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This study investigates the effects of XKR4, a recently identified candidate gene for Attention-Deficit/
Hyperactivity Disorder (ADHD), birth weight, and their interaction on brain volume in ADHD. XKR4 is
expressed in cerebellum and low birth weight has been associated both with changes in cerebellum and
with ADHD, probably due to its relation with prenatal adversity. Anatomical MRI scans were acquired in 58
children with ADHD and 64 typically developing controls and processed to obtain volumes of cerebrum, cer-
ebellum and gray and white matter in each structure. DNA was collected from saliva. Analyses including data
on birth weight were conducted in a subset of 37 children with ADHD and 51 controls where these data were
retrospectively collected using questionnaires. There was an interaction between genotype and birth weight
for cerebellum gray matter volume (p=.020). The combination of homozygosity for the G-allele (the allele
previously found to be overtransmitted in ADHD) and higher birth weight was associated with smaller
volume. Furthermore, birth weight was positively associated with cerebellar white matter volume in
controls, but not ADHD (interaction: p=.021). The interaction of genotype with birth weight affecting cere-
bellum gray matter is consistent with models that emphasize increased influence of genetic risk-factors in an
otherwise favorable prenatal environment. The absence of an association between birth weight and cerebel-
lum white matter volume in ADHD suggests that other genetic or environmental effects may be at play,
unrelated to XKR4. These results underscore the importance of considering environmental effects in imaging
genetics studies.

© 2012 The Authors. Published by Elsevier Inc. All rights reserved.
1. Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) is a heritable
neurodevelopmental disorder characterized by age-inappropriate
symptoms of inattention, hyperactivity and impulsivity (American
Psychiatric Association, 2000; Faraone et al., 2005). Structural and
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functional changes in cerebellum are common findings in ADHD
(Durston et al., 2009; Valera et al., 2007), but the genetic and/or envi-
ronmental risk-factors related to these have not yet been established.
Recently, a gene with preferential expression in cerebellum was
found to be nominally associated with ADHD: two family-based ge-
netic association studies confirmed a suggestive association of a
single-nucleotide polymorphism (SNP) in the XKR4-gene (XK-Kell
blood group complex subunit-related family, member 4) (Lantieri et
al., 2010; Neale et al., 2008). Although the function of this gene in
the brain is not yet entirely clear, it codes for an inferred protein relat-
ed to the XK-protein, part of the XK-Kell blood group complex (Lee et
al., 2000). Whereas Kell and XK proteins are co-expressed in ery-
throid tissue, this is not the case in non-erythroid tissue (Claperon
et al., 2007; Lee et al., 2007). Using a mouse model with later confir-
mation in human tissue, XK has been found to be overexpressed in
the brain in comparison to Kell and shows widespread expression
with notable, replicated peaks in the Purkinje cells of the cerebellum
(Claperon et al., 2007; Lee et al., 2007). The XK gene has been linked
to McLeod syndrome, a syndrome with central nervous system, neu-
romuscular, and hematologic manifestations in males including
served.
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movement, cognitive and psychiatric impairments (Danek and
Walker, 2005).

Finally, the XKR4-gene itself has been associated with substance
abuse (Uhl et al., 2008), and a SNP slightly upstream from XKR4 has
been associated with response to antipsychotic medication (Fijal et
al., 2012; Lavedan et al., 2009), underscoring its potential relevance
to psychiatric phenotypes.

Environmental influences may also be particularly relevant to cer-
ebellum. In previous work in children with ADHD and their unaffect-
ed siblings, we have found that familial effects on cerebellum volume
were less pronounced than in other brain areas (Durston et al., 2004).
In addition, cerebellum is one of the least heritable brain structures at
birth (Gilmore et al., 2010) and in childhood (Peper et al., 2007), al-
though other findings suggest that its heritability may increase into
adolescence and adulthood (Peper et al., 2009; van Soelen et al.,
2011). The cerebellum may be particularly vulnerable to effects of
prenatal adversity, as its development begins early in intrauterine
life and is markedly protracted (Limperopoulos et al., 2005; Ten
Donkelaar et al., 2003; Tiemeier et al., 2010). One measure often
used as a proxy for intrauterine conditions is birth weight (Mill and
Petronis, 2008). The association of low and very low birth weight
(defined as a birth weight b2500 and b1500 g respectively) with
atypical cognitive and behavioral development is well established
(Aarnoudse-Moens et al., 2009; Mick et al., 2002; Nigg and Breslau,
2007; Rice et al., 2007), with a number of neuroimaging studies
showing changes in cerebellum in children born with (very) low
birth weight (Limperopoulos et al., 2005; Lowe et al., 2011; Parker
et al., 2008; Peterson et al., 2000; Shah et al., 2006; Srinivasan et al.,
2006; Taylor et al., 2011). However, birth weight may also affect
developmental outcome across its full spectrum, as it has also been
associated with neurocognitive outcome in the normal range
(>2500 g) (Eriksen et al., 2010; Petersen et al., 2009; Shenkin et al.,
2004).

