

Elsevier has created a <u>Monkeypox Information Center</u> in response to the declared public health emergency of international concern, with free information in English on the monkeypox virus. The Monkeypox Information Center is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its monkeypox related research that is available on the Monkeypox Information Center - including this research content - immediately available in publicly funded repositories, with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the Monkeypox Information Center remains active.

Analysis of the Monkeypox Virus Genome

S. N. Shchelkunov,* A. V. Totmenin,* P. F. Safronov,* M. V. Mikheev,* V. V. Gutorov,* O. I. Ryazankina,*
N. A. Petrov,* I. V. Babkin,* E. A. Uvarova,* L. S. Sandakhchiev,* J. R. Sisler,†
J. J. Esposito,‡ I. K. Damon,‡ P. B. Jahrling,§ and B. Mosst⁻¹

*State Research Center of Virology and Biotechnology "Vector," Koltsovo, Novosibirsk Region, 630559 Russia; †National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892; ‡Centers for Disease Control and Prevention, Atlanta, Georgia 30333; and §Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702

Received January 17, 2002; returned to author for revision February 21, 2002; accepted February 28, 2002

Monkeypox virus (MPV) belongs to the *orthopoxvirus* genus of the family *Poxviridae*, is endemic in parts of Africa, and causes a human disease that resembles smallpox. The 196,858-bp MPV genome was analyzed with regard to structural features and open reading frames. Each end of the genome contains an identical but oppositely oriented 6379-bp terminal inverted repetition, which similar to that of other orthopoxviruses, includes a putative telomere resolution sequence and short tandem repeats. Computer-assisted analysis was used to identify 190 open reading frames containing \geq 60 amino acid residues. Of these, four were present within the inverted terminal repetition. MPV contained the known essential orthopoxvirus genes but only a subset of the putative immunomodulatory and host range genes. Sequence comparisons confirmed the assignment of MPV as a distinct species of orthopoxvirus that is not a direct ancestor or a direct descendent of variola virus, the causative agent of smallpox.

INTRODUCTION

The family Poxviridae consists of complex doublestranded DNA viruses that are distinguished by their replication in the cytoplasm of vertebrate or invertebrate cells (Moss, 2001). Poxviruses belonging to the orthopoxvirus genus include the closely related variola (VAR), monkeypox (MPV), cowpox (CPV), and vaccinia (VAC) viruses (Fenner et al., 1989; Marennikova and Shchelkunov, 1998). VAR is the etiologic agent of human smallpox, an epidemic disease with mortality rates of 10-40% that was eliminated by a strategy of case identification and prophylactic vaccination of contacts with live VAC through the coordinated efforts of the world community under the aegis of the World Health Organization (Fenner et al., 1988). Following smallpox eradication in 1977, vaccination ceased, resulting in a decline in immunity to other orthopoxviruses as well as VAR. Thus, there is now increased susceptibility to zoonotic orthopoxviruses including MPV, CPV, and strains of VAC (Damaso et al., 2000; Esposito and Fenner, 2001). Potentially, increased circulation of these viruses in the human population could lead to adaptive increases in their pathogenicity or transmissibility. MPV is of greatest concern because human monkeypox, a sporadic disease in the tropical rainforest regions of Central and Western Africa, is similar to smallpox in its clinical manifestations and appears to be increasing in frequency (Breman, 2000; Hutin *et al.*, 2001; Jezek and Fenner, 1988; Marennikova *et al.*, 1972; Mukinda *et al.*, 1997).

The similar clinical manifestation of monkeypox and smallpox led to a hypothesis that MPV is the evolutionary ancestor of VAR (Fenner, 1977; Marennikova et al., 1972; Noble, 1970). Comparisons of VAR and MPV, based on genomic restriction endonuclease maps (Esposito and Knight, 1985; Mackett and Archard, 1979) or nucleotide sequences of individual viral genes (Douglass and Dumbell, 1992; Esposito and Knight, 1984; Hutin et al., 2001; Mukinda et al., 1997), were interpreted by some as indicating that MPV and VAR evolved independently (Douglass and Dumbell, 1992) and by others that VAR is ancestral to MPV (Bugert and Darai, 2000). Because a reliable answer to this question could be obtained only through comparisons of complete genomes, we sequenced the DNA of a recent human MPV isolate, strain ZAI-96-I-16 (MPV-ZAI), and concluded that MPV was not the immediate ancestor or descendent of VAR (Shchelkunov et al., 2001).

We carried out a detailed analysis of the 196,858-bp MPV-ZAI DNA sequence, comprising the entire genome with the exception of part of the covalently closed terminal hairpin loops, and compared this with the corresponding complete genome sequences of VAC (Antoine *et al.,* 1998; Goebel *et al.,* 1990), VAR (Massung *et al.,* 1994; Shchelkunov *et al.,* 1993d, 1995, 2000), and the partial sequence of CPV (Shchelkunov *et al.,* 1998).

¹ To whom correspondence and reprint requests should be addressed. E-mail: bmoss@nih.gov.

FIG. 1. Comparison of the terminal region of MPV and other orthopoxviruses. Upper line shows the sequenced part of the MPV-ZAI terminal loop. Sequences, which are necessary for telomere resolution, are boxed. Nucleotides, which differ from VAC-WR sequence, are printed in bold font. ZAI, BSH, and WR represent the virus strains Zaire-96-I-16, Bangladesh, and Western Reserve, respectively.

RESULTS AND DISCUSSION

Genome topography

The ends of orthopoxvirus genomes contain an identical but oppositely oriented sequence called a terminal inverted

repetition (ITR) (Garon *et al.*, 1978; Wittek *et al.*, 1978), which includes a set of short tandem repeats (Wittek and Moss, 1980) and terminal hairpins (Baroudy *et al.*, 1982). The MPV-ZAI genome contains a 6379-bp ITR. Using S1 nuclease hydrolysis and DNA polymerase I repair, we suc-

FIG. 2. Patterns of tandem repeats within the ITR region of MPV and other orthopoxviruses. White rectangles indicate unique ITR sequences: NR I and NR II and the coding region. The black diamonds correspond to 70-bp tandem repeats with their numbers indicated above. The gray triangles correspond to 54-bp repeats with their numbers indicated below. The pentagons in the ITR sequence of VAC-COP and VAC-WR indicate the 125-bp repeats. The open diamonds and triangles indicate that these repeats differ from the consensus sequence by deletions, substitutions, or inserts. The black circle denotes the terminal hairpin. Dotted lines indicate the absence of corresponding DNA.

TABLE 1

The Potential Open Reading Frames of Monkeypox Virus Strain Zaire-96-I-16

	Translation				VAR-IND,					
ORF	Start	Stop	Size (aa) ^ª	Type ^b	Function/feature(s)°	VAC-COP, and CPV-GRI isologs	Identity ^d	References		
J1L*	1611	871	246	E-L	Secreted CC-chemokine- binding protein	— VAR C23L VAC (244 aa)		Graham <i>et al.</i> (1997); Smith <i>et al.</i> (1997)		
J2L*	2786	1740	348	Е	Secreted TNF-binding protein	D1L CPV (255 aa) — VAR C22L VAC (122 aa)	86.7/255 — 83.5/91	Upton <i>et al.</i> (1991); Shchelkunov <i>et al.</i>		
J3L*	4640	2877	587		Ankyrin-like	D2L CPV (351 aa) — VAR C21L VAC (113 aa)	90.3/351 96.9/97	(1993a); Hu <i>et al.</i> (1994) Shchelkunov <i>et al.</i> (1993b); Safronov <i>et al.</i> (1996)		
	0140	4707	407		A standar II. s	C20L VAC (103 aa) C19L VAC (259 aa) D3L CPV (586 aa)	69.6/115 83.2/232 96.6/586			
DIL"	6110	4797	437		Ankyrin-like	— VAR — VAC	— — 07 5/427	Safronov <i>et al.</i> (1996); Shchelkunov <i>et al.</i> (1998)		
D2L	7121	6927	64		VAC C7L-like	D1.5L VAR (128 aa) — VAC	97.5/437 89.2/65 —	Shchellkunov <i>et al.</i> (1998)		
D3R	7556	7984	142	E	Secreted EGF-like growth factor	C4L CPV (170 aa) D2R VAR (140 aa) C11R VAC (142 aa) C5R CPV (138 aa)	95.4/65 86.3/139 91.5/141 91.3/138	Blomquist <i>et al.</i> (1984); Buller <i>et al.</i> (1988)		
D4L	9081	8830	83	E		D3L VAR (330 aa) C10L VAC (331 aa)	94.0/83 95.2/83 96.4/83	Venkatesan <i>et al.</i> (1982)		
D5R	9567	10,295	242	L	Zinc binding, virulence factor, inhibits UV-induced	D4R VAR (242 aa) — VAC	95.5/242	Upton <i>et al.</i> (1994); Senkevich <i>et al.</i> (1994);		
D6L	10,903	10,523	126	E	Secreted IL-18-binding protein	D5L VAR (126 aa) — VAC	97.5/242 92.1/126 — 70.7/122	Brick <i>et al.</i> (2000) Born <i>et al.</i> (2000); Smith <i>et</i> <i>al.</i> (2000); Calderara <i>et</i>		
D7L	12,945	10,963	660	E	Host range; ankyrin-like	D6L VAR (452 aa) — VAC	92.2/451	Spehner <i>et al.</i> (1988); Shchelkunov <i>et al.</i>		
D8L	13,273	13,079	64			— VAR — VAC	92.4/669	(1991, 19930)		
D9L	15,325	13,433	630	E	Ankyrin-like	C10L CPV (62 aa) D6.5L VAR (91 aa) D7L VAR (153 aa) C9L VAC (634 aa)	93.8/64 90.1/91 70.3/138 86.0/634	Shchelkunov <i>et al.</i> (1993b)		
D10L	16,432	15,980	150	E	Host range	C11L CPV (614 aa) D8L VAR (150 aa) C7L VAC (150 aa)	67.9/633 96.7/150 96.0/150	Chen <i>et al.</i> (1992)		
D11L	17,122	16,661	153	E		D9L VAR (156 aa) C6L VAC (151 aa)	94.1/152 92.0/150	Cooper <i>et al.</i> (1981)		
D12L	17,886	17,266	206	E	BTB domain of kelch-like protein	C14L CPV (156 aa) D10L VAR (134 aa) C5L VAC (204 aa)	94.7/152 90.0/130 95.9/193	Shchelkunov <i>et al.</i> (1998); Cooper <i>et al.</i> (1981)		
D13L	18,878	17,931	315	E		C15L CPV (205 aa) D11L VAR (316 aa) C4L VAC (316 aa)	97.0/197 92.1/316 94.3/316	Cooper <i>et al.</i> (1981)		
D14L	19,710	19,060	216	E	Secreted complement- binding protein	C16L CPV (315 aa) D12L VAR (263 aa) C3L VAC (263 aa)	94.3/316 89.4/218 93.1/218	Kotwal and Moss (1988)		
D15L	20,151	19,834	105		Discontinuous ORF (MPV D15L-D18L) of kelch-like protein	C17L CPV (259 aa) D13L VAR (201 aa) C2L VAC (512 aa) C18L CPV (512 aa)	93.0/214 93.8/80 97.1/105 98.1/105	Shchelkunov <i>et al.</i> (1998)		

