∆16-20 mice (lane 3). The truncated mutant FH∆16-20 protein 

runs at a lower molecular mass than the 150-kD full-length mouse pro-

tein. (C) Plasma FH levels in Cf h−/−.FH∆16-20, Cf h+/−.FH∆16-20, and 

Cf h+/− mice. Median FH∆16-20 plasma levels quantifi ed by ELISA in 

Cf h−/−.FH∆16-20 mice were 29.3% pooled wild-type sera (range = 

20.1–39.1%; n = 16), which were comparable to FH levels in Cf h+/− mice 

(median = 28.9%, range = 20.5–50.5%; n = 21; P > 0.05). In the Cf h+/−.

FH∆16-20 mice, total FH levels were 64.5% (range = 46.7–84.6%; 

n = 18), signifi cantly higher than levels in either the Cf h−/−.FH∆16-20 

(P < 0.001) or the Cf h+/− (P < 0.001) mice. Horizontal bars denote me-

dian values. *, P < 0.001 for Cf h+/−.FH∆16-20 mice versus all other 

groups using Bonferroni’s multiple comparison test.
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levels in Cf h−/− animals (14.3 mg/liter; P < 0.01). At 8 mo of 
age, renal histology in the Cf h−/−.FH∆16-20low mice (n = 6) 
demonstrated only mild mesangial expansion with no evidence 
of thrombotic microangiopathy. Furthermore, these mice did 
not develop hematuria or red cell fragmentation, and serum 
urea levels remained normal at the time of death (median = 
10.6 mmol/liter, range = 8.9–11.5 mmol/liter). Capillary wall 
C3 staining was reduced in comparison to age-matched Cf h−/− 
mice, and subendothelial electron-dense GBM deposits were 
infrequent. Hence, the plasma C3 regulation in the Cf h−/−.
FH∆16-20low mice was insuffi  cient for aHUS to develop but 
did prevent the development of MPGN2 up to the time point 
examined. The data from both transgenic lines, together with 
the observation that aHUS did not develop in Cf h−/− mice 
that have secondary C3 depletion, demonstrated that C3 acti-
vation is a key eff ector mechanism in aHUS.

There is now overwhelming evidence that aHUS is asso-
ciated with defective regulation of the AP of complement 

activation. Mutations aff ecting the cofactors for the factor 
I–mediated proteolytic inactivation of activated C3 in plasma 
(FH; references 2–5, 21) and on cell surfaces (membrane co-
factor protein; references 15, 22), in addition to mutations 
aff ecting the serine protease factor I itself (23), predispose to 
the development of aHUS. Similarly, gain-of-function muta-
tions in the complement activator factor B also predispose to 
aHUS, further supporting the critical role of C3 activation in 
the pathogenesis of aHUS (24). The spontaneous pathology 
in the Cf h−/−.FH∆16-20 mice, like that of humans with 
functionally similar FH mutations, targeted the renal vascula-
ture, suggesting that there are unique anatomical and/or phys-
iological properties of this endothelial bed that render it 
particularly sensitive to complement-mediated damage.

Interestingly, aHUS-associated mutations in complement 
genes are normally found in heterozygosis in aHUS patients 
and are frequently associated with incomplete penetrance. In 
this respect, it is notable that Cf h+/−.FH∆16-20 mice did not 