Birth weight is only moderately heritable, with estimates of its
heritability ranging from 10 to 40% (Gielen et al., 2008). Greater
influences on this measure include an array of environmental factors,
including gestational duration, placental dysfunction, maternal body
size, nutrition, diseases and infections and maternal use of alcohol
or cigarettes during pregnancy (Gluckman et al., 2008; Nigg and
Breslau, 2007). Birth weight is thought to affect the development of
behavioral problems largely independent of genetic or familial effects
(van Os et al., 2001; Wals et al., 2003), where the influence of genetic
factors increases with greater birth weight (Wichers et al., 2002).
However, the literature on disruptive disorders suggests that there
may also be birth weight by genotype interactions in play
(Buschgens et al., 2009). Specifically, an interaction between birth
weight and dopamine genes (COMT, DAT1, DRD5) has been
suggested to affect co-morbid oppositional symptoms in ADHD
(Langley et al., 2007; Thapar et al., 2005). Thus, there is evidence for
both independent and interactive effects of candidate genes and
birth weight in ADHD.

We set out to investigate gene and environmental effects, as well
as their interaction, on cerebellum volume in ADHD in an
hypothesis-driven design. Specifically, we investigated the effects of
XKR4-genotype and birth weight, as both of these are likely to have
preferential effects on cerebellum. Given the expression pattern of
XKR4 in the brain, we hypothesized that the allele previously found
to be overtransmitted in ADHD in genetic association studies would
be related to smaller cerebellum volume, but not to the volume of
other brain measures. Furthermore, we hypothesized that birth
weight would affect cerebellum volume independently of XKR4-
genotype. In addition, we investigated whether there were interac-
tive effects of XKR4-genotype and birth weight on cerebellum.
Given that earlier results from studies investigating gene/birth
weight interactions in ADHD mainly suggested effects on comorbid
oppositional symptoms, any results showing an interaction between
diagnostic group and birth weight were followed up with analyses
testing their specificity to subjects with co-morbid ODD.

2. Method

TheMedical Ethical Review Board of the University Medical Center
Utrecht approved the study and its procedures.

2.1. Participants

122 Children (64 controls, 58 children with ADHD) aged between
6.6 and 15.7 years participated in this study. Analyses including data
on birth weight were conducted on a subset for whom these data
were available (51 controls and 37 children with ADHD). The subjects
were enrolled in an ongoing longitudinal cohort study of brain devel-
opment in ADHD. As such, the dataset consisted of new subjects (69%
of the total sample) and subjects who had previously been included
in another imaging genetics study (31%, equally distributed between
patients and controls) and for whom DAT1 and DRD4 genotype had
previously been determined. The previous study did not investigate
cerebellum or any genes other than the two mentioned (Durston et
al., 2005). The remaining subjects had not been previously genotyped.