	Trans	lation				VAR-IND,		
ORF	Start	Stop	Size (aa)ª	Type ^b	Function/feature(s) ^c	VAC-COP, and CPV-GRI isologs	Identity ^d	References
D16L	20,438	20,205	77			D13L VAR (201 aa)	86.3/73	
						C2L VAC (512 aa)	97.3/73	
						C18L CPV (512 aa)	97.3/73	
D17L	20,736	20,440	98			D13.5L VAR (79 aa)	97.6/42	
						C2L VAC (512 aa)	86.5/89	
D18I	21 142	20.819	107			— VAR		
DIGE	21,112	20,010	107			C2L VAC (512 aa)	98.1/106	
						C18L CPV (512 aa)	99.1/106	
D19L	22,010	21,366	214	Е		D14L VAR (214 aa)	92.5/214	Belle Isle et al. (1981)
						C1L VAC (224 aa)	94.9/214	
						C19L CPV (231 aa)	95.8/214	
P1L	22,409	22,056	117	E-L	Secreted virulence factor	P1L VAR (117 aa)	92.3/117	Kotwal and Moss (1989)
						N1L VAC (117 aa)	89.7/117	
Dal		00 500		-		P1L CPV (117 aa)	94.9/11/	T : / ///000
P2L	23,069	22,536	177	E		P2L VAR (177 aa)	90.4/177	Tamin <i>et al.</i> (1988)
						NZL VAC (175 aa)	90.3/175	
011	24 438	23 110	112	E-I	Ankyrin-liko	C1L VAR (446 aa)	95.7/175	Tamin $at al (1988)$
UIL	24,430	23,110	442		Ankyminike	M1L VAC (472 aa)	97 1/443	Shchelkunov et al
						01L CPV (474 aa)	95.7/443	(1993b)
O2L	25,170	24,508	220	Е		O2L VAR (220 aa)	95.5/220	Morgan and Roberts
						M2L VAC (220 aa)	97.7/220	(1984)
						O2L CPV (163 aa)	97.5/163	
C1L	26,153	25,299	284	E	Host range; ankyrin-like	O3L VAR (70 aa)	90.5/63	Gillard <i>et al.</i> (1986);
						C1L VAR (66 aa)	89.4/66	Shchelkunov et al.
						K1L VAC (284 aa)	95.8/284	(1993b)
0.01				_		M1L CPV (284 aa)	93.7/284	
C2L	27,511	26,384	375	E	Serine protease inhibitor-like,	C2L VAR (373 aa)	92.2/374	Law and Smith (1992);
					SPI-3, prevents cell fusion	K2L VAC (369 aa)	92.2/374	Turner <i>et al.</i> (2000)
0.31	27 902	27 672	12	F	IEN resistance homolog of		94.4/374 79.6/42	Boattio at al (1991):
03L	27,003	21,012	43	L	$elF-2\alpha$ inhibits $elF-2\alpha$	K3L VAC (88 aa)	95 2/42	Deallie et al. (1991), Davies et al. (1991)
					phosphorylation	M3L CPV (88 aa)	97.6/42	
C4L	29,133	27,859	424		Phospholipase D-like	— VAR	_	Cao <i>et al.</i> (1997); Sung <i>et</i>
						K4L VAC (424 aa)	98.3/424	al. (1997)
						M4L CPV (424 aa)	97.6/424	
C5L	29,990	29,160	276		Lysophospholipase-like	— VAR	—	Antoine <i>et al.</i> (1998)
						K5L VAC (136 aa)	91.7/108	
						K6L VAC (81 aa)	94.9/78	
	20.100	00 575	140			M5L CPV (276 aa)	97.5/276	
COR	30,126	30,575	149		VAC BISK-like	C4R VAR (149 aa)	97.3/149	
						M6R CPV (161 aa)	94.0/149	
C7L	31.278	30.619	219			C5L VAR (251 aa)	83.6/213	
	• · , _ · •					F1L VAC (226 aa)	83.6/226	
						G1L CPV (238 aa)	87.2/234	
C8L	31,745	31,290	151	E	Deoxyuridine triphosphatase	C6L VAR (147 aa)	98.0/147	McGeoch (1990)
						F2L VAC (147 aa)	98.6/147	
						G2L CPV (147 aa)	99.3/147	
C9L	33,225	31,762	487	E	Kelch-like	C7L VAR (179 aa)	93.3/179	Xue and Cooley (1993);
						F3L VAC (480 aa)	96.2/479	Shchelkunov et al.
010	04.405	00.000	010	F	Disenuele etide in durite -	G3L CPV (485 aa)	97.3/484	(1998) Olehaush et -/ (1000)
CIUL	34,195	33,236	319	E	RIDONUCIEOTIDE FEDUCTASE,	USL VAR (333 88)	97.5/319	Siabaugn <i>et al.</i> (1988)
					sman subunit, Kz	F4L VAU (319 88)	90.4/319 08 1/210	
C11	35 258	34 227	343			C91 VAR (348 aa)	85 1/348	
0.72	00,200	0.,	010			F5L VAC (321 aa)	92.8/321	
						G5L CPV (323 aa)	92.9/323	