Figure 3. Functional characterization of FH𝚫16-20. (A and B) Heparin 

binding assay. Cf h−/+.FH∆16-20 mouse plasma was applied to a heparin–

sepharose column, and the proteins bound to the column were eluted 

with a NaCl linear gradient (35–250 mM). Two protein peaks containing 

FH identifi ed by ELISA (A) and Western blot analysis (B) showed that the 

mutant FH∆16-20 protein eluted before FH, demonstrating that removal 

of SCR16-20 impairs binding of FH to heparin. The continuous line in 

A indicates conductivity. (C) Cofactor activity of FH∆16-20 protein in the 

proteolysis of fl uid-phase mouse C3b by factor I. Different concentrations 

of either purifi ed FH or FH∆16-20 protein were incubated with mouse 

C3b in the presence of factor I. Analysis of C3b proteolytic fragments on 

8% SDS-PAGE gel under reducing conditions indicated that both proteins 

had factor I cofactor activity with the appearance of α chain fragments 

(α65 and α45/43). Protein fragments were visualized using Coomassie 

blue staining. (D) HUVEC binding assays (background level indicated by 

the horizontal line; top left). HUVECs were incubated with 100 μl EDTA 

plasma dialyzed against 0.5× PBS (137 mM NaCl, 10 mM phosphate, 

2.7 mM KCl, pH 7.4). Bound FH or FH∆16-20 were detected using a rabbit 

anti–mouse FH antibody and a goat anti–rabbit Alexa Fluor 488–conjugated 

antibody. Alexa Fluor 488–conjugated isotype-matched antibody was 

used as a control (shaded area). The fl uorescence index was calculated 

by multiplying the mean fl uorescent intensity by the percentage of cells 

staining positive for FH (bold line). These analyses demonstrated that the 

mutant FH∆16-20 protein has a markedly impaired ability to bind to 

HUVECs in comparison with wild-type protein.
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spontaneously develop aHUS, suggesting that, like in some 
human patients, multiple genetic defects aff ecting comple-
ment regulators are required for aHUS to develop in mice 
(25, 26). Furthermore, infection, immunosuppressive drugs, 
cancer therapies, oral contraceptive agents, pregnancy, or 
postpartum period are all factors that may trigger aHUS in 
individuals carrying CFH mutations in heterozygosis, and the 
syndrome has developed in the native kidney of live-related 
kidney donors who had previously unidentifi ed FH muta-
tions (27). Thus, Cf h+/−.FH∆16-20 mice may only develop 
aHUS after an additional insult, either genetic or environ-
mental (or both), although interspecies diff erences in the reg-
ulation of C3 on cell surfaces by FH and other complement 
regulators may also be relevant to the apparent resistance of 
Cf h+/−.FH∆16-20 mice to aHUS.

Treatment of aHUS associated with FH mutations is dif-
fi cult. Renal transplantation is associated with a high inci-
dence of disease recurrence (28). Plasma infusions as a source of 
FH have been benefi cial (29) but can result in hyperprotein-
emia, requiring plasma exchange (30). The principle source 
of FH is hepatic, and hence, the expected defi nitive treat-
ment would be combined liver and renal transplantation, 
which has produced mixed results (31–33). Our data defi ne 
an important aspect of therapy. Agents that attempt to restore 
C3 regulation must critically achieve this on cell surfaces. In-
deed, our observations suggest that restoration of fl uid-phase 

regulation alone may, by increasing the circulating plasma C3 
levels, be deleterious.

In conclusion, the similarities between the surface recog-
nition domains of mouse and human FH (34) enabled us to 
mutate mouse FH to functionally mimic aHUS-associated 
human FH mutations. Cf h−/− mice expressing this mutant 
FH protein spontaneously developed aHUS, not MPGN2. 
Our data provide the fi rst in vivo proof of principle evidence 
that FH mutations specifi cally impairing surface recognition 
can result in spontaneous aHUS and defi ne the molecular 
pathogenesis of aHUS-associated FH mutations.

MATERIALS AND METHODS
Patients. This study included three independent cohorts of Spanish patients, 

comprising 94 aHUS patients selected on the basis of a clinical history of 

HUS with nondiarrhea-associated origin, 79 patients >60 yr old with AMD 

who presented with advanced choroidal neovascularization and drusen in 

both eyes, and 15 MPGN2 patients. An independent cohort of 139 age-

matched healthy Spanish controls with no family history of AMD, aHUS, or 

MPGN2 was also used in these experiments. Genomic DNA was generated 

from peripheral blood leukocytes using standard procedures. All protocols 

included in these studies have been approved by national and/or local insti-

tutional review boards, and all subjects gave their informed consent.

Genotyping and statistical analyses. A set of fi ve SNPs, representing a 

minimal informative set for genetic variation within the CFH gene, were gen-

otyped in controls and in the aHUS, AMD, and MPGN2 cohorts on genomic 

DNA by allelic discrimination using probes (TaqMan; Applied Biosystems) 

Figure 4. Plasma and glomerular C3 regulation in Cf h−/−.FH𝚫16-20 

mice. (A) Plasma C3 levels in Cf h−/−.FH∆16-20 mice. Median plasma C3 

levels in the Cf h−/−.FH∆16-20 mice were 79.5 mg/liter (range = 46.1–

95.9 mg/liter; n = 16), which was signifi cantly higher than the levels 

seen in the Cf h−/− mice (median = 14.3 mg/liter, range = 7.9–23.2 mg/

liter; n = 9; P < 0.05). C3 levels were also signifi cantly higher in the 

Cf h+/−.FH∆16-20 mice compared with Cf h+/− mice (medians = 264.6 vs. 

142 mg/liter, respectively; P < 0.001) and did not differ from the levels 

seen in wild-type animals. Horizontal bars denote median values. 

*, P < 0.05 for Cf h−/−.FH∆16-20 mice versus all other groups using 

Bonferroni’s multiple comparison test. (B) Glomerular C3 staining in 3-wk-

old Cf h−/−.FH∆16-20, Cf h+/−.FH∆16-20, and Cf h−/− mice. The striking 

GBM linear C3 staining pattern seen in the glomeruli of the Cf h−/− mice 

was not evident in either Cf h−/−.FH∆16-20 or Cf h+/−.FH∆16-20 mice, 

consistent with the ability of FH∆16-20 to prevent GBM C3 deposition. 