Groups were matched for age, gender and IQ at the group level.
Demographic and clinical characteristics are given in Table 1. Written
informed consent was obtained from parents after full disclosure of
the study purpose and procedure. Children provided written and/or
verbal assent. The DISC-IV, parent version (Shaffer et al., 2000) was
administered to parents in order to confirm the clinical diagnosis of
ADHD (ADHD group) or to exclude psychiatric morbidity (controls).
The DISC-IV is a widely used standardized structured interview that
assesses a broad range of psychiatric diagnoses using DSM-IV criteria.
DISC cutoffs for presence/absence of disorders are therefore equiva-
lent to the DSM-IV criteria. Parents filled out the Child Behavior
Checklist (CBCL) (Verhulst et al., 1996), to provide a dimensional
measure of behavioral symptoms. Controls were excluded if they
met criteria for any psychiatric diagnosis or if they had a
first-degree relative with a history of psychiatric problems. This was
assessed by asking parents for the psychiatric history in the direct
family, where a psychiatric diagnosis in a relevant family member
was the direct exclusion criterion. Children with ADHD were exclud-
ed if they met DISC-IV criteria for a co-morbid disorder other than
ODD or CD. In both groups, additional exclusion criteria were any
major physical or neurological disorder or the presence of metals in
the body that precluded the MRI session. IQ was assessed using a
four subtest short form of the Dutch version of the WISC-R or
WISC-III (Wechsler, 2005). Information on pregnancy and delivery
from a parental questionnaire were available for 88 subjects (51 con-
trols, 37 subjects with ADHD), including information on birth weight,
gestational duration, and maternal use of cigarettes and alcohol dur-
ing pregnancy. Parents (mostly mothers) were asked to give birth
weight in grams and gestational duration in weeks. Previous research
has shown that such retrospective reports correlate highly with med-
ical records and can reliably be used for group studies (Gadow et al.,
2002; Wahlstedt, 2009; Wahlstedt et al., 2009).

2.2. Neuroimaging

All subjects participated in an MRI-scan on a 1.5 T scanner
(Philips, Best, The Netherlands). The imaging protocol and processing
pipeline have been previously reported (De Zeeuw et al., 2012a,
2012b; Durston et al., 2005). Briefly, a T1-weighted three-
dimensional (3D) fast field echo scan of the whole head was acquired
with 130 to 150 1.5-mm contiguous coronal slices (earlier scans, on
Philips Intera; 37 controls and 37 subjects with ADHD) or 160 to
180 1.2-mm contiguous coronal slices (later scans, on Philips
Achieva; 27 controls and 21 subjects with ADHD) (echo time [TE]



Table 1
Demographic characteristics.

Full dataset with MRI data
(N=122)

Subset with both MRI and birth
weight data (N=88)

Controls
(n=64)

ADHD
(n=58)

Controls
(n=51)

ADHD
(n=37)

Gender N Girls/Boys 9/55 6/52 7/44 5/32
Age M (SD) 10.1 (1.9) 10.6 (2.1) 10.0 (1.9) 10.6 (1.9)
Total IQ M (SD) 105.6 (14.9) 103.4 (16.9) 107.4 (15.2) 103.7 (18.3)
Handedness N Right-/Left-handed/Ambidextrous 56/7/1 46/9/3 43/7/1 29/6/2
DISC-IV ADHD inattentive 11 9

ADHD hyperactive/impulsive 11 5
ADHD combined 36 23
ODD 22 16

CBCLa Internalising raw score M (SD) 4.7 (3.7) 10.6 (6.1)*** 4.8 (3.8) 9.7 (5.8)***
Externalising raw score M (SD) 5.3 (4.4) 17.8 (9.0)*** 5.0 (4.1) 18.1 (9.2)***
Attention problems M (SD) 2.8 (2.3) 9.3 (2.9)*** 2.7 (2.1) 8.8 (3.2)***

TRFb Internalising raw score M (SD) 4.5 (4.8) 7.8 (6.3)** 4.3 (5.1) 8.1 (5.8)**
Externalising raw score M (SD) 4.5 (5.9) 10.9 (8.9)*** 3.7 (5.3) 12.9 (9.2)***
Attention problems M (SD) 6.8 (6.9) 16.0 (9.3)*** 7.0 (7.4) 17.7 (8.9)***

SES Education father (years)c 13.4 (2.7) 12.5 (2.7) 13.4 (2.6) 12.8 (2.5)
Prenatal factors Birth weight (g) M(SD) 3526 (423) 3447 (565)

Gestational duration (weeks) M(SD) 39.9 (1.2) 39.4 (1.9)
Incidence of parent reported smoking during pregnancyd 17.6% 17.1%
Incidence of parent reported alcohol use during pregnancye 14.0% 17.6%