TABLE 1—Continued

ORF Start S		Trans	slation				VAR-IND,		
C12L 85,436 95,215 73 C10 C10 WAR [72 sa) 84,473 FEL VAC [74 sa) 94,473 FEL VAC [74 sa) Parical ind Paoletti (1922) C13L 85,676 35,452 74 F F VAC [74 sa) 94,473 FL VAC [72 sa) F In and Eroyles [199]: Tarkman et al. [199]: Tarkman et al. [190]: Tarkman et al. [190]:	ORF	Start	Stop	Size (aa)ª	Type ^b	Function/feature(s)°	VAC-COP, and CPV-GRI isologs	Identity ^d	References
C13L 35,676 35,482 74 E Fil. VAC (74 a) 94,472 (GL (VY 4a) 94,472 (GL (VY 4a) 91,4772 (GL (VY 4a) 91,4772 (GL (VR 4a) 91,4772 (GL (VR 4a) 91,4772 (GL (VR 4a) 91,4772 (GL (VR 4a) 91,671 (GL (VR 4a) 91,771 (GL (VR 4a) 91,771 (GL (VR 4a) 91,771 (VR 4a) 91,772 (VR 4a)	C12L	35,436	35,215	73			C10L VAR (72 aa)	84.9/73	
C13. 35,676 36,676 74 E C11. VAR (75 an) 94.477 Panicali and Paoletti C14. 36,022 35,828 64 C11. VAR (75 an) 93.476 (192) C14. 36,022 35,828 64 C12. VAR (65 an) 93.4776 (192) C16. 36,717 36,079 212 C14. VAR (12 an) 97.6212 (10.2000) C16. 36,717 36,079 212 C14. VAR (12 an) 93.1721 (11. and Broyles (199.4) C16. 36,717 36,079 212 C14. VAR (12 an) 93.1721 (11. and Broyles (199.4) C17. 39,110 38,046 354 E C15. VAR (354 an) 93.5376 G01ni and Kates (198.4) C17. 39,110 38,046 354 E C15. VAR (354 an) 93.5376 G01ni and Kates (198.4) C18. 41,061 39,154 635 F=L Actin tail formation F12. VAR (354 an) 93.6736 G01ni and Kates (198.4) C19. 42,222 41,04							F6L VAC (74 aa)	94.4/72	
C13L 35,676 35,482 74 E C11L WAR (78 aa) 81,677 Panical and Pooletti FT/LVAR (82 aa) Panical and Pooletti FT/LVAR (83 aa) Panical and Pooletti FT/LVAR (81 aa) Panical and Pooletti (1996) C114					_		G6L CPV (74 aa)	94.4/72	
C14L 36,022 35,828 64 G12 (CPV (B6 a) G32,4776 93,4776 C15L 36,717 36,079 212 C14L (VA (G5 a) G32, CPV (G5 a) G31, CPV (G5 a) G32, CPV (G5	C13L	35,676	35,452	74	E		C11L VAR (79 aa)	81.6/76	Panicali and Paoletti
C14. 36,022 35,828 64 C12. UV (10 as) 36,076 36,076 C14. 36,072 35,828 64 C12. UV (12 us) 36,076 36,076 C16L 36,717 36,079 212 C14. UV (21 us) 36,076 36,076 36,077 36,079 212 C16L 36,074 439 L Serine/threonine protein of virion morphogenesis G0L CPV (12 us) 39,1712 Tarkman <i>et al.</i> (1995); C17L 39,110 38,046 354 E C15L VAR (354 as) 38,3754 G0lni and Kates (1984) C18L 41,061 39,154 635 E-L Actin tail formation C16L VAR (354 as) 35,3754 Golini and Kates (1984) C18L 41,061 39,154 635 E-L Actin tail formation C16L VAR (354 as) 35,3758 Golini and Kates (1984) C18L 41,061 39,154 635 E-L Actin tail formation C16L VAR (372 as) 35,772 Glini and Kates (1984) C18L 42,461 42,204 73 E-L E-L E-L F12L VAC (121 as) 36,773 Golini and Kates (1984) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F7L VAC (92 aa)</td> <td>79.5/88</td> <td>(1982)</td>							F7L VAC (92 aa)	79.5/88	(1982)
C14L 30,022 35,828 64 C12L VM (06 3a) 35,806 C15L 36,717 36,079 212 C13L VM (05 aa) 36,076 36,076 C15L 36,717 36,079 212 C13L VM (05 aa) 39,0721 FIL VAC (05 aa) 39,0721 C16L 38,023 36,704 439 L Serine/threonine protein C14L VM (439 aa) 38,0439 Traktman <i>et al.</i> (1995); C17L 39,110 38,046 354 E C15L VAR (364 aa) 38,0439 Traktman <i>et al.</i> (1995); Wang and Shuman (1995); </td <td>0141</td> <td>20.000</td> <td>25.000</td> <td>04</td> <td></td> <td></td> <td></td> <td>93.4/76</td> <td></td>	0141	20.000	25.000	04				93.4/76	
C15L 36,717 36,079 212 Serie Attraction 36,3165 36,3165 C15L 36,714 439 L Serie Attraction 36,112 36,3165 C15L 38,023 36,704 439 L Serie Attraction Serie Attractin Serie Attraction Se	CT4L	36,022	35,828	64			CIZL VAR (65 aa)	93.8/65	
C15L 36,717 36,079 212 C15L C15L VAR (212 a) 97.6212 (212) C15L VAR (212 a) 97.6212 (212) C15L VAR (212 a) 99.17212 (212) C15L VAR (212 a) 99.17212 (212) C15L VAR (212 a) 99.17212 (212) C15L VAR (212 a) 99.17213 Lin and Broyles (1994); Trakman <i>at al.</i> (1995); C17L 38,010 38,045 354 E C15L VAR (354 aa) 99.1743 Vina and Shuman (1995); Estations <i>et al.</i> (1995); C16L VAR (354 aa) 99.17439 Wang and Shuman (1995); C17L VAR (354 aa) 99.17439 Vina and Shuman (1995); C17L VAR (354 aa) 97.27364 C18L 41.061 99.154 635 E=L Actin tall formation (EV, wrapping of IMV to form [EV, prospholipase D-like C16L VAR (356 aa) 97.27364 Vina <i>et al.</i> (1986); Back <i>et al.</i> (1997); Broper and Moss (1999) C20L VAR (358 aa) 97.27364 Vina <i>et al.</i> (1986); Back <i>et al.</i> (1997); Broper and Moss (1999) C21L VAR (358 aa) 97.27364 Vina <i>et al.</i> (1987); Broper and Moss (1992) Vina <i>et al.</i> (1987); Broper and Moss (1992) C11L VAR (478 aa) 97.3737 Vina <i>et al.</i> (1987); Broper and Moss (1992) C11L VAR (478 aa) 97.3737 C119930; Broper and Moss (1992) C11L								90.9/05	
Order Order <th< td=""><td>C15I</td><td>36 717</td><td>36.079</td><td>212</td><td></td><td></td><td></td><td>90.9/00</td><td></td></th<>	C15I	36 717	36.079	212				90.9/00	
C16L 38,023 36,704 439 L Semine/threaonine protein kinase 2, VPK2, regulation of vinon morphogenesis C14L VAR (458 as) G10L CPV (438 as) 98,1/437 (48,403 Lin and Broyles (1994); Traktman et al. (1995); U1496); Eetadows of al. (1996); G10L CPV (438 as) 98,1/437 Lin and Broyles (1994); Traktman et al. (1995); U1496); Eetadows of al. (1996); G10L CPV (438 as) 98,1/439 Lin and Broyles (1994); Traktman et al. (1995); U1496); Eetadows of al. (1996); G10L CPV (438 as) 98,1/439 Lin and Broyles (1994); Traktman et al. (1995); U1496); Eetadows of al. (1996); G10L CPV (434 as) 98,1/439 Lin and Broyles (1994); Traktman et al. (1995); U1496); Eetadows of al. (1997); Sung et al. G11L CPV (437 as) 98,1/321 C19L 42,222 41,104 372 L Major envelope antigen of EEV, wrapping of IMV to F12L VAC (157 as) 73,172 Al. (1997); Sung et al. (1997); Sung et al. (1998); G11L CPV (197 as) 98,7/32 Hirt et al. (1998); G11L CPV (197 as) 98,7/32 C21L 42,461 42,273 158 E C18L VAR (173 as) 73,173 Golini and Kates (1984) F16L VAC (137 as) 93,737 Golini and Kates (1984) F16L VAC (131 as) 93,01711 So and Bau	OIDL	50,717	30,073	212			F9L VAC (212 aa)	99 1/212	
C16L 38,023 36,704 439 L Serine/threonine protein kinase 2, VPK2, regulation of virion morphogenesis C14L VAR (438 a) 98,4437 Lin and Broyles (1994); Tatkman <i>et al.</i> (1996); Wang and Shuman (1996); Betakova <i>et al.</i> (1996); C17L C17L 39,110 38,046 354 E C16L VAR (354 a) 98,7743 Golini and Kates (1984); Tatkman <i>et al.</i> (1995); Betakova <i>et al.</i> (1996); Betakova <i>et al.</i> (1996); Betakova <i>et al.</i> (1996); Betakova <i>et al.</i> (1996); Betakova <i>et al.</i> (1997); Roper and Mose (12L CPV (434 a)) 98,7743 Golini and Kates (1984); Tatkman <i>et al.</i> (1996); Betakova <i>et al.</i> (1997); Roper and Mose (12L CPV (134 a)) 98,7737 Hin <i>et al.</i> (1986); Back <i>et al.</i> (1997); Roper and Mose (1994); C12L VAR (354 a)) 98,7737 Ima <i>et al.</i> (1986); Back <i>et al.</i> (1997); Roper and Mose (1994); C12L VAR (73 a) 97,773 Golini and Kates (1984) C19L 42,2461 42,240 73 E-L C18L VAR (73 a) 97,773 Golini and Kates (1984) C20L 42,461 42,240 73 E-L C18L VAR (73 a) 97,773 Golini and Kates (1984) C21L 43,911 43,216 231 E C18L VAR (73 a) 98,7737 (1997); Roper and Mose (1994) C22L 43,911 43,216 231 E C18L VAR (73 a) 98,77							G9L CPV (212 aa)	99 1/212	
Allow Autor Autor Autor Kinase 2, VPK2, regulation of virion morphogenesis F10L VAC (438 aa) 98,9433 (91,438) Traktman et al. (1995); Wang and Shuman (1995); Betakowa et al. (1999) C17L 39,110 38,046 354 E C15L VAR (354 aa) 93,6/354 (101, CPV (438 aa) 97,2/354 (103,64 aa) Golini and Kates (1984) C18L 41,061 39,154 635 E-L Actin tail formation C16L VAR (635 aa) 97,2/354 (111, CPV (634 aa) 97,2/354 (112, CPV (634 aa) 97,2/354 (1997); Roper and Mose (121, CPV (634 aa) 97,2/354 (1997); Roper and Mose (1997); Rope	C16I	38 023	36 704	439	I	Serine/threonine protein	C14L VAR (439 aa)	98 4/437	Lin and Broyles (1994)
Of virion morphogenesis G10L CPV (439 a) 99.1439 Wang and Shuman (1995); Betakova <i>et al.</i> (1996); Back <i>et al.</i> (1991); Betakova <i>et al.</i> (1997); Sung <i>et al.</i> (2000) C19L 42,222 41,104 372 L Major envelope antigen of EV, wrapping of IMV to F13L VAC (372 a) 97.2736 Colini and Kates (1984); Back <i>et al.</i> (1997); Sung <i>et al.</i> (0.02	00,020	00,701	100	-	kinase 2. VPK2, regulation	E10L VAC (439 aa)	98.9/439	Traktman <i>et al.</i> (1995):
C17L 39,110 38,046 354 E C15L <var (354="" as)<br="">F11L<vac (364="" as)<="" td=""> 93,5/354 Golini and Kates (1984) C17L 39,110 38,046 354 E C15L<var (354="" as)<="" td=""> 97,2/354 Golini and Kates (1984) C18L 41,061 39,154 635 E-L Actin tail formation C15L<var (354="" as)<="" td=""> 97,2/354 Zhang et al. (2000) C19L 42,222 41,104 372 L Major envelope antigen of torm IEV, phospholipase 07,1/373 98,7/372 Hirt et al. (1995); Back et al. (1997); Roper and Moss (1999) C20L 42,461 42,220 73 E-L C18L<var (73="" as)<="" td=""> 98,7/372 Hirt et al. (1997); Roper and Moss (1999) C20L 42,461 42,262 73 E-L C18L<var (73="" as)<="" td=""> 98,7/372 Golini and Kates (1984) C21L 43,209 42,733 168 E C18L VAR (161 as) 98,7/373 Golini and Kates (1984) C22L 43,971 43,278 101 L Virion core DNA-binding phosphoprotein F17L VAC (101 as) F17L VAC (101 as) 97,7/37</var></var></var></var></vac></var>						of virion morphogenesis	G10L CPV (439 aa)	99.1/439	Wang and Shuman
C17L 39,110 38,046 354 E C18L VAR (354 aa) 93,5734 Golini and Kates (1984) C18L 41,061 39,154 635 E=L Actin tail formation C18L VAR (354 aa) 97,2734 Thang et al. (2000) C18L 41,061 39,154 635 E=L Actin tail formation C18L VAR (354 aa) 97,2734 Thang et al. (2000) C19L 42,222 41,104 372 L Major envelope antigen of C17L VAR (372 aa) 98,7732 et (1997); Sung et al. (1997); Sung et al. (1997); Roper and Moss D-like C20L 42,461 42,240 73 E=L C18L VAR (73 aa) 98,7732 (1997); Roper and Moss D-like (1914); CV (73 aa) 98,7732 (1914); CV (72 aa) 98,7158									(1995); Betakova <i>et al.</i> (1999)