Although no staining was detected in the glomeruli of Cf h+/−.FH∆16-20 

animals, a granular mesangial C3 staining pattern was evident in Cf h−/−.

FH∆16-20 mice. Bar, 10 μm.



1254 HEMOLYTIC UREMIC SYNDROME IN FACTOR H MUTANT MICE | Pickering et al.

and real-time PCR equipment (PE7700; Applied Biosystems), according to 

the manufacturer’s specifi cations, or by automatic DNA sequencing of PCR-

derived amplicons in a sequencer (ABI 3730; Applied Biosystems) using a dye 

terminator cycle sequencing kit (Applied Biosystems). Sequences of CFH 

exons 22 and 23 were determined in all individual controls and patients using 

PCR-derived amplicons, as previously described (26). The frequency of 

alleles 1 and 2 from each SNP was compared with controls and aHUS, AMD, 

and MPGN2 cohorts, and the p- values, odds ratios (ORs), and 95% confi -

dence intervals were calculated. Haplotype frequencies in the control and 

patient cohorts were estimated using the expectation maximization algorithm 

implemented by the SNPStats software (available at http://bioinfo.iconcologia

.net/SNPstats). Nonparametric data were given as the median, with the range 

of values in parentheses, as indicated in the fi gures. We used the Mann-Whitney 

test to compare two groups and Bonferroni’s multiple comparison test for the 

analysis of three groups. Data were analyzed by Prism software (version 3.00 

for Windows; GraphPad Software).

Mice. Cf h−/− mice were generated as previously described (12). To gener-

ate the FH∆16-20 protein, the codon encoding Cys937 at the beginning of 

SCR16 of mouse FH was substituted by a stop codon in the full-length 

cDNA clone using site-directed mutagenesis (QuickChange; Stratagene). 

A modifi ed version of the pCAGGS plasmid (35) bearing the CMV-EI 

enhancer, the chicken β-actin promoter, and intron 1 and the simian virus 

40 poly(A) signal was used to construct the FH∆16-20–encoding transgene. 

The construct was excised from the vector by digestion with Kpn I and Sal I 

and purifi ed using a gel extraction kit (QIAEX II; QIAGEN), followed by 

Elutip purifi cation (Schleicher and Schuell). The DNA was injected into 

fertilized CBA × C57BL/6 F1 mouse eggs, and these were transplanted into 

Figure 5. HUS in Cf h−/−.FH𝚫16-20 mice. (A) Renal histology in 

Cf h−/−.FH∆16-20 mice. Normal glomerulus from a 2-mo-old Cf h+/−.

FH∆16-20 mouse (i), and light microscopic features of thrombotic micro-

angiopathy in Cf h−/−.FH∆16-20 mice (ii–vi). These included glomerular 

microthrombi (ii, arrows), capillary wall double contours (iii, arrows), for-

mation of capillary microaneurysms (iv), and mesangiolysis (v). Infl amma-

tory changes were also seen within glomerular arteries (vi). Bar, 10 μm. 

(B) Electron microscopy revealed characteristic ultrastructural changes of 

thrombotic microangiopathy. Erythrocytes beneath disrupted endothelium 

and in direct contact with the GBM (i) and endothelial disruption with 

subendothelial accumulation of fl occulent material (ii, asterisk). Note the 

absence of GBM electron-dense deposits, an ultrastructural feature of 

MPGN2 that is normally evident at this age in Cf h−/− mice (reference 12). 

Bar, 500 nm. (C) Peripheral blood smear from a Cf h−/−.FH∆16-20 mouse 

with hematuria. Evidence of red-cell fragmentation is seen (arrows). Bar,

 5 μm. (D) Renal C3 staining. C3 deposition along the endothelium and 

within the smooth muscle of renal arteries was present in the Cf h−/−.

FH∆16-20 (i) but not the Cf h+/−.FH∆16-20 (ii) mice. Insets represent the 

staining of mouse endothelium with anti-CD31 (platelet/endothelial cell 

adhesion molecule). Mesangial and capillary wall C3 staining in a Cf h−/−.

FH∆16-20 mouse with HUS (iii) in contrast to an absence of abnormal 

glomerular C3 staining in an age-matched Cf h+/−.FH∆16-20 mouse (iv). 

No abnormal renal IgG staining was present in either the Cf h−/−.FH∆16-20 

or the Cf h+/−.FH∆16-20 mice (not depicted). Bar, 10 μm.
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foster females. Progeny were screened for transgene integration by PCR, and 

expression of the mutant FH protein was determined by Western blotting. 