ADHD=Attention-Deficit/Hyperactivity Disorder; ODD=Oppositional Defiant Disorder; DISC-IV=Diagnostic Interview Schedule for Children-Fourth Edition; CBCL=Child Behav-
ior Checklist; TRF=Teacher Report Form; SES=Socio-Economic Status.
*pb .05; ** pb .01; ***pb .001.

a Unavailable for 2 control and 2 ADHD subjects.
b Unavailable for 9 control and 6 ADHD subjects.
c Unavailable for 6 control and 5 ADHD subjects.
d Unavailable for 3 ADHD subjects.
e Unavailable for 1 control and 3 ADHD subjects.
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4.6 ms; repetition time [TR] 30 ms; flip angle 30°; field of view [FOV]
256 mm; in-plane voxel size 1 mm×1 mm).

All brain scans were coded to ensure rater blindness to subject
identity and diagnosis. The T1 images were automatically placed in
Talairach orientation (Talairach and Tournoux, 1988) without scaling,
by registering them to a model brain in Talairach orientation (Maes et
al., 1997). After linear registration to the T1-weighted image, an intra-
cranial segment served as a mask for all further segmentation steps.
The T1-weighted images were corrected for field inhomogeneities
using the N3 algorithm (Sled et al., 1998). An automatic image-
processing pipeline was used to define the volume of total brain,
cerebral and cerebellum volume, and gray matter (GM) and white
matter (WM) (Schnack et al., 2001a; Schnack et al., 2001b). The
gray/white separation algorithm accounted for the effects of partial
voluming (Brouwer et al., 2010). Segments for cerebrum and cerebel-
lum were visually checked and edited to ensure an accurate segmen-
tation. Suboptimal scan quality precluded gray/white separation for 4
controls (6.3%, of which 3 were also included in the analyses includ-
ing birth weight) and 3 children with ADHD (5.2%, of which 2 were
also included in the analyses including birth weight). These cases
were therefore excluded in analyses on gray and white matter
volumes.

We conducted exploratory analyses to assess whether the differ-
ence in scan type (change in slice thickness and scanner type) be-
tween early and later scans significantly affected the volumetric
measures (see Supplementary Material 2). In most part, the results
suggest that our findings cannot be attributed to this methodological
issue. The scan slice thickness effect appeared greatest for cerebellum
white matter, but for the findings remained very similar whether or
not the slice thickness covariate was included in the model. This sug-
gests that the group-level results are robust against the effect of scan
slice thickness. In addition, the collection of data over 10 years sug-
gests that drift or scanner updates may have affected the measured
volumes. However, as these factors affect both control and ADHD
groups equally this will lead to a systematic error and is not likely
to result false positives in between-group comparisons. In Supple-
mentary Material 2 we report some further descriptive analyses to
address these issue.

2.3. DNA collection and genotyping

DNA was collected using buccal swabs as described previously
(Durston et al., 2005). We selected a SNP in the XKR4-gene that
showed nominal significance in two independent association studies
(Lantieri et al., 2010; Neale et al., 2008): rs2939678. It was genotyped
using Applied Biosystems' TaqMan SNP assays on ABI Prism 7900 HT
real-time thermocyclers. Call rate was>95%, and the SNP did not
deviate strongly from Hardy-Weinberg (HW) equilibrium in controls.

2.4. Statistical analyses

We tested for differences in demographic indices using Chi2, inde-
pendent samples t-tests and Mann–Whitney U-tests as appropriate.
We tested for association with ADHD in our samples by using Chi2

tests on allele counts. We then investigated effects of the SNP on vol-
umetric measures using univariate GLM for all volumes separately
with age, gender, and scan slice thickness as covariates. The effect of
T1 slice thickness on MR-based volumes was systematic and equal
for patients and controls. As such, a covariate adequately adjusted
the analyses for its effects (De Zeeuw et al., 2012a, 2012b; Langen et
al., 2009). There were no differences between groups in the distribu-
tion across the two T1 slice thicknesses (p=.499 for the full set, p=
.218 for the subset for which birth weight data was available). Main
effects of diagnostic group (control/ADHD), genotype and their inter-
action were entered into the analysis. If the group by genotype inter-
action was not significant, this term was removed from the model in
order to investigate whether genotype affected the brain volumes re-
gardless of diagnostic status. The XKR4 rs2939678 SNP was recoded
to a dichotomous A-carrier versus GG measure, as the number of
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subjects with the AA genotype was low in both groups (1 control sub-
ject, 3 subjects with ADHD).