C18L 41,061 39,154 635 E-L Actin tail formation F11L VAC (354 as) G11L CPV (634 as) F12L VAC (635 as) 95.0/636 97.2/354 Zhang <i>et al.</i> (2000) C19L 42,222 41,104 372 L Major envelope antigen of EEV. wraping of INV to f13L VAC (372 as) 95.0/636 Zhang <i>et al.</i> (2000) C19L 42,222 41,104 372 L Major envelope antigen of EEV. wraping of INV to f13L VAC (372 as) 95.0/636 Hirt <i>et al.</i> (1986); Back <i>et (1997); Stopper al.</i> (1997); Ropper al. C20L 42,461 42,240 73 E-L C18L VAR (73 as) 78.1/73 G10ini and Kates (1984) C21L 43,209 42,733 158 E C18L VAR (73 as) 95.1/758 Golini and Kates (1984) C22L 43,911 43,216 231 E C19L VAR (161 as) 98.0/158 Golini and Kates (1984) C22L 43,973 44,278 101 L Virion core DNA-binding phosphoprotein C18L VAR (101 as) 97.0/231 Golini and Kates (1984) C23R 43,973 44,278 101 L Virion core DNA-	C17L	39,110	38,046	354	Е		C15L VAR (354 aa)	93.5/354	Golini and Kates (1984)
C18L 41,061 39,154 635 E-L Actin tail formation C16L VAR (535 a) F12L VAC (635 a) 97,2/636 (512, CPV (634 a) 98,6/635 C19L 42,222 41,104 372 L Major envelope antigen of form IEV, phospholipase C17L VAR (372 a) 98,7/372 Hirt et al. (1986); Back et al. (1997); Sung et al. C20L 42,461 42,240 73 E-L C18L VAR (373 a) 98,7/372 (1197); Sung et al. C20L 42,461 42,240 73 E-L C18L VAR (73 a) 97,3/73 Golini and Kates (1984) C21L 43,209 42,733 158 E C18L VAR (161 a) 98,1/158 Golini and Kates (1984) C22L 43,911 43,216 231 E C20L VAR (101 a) 95,2/231 Golini and Kates (1984) C22L 43,911 43,216 231 E C20L VAR (101 a) 95,2/231 Golini and Kates (1984) F16L VAC (101 Ba) 97,0/231 Golini and Kates (1984) F14L VAC (718 a) 96,0/231 Golini and Kates (1984) C22L 43,973							F11L VAC (354 aa)	97.2/354	
C18L 41,061 39,154 635 E-L Actin tail formation C16L VAR (635 a) 95,0783 Zhang et al. (2000) C19L 42,222 41,104 372 L Major envelope antigen of EEV, wrapping of IMV to furm IEV, phospholipase C17L VAR (372 a) 97,3732 Hirt et al. (1980); Back et al. (1997); Sung et al. C20L 42,461 42,220 73 E-L C18L VAR (73 a) 98,7732 (1197); Roper and Moss (11990) C20L 42,461 42,240 73 E-L C18L VAR (73 a) 98,7732 (1197); Roper and Moss (11990) C20L 42,461 42,240 73 E-L C18L VAR (73 a) 98,7732 (1197); Roper and Moss (11990) C21L 43,209 42,733 158 E C18L VAR (13 a) 98,673 Golini and Kates (1984) C21L 43,216 231 E C20L VAR (21 a) 96,67231 Golini and Kates (1984) C22L 43,917 44,278 101 L Virion core DNA-binding phosphoprotein C21R VAR (101 a) 94,1/101 Kao and Bauer (1987) F1L 45,714 44,275 479							G11L CPV (354 aa)	97.2/354	
C19L 42,222 41,104 372 L Major envelope antigen of form EV, phospholipase D-like C17L VAR (372 aa) 97.3/372 Hirt et al. (1986); Baek et al. (1997); Sung et al. (1992); Sung et al. (1992); Sung et	C18L	41,061	39,154	635	E-L	Actin tail formation	C16L VAR (635 aa)	95.0/636	Zhang <i>et al.</i> (2000)
G12L CPV (G34 aa) 986.6635 C19L 42.222 41,104 372 L Major envelope antiop of form (EV, phospholipase D-like 97.3/372 Hint <i>et al.</i> (1997); Sung <i>et al.</i> (1997); Sung <i>et al.</i> (1997); Sung <i>et al.</i> (1997); Roper and Moss D-like C20L 42,461 42,240 73 E-L C18L VAR (73 aa) 78.17/3 Golini and Kates (1984) C21L 43,209 42,733 158 E C18L VAR (73 aa) 98.7/37 Golini and Kates (1984) C21L 43,209 42,733 158 E C18L VAR (73 aa) 98.1/158 Golini and Kates (1984) C21L 43,211 43,216 231 E C19U VAR (161 aa) 98.0/153 Golini and Kates (1984) C22L 43,911 43,216 231 E C20U VAR (231 aa) 95.2/231 Golini and Kates (1984) C22L 43,973 44.278 101 L Virion core DNA-binding phosphorptein G16L CPV (231 aa) 95.2/231 Golini and Kates (1984) F1L 45.714 44.275 479 E Poly(A) polymerase, catalytic E1L VAC (479 aa) 94.1/101 Kao and Bauer (1987) F2L <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>F12L VAC (635 aa)</td> <td>97.2/636</td> <td></td>							F12L VAC (635 aa)	97.2/636	
C19L 42,222 41,104 372 L Major envelope antigen of EEV, wrapping of IMV to form IEV, phospholipase D-like C17L VAR (372 aa) 987,7372 Hirt et al. (1986); Baek et al. (1997); Sung et al. (1997); Sung et al. (1994); F16L VAC (189 aa) 98.0/153 Golini and Kates (1984) F16L VAC (189 aa) Golini and Kates (1984) F16L VAC (189 aa) 98.0/153 C22L 43,911 43,216 231 E Virion core DNA-binding phosphoprotein F11 VAR (101 aa) 97.0/021 F1L 44,275 479 E Poly(A) polymerase, catalytic subunit F11 VAR (479 aa) 99.0/479 Gershon et al. (1991) F1L 45,714 44,277 T37 E EVAR (737 aa)							G12L CPV (634 aa)	98.6/635	
C20L 42,461 42,240 73 E-L F13L VAC (372 aa) 98.7/372 al. (1997); Sung et al. (1991) C21L 43,911 43,216 231 E C19L VAR (121 aa) 96.0/101 C22L 43,911 43,278 101 L Virion core DNA-binding phosphoprotein C21C VAR (101 aa) 97.0/231 C23L 43,973 44,278 101 L Virion core DNA-binding phosphoprotein C17R VAR (101 aa) 97.0/231 C23L 43,973 44,274 45,711 737 C21 VAC (17	C19L	42,222	41,104	372	L	Major envelope antigen of	C17L VAR (372 aa)	97.3/372	Hirt <i>et al.</i> (1986); Baek <i>et</i>
form IEV, phospholipase D-like G13L CPV (372 aa) 98.7/372 (1997); Roper and Moss (1990) C20L 42,461 42,240 73 E-L C18L VAR (73 aa) 78.1/73 Golini and Kates (1984) C21L 43,209 42,733 158 E C18L VAR (161 aa) 98.0/153 Golini and Kates (1984) C21L 43,209 42,733 158 E C19L VAR (161 aa) 98.0/153 Golini and Kates (1984) C22L 43,911 43,216 231 E C20L VAR (231 aa) 95.2/231 Golini and Kates (1984) C22L 43,973 44.278 101 L Virion core DNA-binding phosphoprotein C21R VAR (101 aa) 97.0/21 Kao and Bauer (1987) F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic subunit E1L VAC (479 aa) 99.0/479 Gershon <i>et al.</i> (1991) F1L 47,924 45,711 737 E Poly(A) polymerase, catalytic subunit E1L VAC (479 aa) 99.0/479 Gershon <i>et al.</i> (1991) F1L 46,704 46,701 73 E F14 F14 F14 F14 F14 F14						EEV, wrapping of IMV to	F13L VAC (372 aa)	98.7/372	<i>al.</i> (1997); Sung <i>et al.</i>
C20L 42,461 42,240 73 E-L C18L C1L C18L C18R C18R						form IEV, phospholipase D-like	G13L CPV (372 aa)	98.7/372	(1997); Roper and Moss (1999)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C20L	42,461	42,240	73	E-L		C18L VAR (73 aa)	78.1/73	Golini and Kates (1984)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							F14L VAC (73 aa)	97.3/73	
C21L 43,209 42,733 158 E C19L VAR (161 aa) 98.0/153 Golini and Kates (1984) C22L 43,911 43,216 231 E C20L VAR (231 aa) 95.2/231 Golini and Kates (1984) C22L 43,973 44,278 101 L Virion core DNA-binding phosphoprotein C21R VAR (101 aa) 94.1/101 Kao and Bauer (1987) F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic subunit E1L VAR (479 aa) 97.0/231 Gershon et al. (1997) F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic subunit E1L VAR (479 aa) 97.7/479 Gershon et al. (1991) F2L 47,924 45,711 737 F21 CPV (479 aa) 99.0/479 F3L 48,509 48,048 153 E IFN resistance, dsRNA- dependent protein kinase, and 2-5A-synthetase E3L VAC (190 aa) 86.3/153 et al. (1992); Rivas F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa subunit, intermediate stage E4L VAR (259 aa) 98.1/259 Ahn et al. (1990a); Rosales F5R							G14L CPV (73 aa)	98.6/73	
C22L 43,911 43,216 231 E E C20L VAR (231 aa) 95.2/231 Golini and Kates (1984) C23R 43,973 44,278 101 L Virion core DNA-binding phosphoprotein C1R VAR (101 aa) 94.1/101 Kao and Bauer (1987) C11L 45,714 44,275 479 E Poly(A) polymerase, catalytic E1L VAR (101 aa) 97.0/231 Gershon et al. (1991) F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic E1L VAR (101 aa) 96.0/101 Gershon et al. (1991) F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic E1L VAR (479 aa) 99.0/479 F2L 47,924 45,711 737 F E2L VAR (737 aa) 97.7737 F3L 48,509 48,048 153 E IFN resistance, dsRNA- E3L VAR (190 aa) 86.3/153 Chang et al. (1992); Rivas and 2-5A-synthetase F4L 49,449 48,670 259 E-L RNA polymerase; 30-KDa E4L VAR (259 aa) 96.5/259 et al. (1992); Rivas and 2-5A-synthetase F5R 50,477 52,180 567 F<	C21L	43,209	42,733	158	E		C19L VAR (161 aa)	98.0/153	Golini and Kates (1984)
C22L 43,911 43,216 231 E C20L VAR (231 aa) 95.2/231 Golini and Kates (1984) C23R 43,973 44,278 101 L Virion core DNA-binding phosphoprotein C21R VAR (101 aa) 94.1/101 Kao and Bauer (1987) F17R VAC (231 aa) 96.0/101 Grist DPV (101 aa) 94.1/101 Kao and Bauer (1987) F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic subunit E1L VAR (479 aa) 97.7/479 Gershon et al. (1991) F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic subunit E1L VAR (479 aa) 99.0/479 F2L 47,924 45,711 737 E2L VAR (737 aa) 97.7/737 F3L 48,509 48,048 153 E IFN resistance, dsRNA- e3L VAR (190 aa) 86.3/153 et al. (1992); Rivas adependent protein kinase, and 2-5A-synthetase F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa E4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales et al. (1994) F5R 50,477 52,180 567 E-L RNA polymerase, 30-kDa E4L VAR (25							F15L VAC (158 aa)	98.1/158	
C22L 43,911 43,216 231 E C20L VAR (231 aa) 95.2/231 Golini and Kates (1984) C23R 43,973 44,278 101 L Virion core DNA-binding phosphoprotein C21R VAR (101 aa) 97.0/21 F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic subunit E1L VAR (479 aa) 97.7/479 Gershon et al. (1991) F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic subunit E1L VAC (479 aa) 97.7/479 Gershon et al. (1991) F2L 47,924 45,711 737 E E2L VAR (737 aa) 97.7/737 F3L 48,609 48,048 153 E IFN resistance, dsRNA- E3L VAC (190 aa) 86.3/153 et al. (1992); Rivas dependent protein kinase, and 2-5A-synthetase F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa E4L VAC (259 aa) 96.5/259 Ahn et al. (1990a); Rosales subunit, intermediate stage transcription factor, VITF-1 F4L CPV (259 aa) 98.5/259 et al. (1990a); Rosales F5R 50,477 52,180 567 E-L RNA polymerase, 30-kDa subunit, intermediate stage transcription factor, VITF-1<							G15L CPV (158 aa)	98.7/158	
F16L VAC (231 aa) 96.5/231 G16L CPV (231 aa) 96.5/231 G16L CPV (231 aa) 97.0/231 G16L CPV (231 aa) C23R 43,973 44,278 101 L Virion core DNA-binding phosphoprotein C21R VAR (101 aa) 94.1/101 Kao and Bauer (1987) F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic E1L VAR (479 aa) 99.0/479 F2L 47,924 45,711 737 E subunit E1L VAR (173 aa) 97.7/737 F2L 47,924 45,711 737 E IFN resistance, dsRNA- binding, inhibits dsRNA- dependent protein kinase, rE1 CPV (137 aa) 97.7/737 F3L 48,509 48,048 153 E IFN resistance, dsRNA- binding, inhibits dsRNA- dependent protein kinase, rE1 CPV (101 aa) 86.3/153 et al. (1992); Rivas F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa E4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales F5R 50,477 52,180 567 En RNA polymerase, 30-kDa E4L VAR (259 aa) 98.1/259 et al. (1990a); Rosales F6R 52,262 52,762 166 L Soluble myristy	C22L	43,911	43,216	231	E		C20L VAR (231 aa)	95.2/231	Golini and Kates (1984)