Heterozygous and homozygous FH-defi cient mice expressing the transgene 

were generated by intercrossing the transgenic animals with Cf h−/− mice. The 

presence of the transgene was detected by PCR using genomic DNA and oligo-

nucleotides located within exon 5 (mHF1-4F, 5′-G C A A T T C A G G C T T C A A-

G A T T G -3′), exon 9 (mHF1-8F, 5′-G A C A T G T A C A G A G A A T G G C T G -3′), 
and exon 13 (mHF1-6R, 5′-C C C A T T A A G A A T T T C A A G A G G T G -3′) of 

the mouse FH exonic sequence. The genotyping of the Cf h−/− mouse has been 

previously described (12). All animal procedures were done in accordance with 

institutional guidelines.

Measurement of FH and C3 levels and Western blotting of plasma 

FH. FH levels were measured by ELISA using a goat anti–rat FH antibody 

(a gift from M. Daha, Leiden University Medical Center, Leiden, Nether-

lands) and a rabbit anti–mouse FH antibody. Samples were quantifi ed by 

reference to a standard curve generated using normal wild-type mouse 

serum. C3 levels were measured by ELISA using a goat anti–mouse C3 antibody 

(MP Biomedicals). Results were quantifi ed by reference to a standard curve 

generated from acute-phase sera containing a known quantity of C3 (Cal-

biochem). Mouse FH was detected by the Western blotting of serum with a 

cross-reactive polyclonal rabbit antibody against rat FH.

Heparin binding assay and cofactor activity. 200 μl EDTA plasma 

from a Cf h−/+.FH∆16-20 mouse was dialyzed against 20 mM Tris-HCl 

(pH 7.4), 35 mM NaCl and applied to a heparin–sepharose column (HiTrap 

Heparin HP; GE Healthcare). After extensive washes, the proteins bound to 

the column were eluted with a NaCl linear gradient (35–250 mM). Two 

protein peaks containing FH were identifi ed by ELISA, and the eluted FH 

proteins were characterized by Western blot analysis. For the cofactor assay, 

we thank R.B. Sim (University of Oxford, Oxford, UK) for providing puri-

fi ed human factor I.

Histological studies. For light microscopy, kidneys were fi xed in Bouin’s 

solution and embedded in paraffi  n, and sections were stained with periodic 

acid Schiff  reagent. For immunofl uorescence studies, kidneys were snap frozen. 

FITC-conjugated goat antibody against mouse C3 (MP Biomedicals) and 

FITC-conjugated goat antibody against mouse IgG (Sigma-Aldrich) were 

used on snap-frozen sections. Mouse endothelium was stained using a rat anti–

mouse CD31 (platelet/endothelial cell adhesion molecule 1) antibody (a gift 

from B. Imhof, University of Geneva, Geneva, Switzerland), followed by ap-

plication of Texas red goat polyclonal anti–rat IgG antibody (Abcam). For 

electron microscopy, samples were fi xed in 3% glutaraldehyde, postfi xed in 2% 

aqueous osmium tetroxide, and embedded in Spurr’s resin. Ultrathin sections 

were stained with 1% aqueous uranyl acetate and Reynold’s lead citrate.

Assessment of renal function and hematological parameters. We 

measured serum urea using a UV method kit (R-Biopharm Rhone Ltd.) 

according to the manufacturer’s instructions. Urinalysis was performed using 

Hema-Combistix (Bayer). Platelets were quantifi ed manually. In brief, whole 

blood was diluted 1:20 with 1% ammonium oxalate, and the suspension was 

mixed for 15 min to allow red cell lysis to occur. Samples were transferred to 

a hemocytometer (Bright-Line; Sigma-Aldrich), and platelets were directly 

counted. Blood fi lms were manually prepared using EDTA whole blood and 

stained using a rapid staining kit (Diff -Quik; Dade Behring).

Online supplemental material. Table S1 shows the frequencies of CFH 

polymorphisms in individuals with MPGN2, aHUS, and AMD. Table S2 

shows the frequency of mutations in CFH exons 22 and 23 in controls and 

individuals with MPGN2, aHUS, and AMD. Table S3 shows mortality, 

renal function, and hematological parameters in Cf h−/−.FH∆16-20 and 

Cf h+/−.FH∆16-20 mice. Online supplemental material is available at http://

www.jem.org/cgi/content/full/jem.20070301/DC1.

We are grateful to all patients and the collaborating clinicians for their partici-

pation in this study. We thank Mr. Ian Shore for his technical assistance with the 

preparation of tissue for electron microscopy, Mrs. Margarita Lewis for technical 
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