We also computed an index of birth weight standardized by gesta-
tional duration by z-transforming birth weight divided by gestational
duration. All analyses were repeated with this measure instead of
birth weight, but yielded near-identical results. Therefore, we report
only the analyses for birth weight.

We investigated the interactive effects using a univariate GLM ap-
proach. For each brain volume, we specified a model with age, gender
and scan slice thickness as covariates, main effects of group, genotype
and birth weight, all second order interactions and the third order in-
teraction (group×genotype×birth weight). Whereas power to detect
third order interaction effects was admittedly limited in the current
study, the presence of third order interactions would have significant
implications and they were therefore included in the first step of the
analytic procedure, for exploratory purposes. If the third order inter-
action was not significant, it was removed from the model in order to
test the presence of second order interactions. If these did not ap-
proach significance, they were also dropped from the model in
order to investigate main effects. If one or more of the second order
interactions approached significance, it was further tested whether
these were independent of other second order interactions in the
model by dropping the other second order interactions, starting
with the interaction with the largest p-value. If the amount of vari-
ance explained by the model (adjusted R2) increased when a second
order interaction was removed, this interaction was considered a
suppressor term and was not carried forward. As such, the final
models reported include either all main effects (in order for the read-
er to appraise their separate effects), or all main effects and the
remaining second or third order effects obtained after the model
selection procedure described above. The results section explicitly
describes the procedure for each result. We then ran a further multi-
variate GLM, to further investigate complex effects.
3. Results

3.1. Association results

Table 2 shows the genotype counts and allele counts per group.
The SNP was not statistically associated with ADHD in this relatively
small sample.
3.2. Genotype by diagnostic group effects on full dataset

We found no interaction between XKR4-genotype and diagnostic
group for any of the volumes tested (all p>.601). However, we
found a main effect of XKR4-genotype on cerebellar white matter,
both when the group by genotype interaction was included in the
model (F(1,108)=4.21, p=.040) and when it was dropped
(F(1,109)=4.30, p=.038; reduced to p=.064 with intracranial vol-
ume as an additional covariate). The GG genotype was associated
with smaller cerebellar white matter volume across diagnostic groups
Table 2
Genotyping results.

Contr

XKR4
rs2939678

Genotype AA/AG/GGa 1/13/
Allele counts (A:G) 15:11
Allele frequency (A:G) 11.7%

ADHD=Attention-Deficit/Hyperactivity Disorder; XKR4=XK-Kell blood group complex su
a Genotype frequencies in the subset with data on birthweight are given in parentheses;
b Chi-square test should be interpreted with caution since frequency of the AA genotype
(A-carriers, M(SD)=50.2(8.1) ml; GG, M(SD)=45.9(7.2) ml). There
were no other main effects of XKR4-genotype (all p>.470).
3.3. Interactions with birth weight

These analyses were conducted on the subgroup for whom data
on birth weight and gestational duration were available (ncontrol=
51, nADHD=37, comorbid ODD in 16 cases). The diagnostic groups
did not differ in birth weight (Table 2), nor was there a difference
in mean birth weight between the XKR4 genotype groups.

Table 3 shows the results for the analyses of interactions between
XKR4-genotype and birth weight. The third order interaction,
between diagnostic group, genotype and birth weight did not reach
significance for any brain volume. We found an interactive effect of
genotype and birth weight on cerebellar gray matter volume and an
interactive effect of diagnostic group and birth weight on cerebellar
white matter. Figs. 1 and 2 show scatterplots of these results. The
full second order model for cerebellum gray matter volume, including
all two way interactions between ADHD, XKR4-genotype and birth
weight, was suggestive of a genotype by birth weight interaction
(p=.068). This appeared to be a real and independent effect that
was suppressed by other non-significant two-way interactions in
the model (group×genotype, p=.968 and group×birth weight, p=
.402), as stepwise removal of these interactions led to statistical sig-
nificance of the genotype by birth weight interaction (p=.031 and
p=.020 respectively for each removed term), and the variance
explained increased with each removal, suggesting that the other
two-way interactions were acting as suppressors. In children with
the GG genotype, cerebellar gray matter volume was negatively asso-
ciated with birth weight, regardless of diagnostic group.