C23R 43,973 44,278 101 L Virion core DNA-binding phosphoprotein C21R VAR (101 aa) 94.1/101 Kao and Bauer (1987) F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic subunit E1L VAR (479 aa) 97.0/101 F2L 47,924 45,711 737 F37 Gershon et al. (1991) F2L 47,924 45,711 737 E2L VAR (737 aa) 99.0/479 F3L 48,509 48,048 153 E IFN resistance, dsRNA- dependent protein kinase, and 2-5A-synthetase E3L VAR (190 aa) 86.3/153 Chang et al. (1992); Rivas dependent protein kinase, and 2-5A-synthetase F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa subunit, intermediate stage E4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales et al. (1994) F5R 50,477 52,180 567 E6R VAR (567 aa) 98.9/567 F6R 52,262 52,762 166 L Soluble myristylated protein F7R VAR (76 aa) 96.7/20 Martin et al. (1997) E7R VAR (76 aa) 94.0/166							F16L VAC (231 aa)	96.5/231	
C23R 43,973 44,278 101 L Virion core DNA-binding phosphoprotein C21R VAR (101 aa) 94,1/101 Kao and Bauer (1987) F1/L 45,714 44,275 479 E Poly(A) polymerase, catalytic subunit E1L VAR (479 aa) 97.7/479 Gershon et al. (1991) F1/L 45,714 44,275 479 E Poly(A) polymerase, catalytic subunit E1L VAR (479 aa) 97.7/479 Gershon et al. (1991) F2L 47,924 45,711 737 E2L VAR (737 aa) 97.7/737 E2L VAR (737 aa) 98.0/737 F3L 48,509 48,048 153 E IFN resistance, dsRNA- E3L VAR (190 aa) 86.3/153 Chang et al. (1992); Rivas dependent protein kinase, and 2-5A-synthetase F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa subunit, intermediate stage subunit, intermediate stage E4L VAR (259 aa) 98.5/259 Ahn et al. (1990a); Rosales et al. (1994) F5R 50,477 52,180 567 E-L RNA polymerase, 30-kDa subunit, intermediate stage E4L VAC (259 aa) 98.1/250 Ahn et al. (1994) F6R 52,262 52,762 166 L Soluble myristylated							G16L CPV (231 aa)	97.0/231	
F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic subunit F1/R VAC (101 aa) 96.0/101 F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic subunit E1L VAR (479 aa) 99.0/479 F2L 47,924 45,711 737 F3L 45,711 737 F3L F3L 48,509 48,048 153 E IFN resistance, dsRNA- binding, inhibits dsRNA- dependent protein kinase, and 2-5A-synthetase F3L VAR (190 aa) 86.6/153 Chang et al. (1992); Rivas F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa E4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales F5R 50,477 52,180 567 E Soluble myristylated protein F4L VAR (567 aa) 97.2/567 F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (166 aa) 94.0/166	C23R	43,973	44,278	101	L	Virion core DNA-binding	C21R VAR (101 aa)	94.1/101	Kao and Bauer (1987)
F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic E1L VAR (479 aa) 97.7/479 Gershon et al. (1991) F1L 45,714 44,275 479 E Poly(A) polymerase, catalytic E1L VAR (479 aa) 99.0/479 F2L 47,924 45,711 737 E1L VAC (479 aa) 99.0/479 F2L 47,924 45,711 737 E2L VAC (737 aa) 97.7/737 F3L 48,509 48,048 153 E IFN resistance, dsRNA- E3L VAC (190 aa) 86.3/153 et al. (1992); Rivas binding, inhibits dsRNA- E3L VAC (190 aa) 86.3/153 et al. (1992); Rivas F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa E4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales subunit, intermediate stage subunit, intermediate stage E4L VAR (259 aa) 98.5/259 et al. (1994) F5R 60,477 52,180 567 F6R VAC (567 aa) 98.9/567 F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (76 aa) 98.6/760						phosphoprotein	F1/R VAC (101 aa)	97.0/101	
FTL 45,714 44,275 479 E Poly(A) polymerase, datalytic ETL VAC (479 aa) 97.7/479 Gershoft et al. (1991) subunit E1L VAC (479 aa) 99.0/479 F1L CPV (479 aa) 99.0/479 F2L 47,924 45,711 737 E2L VAR (737 aa) 97.7/737 F3L 48,509 48,048 153 E IFN resistance, dsRNA- E3L VAR (190 aa) 86.6/153 Chang et al. (1992); Rivas F3L 48,670 259 E-L RNA polymerase, 30-kDa E4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa E4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales rbrn subunit, intermediate stage E4L VAC (259 aa) 98.5/259 et al. (1994) rbrn transcription factor, VITF-1 F4L CPV (259 aa) 98.9/567 F6R VAR (567 aa) 98.9/567 F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAC (166 aa) 94.0/166 F7R CPV (166 aa) 94.6/166 F7R CPV (166 aa) 94.6/166 94.6/166<	E 11	45 714	44.075	470	F			96.0/101	C_{archar} at $c/(1001)$
F2L 47,924 45,711 737 F1L CPV (479 aa) 99.4/479 F2L 47,924 45,711 737 E2L VAR (737 aa) 97.7/737 F3L 48,509 48,048 153 E IFN resistance, dsRNA- E3L VAR (190 aa) 85.6/153 Chang et al. (1992); Rivas F3L 48,509 48,048 153 E IFN resistance, dsRNA- E3L VAR (190 aa) 86.3/153 et al. (1992); Rivas and 2-5A-synthetase and 2-5A-synthetase F4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales subunit, intermediate stage subunit, intermediate stage E4L VAR (259 aa) 98.5/259 et al. (1994) F5R 50,477 52,180 567 E6R VAR (567 aa) 98.9/567 F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (76 aa) 98.7/60 Martin et al. (1997) E7R VAR (166 aa) 94.0/166 F7R CPV (166 aa) 94.0/166 F7R CPV (166 aa) 94.0/166	FIL	45,714	44,275	479	E	Poly(A) polymerase, catalytic	EIL VAR (479 aa)	97.7/479	Gershon et al. (1991)
F2L 47,924 45,711 737 F2L F2L VAR (737 aa) 97.7/737 F2L VAR (737 aa) 97.7/737 F2L VAR (737 aa) 98.0/737 F3L 48,509 48,048 153 E IFN resistance, dsRNA- E3L VAR (190 aa) 85.6/153 Chang et al. (1992); Rivas F3L 48,509 48,048 153 E IFN resistance, dsRNA- E3L VAR (190 aa) 86.3/153 et al. (1992); Rivas F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa E4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales subunit, intermediate stage subunit, intermediate stage E4L VAR (259 aa) 98.5/259 et al. (1994) F5R 50,477 52,180 567 E6R VAR (567 aa) 98.9/567 F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (76 aa) 86.7/60 Martin et al. (1997) E7R VAR (166 aa) 94.0/166 F7R CPV (166 aa) 94.0/166 F7R CPV (166 aa) 94.0/166						Subunit	EIL VAC (479 aa)	99.0/479	
F2L 47,324 43,711 737 F31	E2I	17 021	45 711	727			FIL OFV (479 aa) F2L V/AP (727 aa)	99.4/479	
F3L 48,509 48,048 153 E IFN resistance, dsRNA- binding, inhibits dsRNA- dependent protein kinase, and 2-5A-synthetase E3L VAR (190 aa) 85.6/153 Chang et al. (1992); Rivas F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa subunit, intermediate stage E4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales F5R 50,477 52,180 567 E6R VAR (567 aa) 97.2/567 E6R VAC (567 aa) 98.9/567 F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAC (166 aa) 94.0/166 F7R CPV (166 aa) 94.0/166	IZL	47,324	40,711	131			E2L VAR (737 aa) E2L VAC (737 aa)	98.0/737	
F3L 48,509 48,048 153 E IFN resistance, dsRNA- binding, inhibits dsRNA- dependent protein kinase, and 2-5A-synthetase E3L VAR (190 aa) 85.6/153 Chang et al. (1992); Rivas F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa subunit, intermediate stage E4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales F5R 50,477 52,180 567 EAL VAR (567 aa) 97.2/567 F6R 52,262 52,762 166 L Soluble myristylated protein EAR VAR (76 aa) 98.9/567 F7R 52,262 52,762 166 L Soluble myristylated protein EAR VAR (76 aa) 94.0/166							E21 CPV (737 aa)	97 8/737	
F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa E4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa E4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales F5R 50,477 52,180 567 E6R VAR (567 aa) 97.2/567 F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (76 aa) 86.7/60 Martin et al. (1997) F7R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (76 aa) 94.0/166 F7R CPV (166 aa) 94.6/166 94.6/166 57R CPV (166 aa) 94.6/166	F3I	48 509	48 048	153	F	IEN resistance dsRNA-	F3L VAB (190 aa)	85.6/153	Chang <i>et al.</i> (1992) [.] Bivas
dependent protein kinase, and 2-5A-synthetase F3L CPV (190 aa) 86.3/153 F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa subunit, intermediate stage E4L VAR (259 aa) 96.5/259 Ahn et al. (1990a); Rosales F5R 50,477 52,180 567 E6R VAR (567 aa) 97.2/567 F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (76 aa) 86.7/60 Martin et al. (1997) F7R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (76 aa) 94.0/166		10,000	10,010		-	binding, inhibits dsRNA-	E3L VAC (190 aa)	86.3/153	<i>et al.</i> (1998)
F4L 49,449 48,670 259 E-L RNA polymerase, 30-kDa E4L VAR (259 aa) 96.5/259 Ahn <i>et al.</i> (1990a); Rosales subunit, intermediate stage E4L VAR (259 aa) 98.5/259 <i>et al.</i> (1990a); Rosales F5R 50,477 52,180 567 F4L CPV (259 aa) 98.1/259 F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (76 aa) 98.9/567 F7R VAC (166 aa) 94.0/166 F7R CPV (166 aa) 94.0/166						dependent protein kinase,	F3L CPV (190 aa)	86.3/153	
File 10,110 10,010	F41	49 449	48 670	259	F-I	BNA polymerase 30-kDa	F41 VAR (259 aa)	96 5/250	Ahn et al (1990a). Rosales
F5R 50,477 52,180 567 F4L CPV (259 aa) 98.1/259 F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (76 aa) 94.0/166 F7R CPV (166 aa) 94.0/166 94.0/166 94.0/166 F7R CPV (166 aa) 94.0/166	, .L	10,440	10,070	200		subunit, intermediate stage	E4L VAC (259 aa)	98.5/259	<i>et al.</i> (1994)
F5R 50,477 52,180 567 E6R VAR (567 aa) 97.2/567 F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (76 aa) 86.7/60 Martin <i>et al.</i> (1997) F7R F7R CPV (166 aa) 94.0/166 F7R CPV (166 aa) 94.6/166						transcription factor VITE-1	F4L CPV (259 aa)	98 1/259	
F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (76 aa) 98.9/567 F7R VAR (76 aa) 94.0/166 94.0/166	F5R	50,477	52,180	567			E6R VAR (567 aa)	97.2/567	
F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (76 aa) 94.0/166 E7R VAC (166 aa) 94.0/166 F7R CPV (166 aa) 94.6/166		50,177	32,100	007			E6R VAC (567 aa)	98,9/567	
F6R 52,262 52,762 166 L Soluble myristylated protein E7R VAR (76 aa) 86.7/60 Martin <i>et al.</i> (1997) E7R VAC (166 aa) 94.0/166 F7R CPV (166 aa) 94.6/166							F6R CPV (567 aa)	98,9/567	
E7R VAC (166 aa) 94.0/166 F7R CPV (166 aa) 94.6/166	F6R	52,262	52.762	166	L	Soluble myristylated protein	E7R VAR (76 aa)	86.7/60	Martin <i>et al.</i> (1997)
F7R CPV (166 aa) 94.6/166							E7R VAC (166 aa)	94.0/166	
							F7R CPV (166 aa)	94.6/166	