In contrast, for cerebellar white matter there were no main or in-
teractive effects of genotype, but there was an interactive effect of di-
agnostic group and birth weight: In controls only, birth weight was
positively associated with cerebellar white matter volume (Fig. 2).
The full second order model for cerebellum white matter volume, in-
cluding all two way interactions between ADHD, XKR4-genotype and
birth weight, showed a significant interaction of diagnostic group and
birth weight (p=.031), but no other significant interactions or main
effects. This interaction was independent of the other factors in the
model as it retained significance when the other interactions and
main effects were consecutively dropped (p=.021 when the geno-
type by birth weight interaction was removed and p=.022 when
the diagnostic group by genotype interaction was also removed).
However, retaining the diagnostic group by genotype interaction in
the model resulted in a marginally higher R2 than the model without
this interaction (R2=.365 and R2=.362 respectively). Therefore we
retained this interaction in the model, even though it did not reach
significance (p=.256, Table 2). The pattern of p-values for the main
effects was not appreciably different for the models with or without
this additional second-order interaction.

When total brain volume was added as a covariate in the analyses
of cerebellum, the significance level for the interaction between birth
weight and XKR4 genotype for cerebellar gray matter increased (p=
ols (n=64) ADHD (n=58) p

50 (0/10/41) 2/19/37 (1/15/21) .211b

3 23:93 .080
:88.3% 19.8%:80.2%

bunit-related family, member 4 gene.
p-values refer to the full dataset.
was low. When dichotomized as A-carrier versus GG, p=.080.



Table 3
Results for univariate analyses of interactions between birth weight and XKR4 rs2939678.

Final model Second order effects Main effects

Volume BW×genotype Diagnosis×genotype Diagnosis×BW BW Diagnosis Genotype

Total brain Main effects only .168 .006 .930
Cerebrum Main effects only .146 .005 .938
Cerebral Gray Main effects only .053 .017 .896
Cerebral White Main effects only .224 .043 .721
Cerebellum total Main effects only .173 .018 .702
Cerebellum Gray MEs+BW by genotype .020a .315b .135b .017a

Cerebellum White MEs+diagnosis×genotype+diagnosis×BW .256c,b .021d .853d .044b .044b

ADHD=Attention-Deficit/Hyperactivity Disorder; BW=birth weight; MEs=main effects.
The data in this table refer to the sample for which birth weight data was available (ncontrol=51, nADHD=37) and represents the results from the univariate models. The model
selection procedure is described in the results section. Bold typeface indicates significant p-values at α=.05.

a pb .01 when total brain volume was covaried.
b p>.05 when total brain volume was covaried.
c Removing this term from the model resulted in less explained variance, which is why it was retained.
d pb .05 when total brain volume was covaried.
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.004). The significance level for the interaction between diagnostic
status and birth weight for cerebellar white matter remained similar
(p=.021).
3.4. Multivariate modeling of cerebellum gray and white matter

To further investigate the complex effects on cerebellum gray and
white matter, we modeled these volumes together in a multivariate
GLM, including both the diagnosis by birth weight and the genotype
by birth weight interactions and total brain volume as a covariate.
This model had reduced power compared to the univariate ones,
but did permit us to address possible interactions between the results
found in the univariate tests. In the multivariate tests, both interac-
tions, as well as the main effect of genotype retained significance (di-
agnosis by birth weight, p=.044; genotype by birth weight, p=.012,
genotype main effect p=.015). The tests for between subject effects
showed that a genotype by birth weight interaction was only present
for cerebellum gray matter (p=.011) but not white matter (p=
.454). A diagnosis by birth weight effect was only present in cerebel-
lumwhite matter (p=.019, in gray matter p=.925). Next to these in-
teraction effects, a main effect of genotype was only found in
cerebellum gray matter (p=.010), but not white matter (p=.624)
(Fig. 1). Results for this analysis without the total brain covariate
were highly similar with the exception that the multivariate tests
for both interaction effects fell short of significance (.05bpb .10),
most likely as a result of the reduced power in such a model. At the
Fig. 1. Interaction between XKR4-genotype and birth weight. ncontrol=51, nADHD=37. Birth
XKR4 GG-genotype, regardless of diagnostic group (r=− .308, p=.017). This relationship
subsequent univariate level, both interactions retained significance
at pb .05.