	Trans	slation				VAR-IND,		
ORF	Start	Stop	Size (aa)ª	Туре⁵	Function/feature(s)°	VAC-COP, and CPV-GRI isologs	Identity ^d	References
F7R	52,862	53,683	273			E8R VAR (273 aa) E8R VAC (273 aa)	97.1/273 98.5/273	
F8L	56,711	53,691	1006	E	DNA polymerase	F8R CPV (273 aa) E9L VAR (1005 aa) E9L VAC (1006 aa)	98.5/273 97.7/1006 98.7/1006	Earl <i>et al.</i> (1986)
F9R	56,743	57,030	95	L	Protein disulfide bond-	E10R VAR (95 aa)	98.6/1006 94.7/95	Senkevich et al. (2000)
F10L	57,414	57,025	129	L	forming enzyme Virion core protein	E10R VAC (95 aa) E11L VAR (129 aa)	96.8/95 96.1/129	Wang and Shuman (1996)
Q1L	59,398	57,401	665	Е		E11L VAC (129 aa) Q1L VAR (666 aa)	97.7/129 93.1/666	
Q2L	59,771	59,445	108	L	Virion-associated	O1L VAC (666 aa) Q2L VAR (108 aa)	97.4/666 96.3/108	Ahn and Moss (1992a);
I1L	60,856	59,918	312	L	glutaredoxin Virosomal protein essential for virus multiplication	O2L VAC (108 aa) K1L VAR (312 aa) I1L VAC (312 aa)	98.1/108 96.8/312 99.4/312	Rajagopal <i>et al.</i> (1995) Ryazankina <i>et al.</i> (1993); Schmitt and
I2L	61,084	60,863	73	L		K2L VAR (73 aa) I2L VAC (73 aa)	98.6/73 98.6/73	Stunnenberg (1988) Schmitt and Stunnenberg (1988)
I3L	61,894	61,085	269	E-I	ssDNA-binding P-protein interacts with R2 subunit of ribonucleotide reductase	K3L VAR (269 aa) I3L VAC (269 aa)	98.1/269 98.1/269	Davis and Mathews (1993); Rochester and Traktman (1998)
14L	64,291	61,976	771	Е	Ribonucleotide reductase, large subunit R1	K4L VAR (771 aa) I4L VAC (771 aa)	97.7/771 98 7/771	Tengelsen et al. (1988)
15L	64,559	64,320	79	L	IMV surface membrane	K5L VAR (79 aa)	93.7/79 94 9/79	Takahashi <i>et al.</i> (1994)
16L	65,726	64,578	382		protoin	K6L VAR (382 aa)	97.6/382	
17L	66,990	65,719	423	L	Virion core protein, DNA topoisomeras II homolog	K7L VAR (423 aa)	98.8/423 99.1/423	Kane and Shuman (1993)
I8R	66,996	69,026	676	E-L	Nucleoside triphosphate phosphohydrolase II, NPH-	K8R VAR (676 aa) I8R VAC (676 aa)	96.7/676 98.1/676	Shuman (1992); Bayliss and Smith (1996); Gross
G1L	70,805	69,030	591	L	Putative proteinase	H1L VAR (591 aa)	97.1/591	Whitehead and Hruby
G2L	71,137	70,802	111	Е		H2L VAC (111 aa)	95.5/111	Meis and Condit (1991)
G3R	71,131	71,793	220	L		H3R VAC (111 aa)	98.2/111 96.8/220	Meis and Condit (1991)
G4L	72,137	71,763	124	L	Virion-associated glutaredoxin, required for disulfide bonds and assembly	G2R VAC (220 aa) H4L VAR (124 aa) G4L VAC (124 aa)	98.6/220 99.2/124 99.2/124	Gvakharia <i>et al.</i> (1996); White <i>et al.</i> (2000)
G5R	72,140	73,444	434	E-L		H5R VAR (434 aa)	96.3/434 98.2/434	Meis and Condit (1991)
G6R	73,452	73,643	63	E-L	RNA polymerase, 7-kDa	H5.5R VAR (63 aa) — VAC	96.8/63 	Amegadzie <i>et al.</i> (1992)
G7R	73,643	74,140	165		oubunit	H6R VAR (165 aa)	94.5/165 93.9/165	
G8L	75,220	74,105	371		Virion protein	H7L VAR (371 aa)	98.4/371 98.7/371	Takahashi <i>et al.</i> (1994)
G9R	75,251	76,033	260	I	Late gene transcription	H8R VAR (260 aa)	99.6/260	Keck et al. (1990)
G10R	76,053	77,075	340	L	Myristylated protein	H9R VAR (340 aa)	97.9/340	Martin <i>et al.</i> (1997)
M1R M2R	77,076 77,860	77,828 78,138	250 92	L	Myristylated IMV surface membrane protein	M1R VAR (250 aa) L1R VAC (250 aa) M2R VAR (87 aa)	99.2/250 98.8/250 96.3/82 98.8/82	Ravanello and Hruby (1994)

TABLE 1 — Continued

	Trans	alation				VAR-IND,		
ORF	Start	Stop	Size (aa)ª	Type⁵	Function/feature(s)°	VAC-COP, and CPV-GRI isologs	Identity ^d	References
M3L	79,148	78,114	344			M3L VAR (349 aa)	95.1/349 96.6/350	
M4R	79,173	79,928	251	L	Virion core protein, ssDNA binding, stimulation of I8R	M4R VAR (251 aa) L4R VAC (251 aa)	98.4/251 98.8/251	Yang <i>et al.</i> (1988); Bayliss <i>et al.</i> (1996)
M5R	79,938	80,324	128		nencase activity	M5R VAR (128 aa) L5R VAC (128 aa)	99.2/128 99.2/128	
L1R	80,281	80,739	152			L1R VAR (159 aa) J1R VAC (153 aa)	97.4/152 96.7/152	
L2R	80,759	81,292	177	Е	Thymidine kinase	L2R VAR (177 aa) J2R VAC (177 aa)	95.5/177 96.6/177	Weir and Moss (1983)
L3R	81,358	82,359	333	E	Poly(A) pol stimulatory subunit, cap-specific mRNA (nucleoside-O ^{2'} -)- mothyltrappforaso	L3R VAR (333 aa) J3R VAC (333 aa)	97.9/333 98.8/333	Gershon <i>et al.</i> (1991); Schnierle <i>et al.</i> (1992)
L4R	82,274	82,831	185	Е	RNA pol 22-kDa subunit	L4R VAR (185 aa) J4R VAC (185 aa)	97.8/185 100/185	Broyles and Moss (1986)
L5L	83,292	82,891	133	L	Essential for virus multiplication	L5L VAR (133 aa) J5L VAC (133 aa)	100/133 98.5/133	Zajac <i>et al.</i> (1995)
L6R	83,399	87,259	1286	Е	RNA pol 147-kDa subunit	L6R VAR (1286 aa) J6R VAC (1286 aa)	98.6/1286 98.6/1286	Broyles and Moss (1986)
H1L	87,771	87,256	171	L	Tyrosine/serine protein phosphatase, blocks IFN-γ signal transduction	I1L VAR (171 aa) H1L VAC (171 aa)	98.8/171 98.8/171	Guan <i>et al.</i> (1991); Najarro <i>et al.</i> (2001)
H2R	87,785	88,354	189			I2R VAR (189 aa) H2R VAC (189 aa)	100/189 98.9/189	
H3L	89,332	88,358	324	L	IMV heparan-binding surface membrane protein	I3L VAR (325 aa) H3L VAC (324 aa)	93.2/3239 3.8/324	Chertov <i>et al.</i> (1991); Lin <i>et al.</i> (2000); da Fonseca <i>et al.</i> (2000)
H4L	91,720	89,333	795	L	RNA pol-associated protein, RAP 94, provides specificity for early promoters	I4L VAR (795 aa) H4L VAC (795 aa)	97.0/795 98.1/795	Ahn and Moss (1992b); Kane and Shuman (1992); Zhang <i>et al.</i> (1994)
H5R	91,905	92,546	213	E-L	Virosome-associated, late gene transcription factor, VLTE-4 Ca ²⁺ -binding motif	I5R VAR (221 aa) H5R VAC (203 aa)	92.8/222 93.9/213	Kovacs and Moss (1996); Shchelkunov <i>et al.</i> (1993c)
H6R	92,547	93,491	314	Е	DNA topoisomerase	I6R VAR (314 aa) H6R VAC (314 aa)	98.7/314 99.7/314	Shuman and Moss (1987)
H7R	93,529	93,969	146	L		I7R VAR (146 aa) H7R VAC (146 aa)	95.2/146 97.3/146	Rosel <i>et al.</i> (1986)
E1R	94,013	96,550	845	E	mRNA capping enzyme large subunit; RNA 5' triphosphatase and RNA guanylyl transferase activities	F1R VAR (844 aa) D1R VAC (844 aa)	98.3/845 98.6/845	Morgan <i>et al.</i> (1984); Shuman and Morham (1990)
E2L	96,949	96,509	146	E-L	Virion core protein	F2L VAR (146 aa) D2L VAC (146 aa)	97.9/146 98.6/146	Dyster and Niles (1991)
E3R	96,942	97,643	233	L	Virion core protein	F3R VAR (237 aa) D3R VAC (237 aa)	94.9/237 96.6/237	Dyster and Niles (1991)
E4R	97,643	98,299	218	E	Uracil DNA glycosylase required for DNA replication	F4R VAR (218 aa) D4R VAC (218 aa)	96.8/218 98.6/218	Upton <i>et al.</i> (1993); Stuart <i>et al.</i> (1993)
E5R	98,331	100,688	785	E-L	Nucleic acid independent nucleoside triphosphatase, required for DNA replication	F5R VAR (785 aa) D5R VAC (785 aa)	98.5/785 99.5/785	Evans <i>et al.</i> (1995)
E6R	100,728	102,641	637	L	Early transcription factor, VETF, small subunit	F6R VAR (637 aa) D6R VAC (637 aa)	99.2/637 99.7/637	Gershon and Moss (1990); Broyles and Fesler (1990)
E7R	102,668	103,153	161	E	RNA pol 18-kDa subunit	F7R VAR (161 aa) D7R VAC (161 aa)	96.9/161 96.9/161	Ahn <i>et al.</i> (1990b)