4. Discussion

Our results suggest that both XKR4-genotype and birth weight
may affect cerebellum volume in ADHD. XKR4-genotype affected
the relationship between birth weight and cerebellar gray matter
independently of diagnostic group, where subjects with the
GG-genotype showed an inverse relationship between birth weight
and cerebellar gray matter volume that was absent in carriers of the
A-allele. In typically developing children, there was a positive correla-
tion between birth weight and cerebellar white matter volume that
was absent in ADHD. This study builds on existing knowledge on cer-
ebellar involvement in ADHD, a replicated finding in neuroimaging
studies in ADHD (Durston et al., 2009; Valera et al., 2007). The cere-
bellum is increasingly understood to be involved in higher cognitive
functions such as temporal processing and temporal organization
of actions, which are often found to be compromised in ADHD
(Durston et al., 2011).

The relationship between XKR4-genotype and cerebellum volume
is complex: when investigated in isolation, XKR4-genotype appeared
to be associated with cerebellar white matter volume. It was not until
it was analyzed with birth weight that its effects on cerebellar gray
matter became apparent. An effect on gray matter is more consistent
with the expression pattern of the related XK-protein, which is found
in gray but not white matter (Claperon et al., 2007; Lee et al., 2007).
weight is negatively correlated with cerebellar gray matter volume in subjects with the
is absent in A-carriers (r=.272, p=.210).



Fig. 2. Interaction between diagnostic group and birth weight. ncontrol=51, nADHD=37. Birth weight is positively correlated with cerebellar white matter volume in controls (r=
.321, p=.026), but not ADHD (r=− .240, p=.165).
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In subjects with two copies of the allele overtransmitted in ADHD
(G-allele) (Lantieri et al., 2010; Neale et al., 2008), there was a
negative association between birth weight and cerebellar gray matter
volume (Fig. 1). At a first glance, these findings may appear paradox-
ical. However, cerebellum volume by definition comprises both
cerebellum gray and white matter volume, which are statistically
mutually dependent as a result. As such, any effect on gray matter
can induce a statistical effect on white matter if a relevant moderator
is not included in the model. Moreover, the results from the multivar-
iate modeling, where cerebellar gray and white matter are analyzed
in tandem, showed main and interactive effects of genotype only for
cerebellar gray matter. This suggests that the genotype effect found
on cerebellum white matter in the univariate analysis may have
been statistically induced by the combination of an effect of genotype
on cerebellar gray matter that was moderated by birth weight and the
association between birth weight and cerebellar white matter volume
in controls. Therefore, we conclude that reductions in cerebellum vol-
ume in ADHD (Durston et al., 2009; Valera et al., 2007) may be linked
to overtransmission of the G-allele in the presence of higher birth
weight. This is consistent with reports suggesting that genetic influ-
ences are more likely to affect the phenotype in an otherwise favor-
able prenatal environment (Wichers et al., 2002). In other words,
the hypothesis is that environmental circumstances have higher pen-
etrance to influence cerebellar development when they are adverse.
Conversely, genetic risk is hypothesized to higher penetrance in
influencing cerebellum development when environmental circum-
stances are favorable and as such pose less of a restriction.

Importantly, we do not find a G × E interaction operating directly
on ADHD. Rather, we find evidence for a G × E interactive effect on a
quantitative neurobiological marker of ADHD across diagnostic groups.
This is important, as G × E effects on diagnosis per se (dichotomized as
control and ADHD-group) are vulnerable to a high false positive rate
(Nigg et al., 2010). One way to circumvent this issue is to investigate
these effects on a putative intermediate phenotype (such as brain
volume). Another approach could be to analyze a continuous measure
of ADHD-behavior, which was not adequately possible with our study
design (see Supplementary Material 1 for more details).

We found an effect of birth weight on cerebellar white matter vol-
ume that was dependent on diagnostic group: in controls, higher
birth weight was associated with greater cerebellar white matter vol-
ume. This relationship could not be detected in ADHD (Fig. 2). For
controls, this result is in line with studies suggesting that cerebellar
white matter is preferentially affected in children born preterm
(Inder et al., 2005; Limperopoulos et al., 2005; Lowe et al., 2011;
Shah et al., 2006; Srinivasan et al., 2006). Of course, a direct
comparison with this literature is complicated as the children in this
study were not born preterm, or with low birth weight. Nonetheless,
this literature does seem to confirm a relationship between birth
weight and cerebellar white matter. It is unclear why this relationship
was not evident in the ADHD group. Potentially, there may be a ge-
netic effect unrelated to XKR4 operating on cerebellar white matter
in ADHD that, similar to our results in cerebellar gray matter, affects
cerebellar white matter volume more in children with higher birth
weight. However, this is entirely speculative, as no such effect was ev-
ident in our data.

The current study is modest in size compared to the large datasets
in genetic studies of ADHD. However, it was designed as a
hypothesis-driven study to investigate specific gene and environmen-
tal effects in an intermediate phenotype related to ADHD (i.e. brain
changes), rather than aimed at studying associations between gene
and behavior in a more exploratory design. As such, its requirements
in terms of sample size are more modest, as a phenotype more prox-
imal to gene expression is being investigated (Durston et al., 2009).
That said, the modest sample size may have limited our power to
pick up effects, particularly second-order and third-order interac-
tions. In addition, although correction for multiple comparisons is
not straightforward in a model building approach analyses, conven-
tional correction methods would render most results short of signifi-
cance. As such, we acknowledge that our study should be regarded a
first step in the direction of G × E imaging studies in ADHD and that
replication of these results is warranted in larger samples. A final
methodological consideration is that the scans included in this
study were collected over a long period of time (roughly 10 years),
using the same anatomical protocol, but with two different slice
thicknesses. Although we controlled for slice thickness throughout
all the analyses, we found that this issue may have had a slightly
stronger impact on for the measures of cerebellum white matter
(see Supplemental Material 2). Therefore, we recommend that the re-
sults for cerebellum white matter be viewed with particular caution.

Prenatal exposure to cigarettes and alcohol are important factors
that may affect birth weight (Mill and Petronis, 2008; Nigg and
Breslau, 2007), and were found in 14–17% of both groups. The num-
bers were too modest to permit investigation of these factors in the
context of the current study, but in a separate, small study, we report
that exposure to these substances is indeed associated with smaller
cerebellar volumes (De Zeeuw et al., 2012b). The current study
suggests that other factors affecting birth weight may be just as im-
portant to consider.

As a final consideration, we would like to remind the reader that
the XKR4 gene, despite its suggestive association with ADHD and
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evidence for preferential cerebellar expression is still a largely
uncharacterized gene. Much of what we currently know about the
gene derives from knowledge on the related XK-gene and
XK-protein, a deletion of which leads to McLeod syndrome (Danek
andWalker, 2005). Despite the noted expression of XK in the cerebel-
lum, McLeod syndrome has been associated previously with changes
in the basal ganglia, a region not addressed in this study. Further-
more, XKR4 does show a scattering of expression outside of the
cerebellum (Allen Institute for Brain Science, 2012). This was the mo-
tivation for including cerebral volumes as control regions in our
study. Finally, SNPs from XKR4 and XKR6 are amongst those that
have a high genetic distance between African and European subpop-
ulations, and this may be a factor in differential disease expression
across global subpopulations (Hughes et al., 2008). In sum, more
work is needed to fully characterize the role of XKR4 in the patho-
physiology of ADHD. In a similar fashion, more work is also needed
to understand how the cerebellum contributes to the symptoms of
the disorder. For example, the relationship of cognitive phenotypes
related to cerebellum in ADHD, such as temporal processing
(Durston et al., 2011), and brain measures may provide insight in
the nature of its involvement in the disorder.

In sum, we show that XKR4-genotype and birth weight both affect
cerebellum volume, that some of their effects are interactive and that
aspects of these effects differ between ADHD and controls. Further-
more, our results were only fully evident when both genetic and
environmental factors were considered. This underscores the
importance of considering environmental influences in tandem with
genetic effects.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.nicl.2012.11.010.
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