MONKEYPOX VIRUS GENOME

TABLE 1 Continued

	Translation					VAR-IND,		
ORF	Start	Stop	Size (aa)ª	Туре	Function/feature(s) ^c	VAC-COP, and CPV-GRI isologs	Identity ^d	References
E8L	104,030	103,116	304	L	IMV surface membrane 32 kDa protein, binds cell surface chondroitin sulfate, IMV adsorption to cell	F8L VAR (304 aa) D8L VAC (304 aa)	92.8/304 94.7/304	Niles and Seto (1988); Maa <i>et al.</i> (1990); Hsiao <i>et al.</i> (1999)
E9R	104,072	104,713	213	Е	surface Mut-like	F9R VAR (213 aa)	97.2/213	Koonin (1993); Lee-Chen
E10R	104,710	105,456	248	L	Down regulation of gene expression, Mut-like	F10R VAC (213 aa) D10R VAC (248 aa)	98.0/248 98.0/248	Shors <i>et al.</i> (1990); Koonin (1993); Lee-Chen <i>et al.</i> (1988)
E11L	107,352	105,457	631	L	Nucleoside triphosphate phosphohydrolase I, NPH I, DNA-dependent ATPase, early gene transcription termination	N1L VAR (631 aa) D11L VAC (631 aa)	98.1/631 98.6/631	Rodriguez <i>et al.</i> (1986); Broyles and Moss (1987); Christen <i>et al.</i> (1998)
E12L	108,250	107,387	287	E-L	mRNA capping enzyme small subunit, mRNA (guanine- N ⁷ -)-methyl transferase	N2L VAR (287 aa) D12L VAC (287 aa)	98.6/287 99.0/287	Niles <i>et al.</i> (1989); Shuman and Morham (1990)
E13L	109,936	108,281	551	L	Needed for immature IMV	N3L VAR (551 aa)	98.9/551	Zhang and Moss (1992)
A1L	110,413	109,961	150	Ι	surface membrane Late gene transcription factor, VLTF-2	D13L VAC (551 aa) A1L VAR (150 aa) A1L VAC (150 aa)	98.9/551 100/150 98.7/150	Keck <i>et al.</i> (1990, 1993b)
A2L	111,108	110,434	224	Ι	Late gene transcription	A2L VAR (224 aa)	99.1/224	Keck <i>et al.</i> (1990, 1993a)
A3L	111,338	111,105	77		factor, VLTF-3, zinc binding	A2L VAC (224 aa) A2.5L VAR (76 aa) — VAC	99.1/224 88.3/77 —	
A4L	113,287	111,353	644	L	Major virion core protein p4b	A3L VAR (644 aa)	98.6/644	Rosel and Moss (1985)
A5L	114,185	113,340	281	L	39-kDa immunodominant	A3L VAC (644 aa) A4L VAR (271 aa) A4L VAC (281 aa)	99.1/644 87.6/282 95.0/281	Maa and Esteban (1987); Williams <i>et al.</i> (1999)
A6R	114,223	114,708	161	E-L	RNA pol 22 and 21 kDa	A5R VAR (164 aa)	97.0/164	Ahn <i>et al.</i> (1992)
A7L	115,823	114,705	372	L	subunits	A5R VAC (164 aa) A6L VAR (372 aa)	97.6/164 98.4/372	Weinrich and Hruby (1986)
A8L	117,979	115,847	710	L	Early transcription factor, VETF, large subunit,	A7L VAR (710 aa) A7L VAC (710 aa) A7L VAC (710 aa)	97.2/710 98.3/710	Gershon and Moss (1990); Hu <i>et al.</i> (1998)
A9R	118,033	118,911	292	E	Intermediate transcription factor, VITF-3, 34-kDa	A8R VAR (288 aa) A8R VAC (288 aa)	98.3/288 98.6/288	Sanz and Moss (1999)
A10L	119,194	118,892	100		Suburnt	A9L VAR (95 aa)	94.8/97	
A11L	121.870	119.195	891	L	Maior virion core protein p4a	A9L VAC (99 aa) A10L VAR (892 aa)	97.0/100 97.5/892	Van Meir and Wittek
A12R	121,885	122,841	318			A10L VAC (891 aa) A11R VAR (319 aa)	97.1/891 98.4/319	(1988)
A13L	123,415	122,843	190	L	Virion core protein	A11R VAC (318 aa) A12L VAR (189 aa)	99.4/318 98.4/190	Whitehead and Hruby
A14L	123,651	123,439	70	L	IMV inner and outer	A12L VAC (192 aa) A13L VAR (68 aa)	96.9/192 88.4/69	(1994) Takahashi <i>et al.</i> (1994);
A15I	124 029	123 757	90	I	membrane protein	A13L VAC (70 aa)	92.8/69 97.8/90	Salmons <i>et al.</i> (1997) Takabashi <i>et al.</i> (1994):
AIUL	124,023	120,707	50	L		A14L VAC (90 aa)	100/90	Salmons <i>et al.</i> (1997)
A16L	124,481	124,197	94			A15L VAR (94 aa) A15L VAC (94 aa)	96.8/94 98.9/94	
A17L	125,598	124,465	377	L	Soluble myristylated protein	A16L VAR (377 aa) A16L VAC (378 aa)	95.8/377 96.3/378	Martin <i>et al.</i> (1997)
A18L	126,215	125,601	204	L	IMV surface membrane protein, early function in virion morphogenesis	A17L VAR (203 aa) A17L VAC (203 aa)	97.1/204 97.1/204	lchihashi <i>et al.</i> (1994); Rodriguez <i>et al.</i> (1995); Wolffe <i>et al.</i> (1996)

TABLE	1-	Continued
-------	----	-----------

	Trans	lation				VAR-IND,		
ORF	Start	Stop	Size (aa)ª	Туре⁵	Function/feature(s)°	VAC-COP, and CPV-GRI isologs	Identity ^d	References
A19R	126,230	127,708	492	E-L	DNA helicase, postreplicative negative transcription	A18R VAR (493 aa) A18R VAC (493 aa)	95.3/493 96.1/493	Simpson and Condit (1995); Xiang <i>et al.</i>
A20L	127,922	127,689	77		elongation lactor	A19L VAR (76 aa)	93.5/77	(1996)
A21L	128,270	127,923	115			A19L VAC (77 aa) A20L VAR (117 aa)	95.7/117	
A22R	128,269	129,549	426	E	Processivity factor for viral	A21L VAC (117 aa) A21R VAR (426 aa)	97.4/117 96.7/426	Ishii and Moss (2001);
A23R	129,479	130,042	187			A22R VAR (187 aa)	95.2/187	
A24R	130,062	131,210	382	E	Intermediate transcription factor, VITF-3, 45-kDa	A22R VAC (176 aa) A23R VAR (382 aa) A23R VAC (382 aa)	98.8/173 97.9/382 98.7/382	Sanz and Moss (1999)
A25R	131,207	134,701	1164	E-L	RNA pol 132-kDa subunit	A24R VAR (1164 aa) A24R VAC (1164 aa)	98.5/1163 98.8/1164	Hooda-Dhingra <i>et al.</i> (1990); Amegadzie <i>et al.</i> (1991b)
A26L	135,700	135,473	75			— VAR — VAC	_	
A27L	137,905	135,815	696	L	N-terminal of A-type inclusion body protein of CPV	A28L VAR (702 aa) — VAC	93.9/691	Funahashi <i>et al.</i> (1988); Shchelkunov <i>et al.</i> (1994)
A28L	139,513	137,951	520	L	Major component of IMV surface tubules, p4c	A29L VAR (498 aa) A26L VAC (322 aa) A27L CPV (518 aa)	89.8/520 92.9/212 95.8/520	Sarov and Joklik (1972)
A29L	139,896	139,564	110	L	IMV surface membrane 14- kDa fusion protein, binds	A30L VAR (110 aa) A27L VAC (110 aa) A28L CPV (110 aa)	93.6/110 93.6/110 95.5/110	Rodriguez and Esteban (1987); Chung <i>et al.</i> (1998)
A30L	140,337	139,897	146			A31L VAR (146 aa) A28L VAC (146 aa)	96.6/146 95.9/146	(1000)
A31L	141,255	140,338	305	E	RNA pol 35-kDa subunit	A32L VAR (305 aa) A32L VAR (305 aa) A29L VAC (305 aa)	95.7/305 98.0/305	Amegadzie <i>et al.</i> (1991a)
A32L	141,451	141,218	77			A30L VAR (77 aa) A30L VAC (77 aa)	96.1/77 96.1/77	
A33R	141,611	142,039	142			A31E CPV (77 aa) A34R VAR (140 aa) A31R VAC (124 aa)	95.8/142 86.6/142	
A34L	142,908	142,006	300	E-L	DNA packaging into virion, NTP-binding motif A	A32R CPV (145 aa) A35L VAR (270 aa) A32L VAC (300 aa) A33L CPV (300 aa)	96.6/145 97.8/270 98.0/300 99.0/300	Koonin (1993); Cassetti <i>et</i> <i>al.</i> (1998)
A35R	142,936	143,481	181	L	EEV envelope glycoprotein, needed for formation of actin-containing microvilli and cell-to-cell spread	A36R VAR (184 aa) A33R VAC (185 aa) A34R CPV (185 aa)	92.8/180 96.1/180 96.1/180	Roper <i>et al.</i> (1996, 1998)
A36R	143,486	143,992	168	L	EV envelope glycoprotein, lectin-like, required for infectivity of EEV, formation of actin-containing microvilli, and cell-to-cell spread	A37R VAR (168 aa) A34R VAC (168 aa) A35R CPV (168 aa)	95.8/168 95.2/168 98.2/168	Blasco <i>et al.</i> (1993); McIntosh and Smith (1996); Wolffe <i>et al.</i> (1997)
A37R	144,036	144,566	176			A38R VAR (60 aa) A35R VAC (176 aa) A36B CPV (176 aa)	91.7/60 97.7/176 98.3/176	
A38R	144,611	145,249	212	E-L	IEV but not CEV envelope protein, tyrosine phosphorylated for actin tail formation	A39R VAR (216 aa) A36R VAC (221 aa) A37R CPV (223 aa)	91.7/204 94.6/204 95.1/204	Parkinson and Smith (1994); Wolffe <i>et al.</i> (1998); Frischknecht <i>et al.</i> (1999); van Eijl <i>et al.</i> (2000)

	Trans	lation				VAR-IND,		
ORF	Start	Stop	Size (aa)ª	Туре⁵	Function/feature(s)°	VAC-COP, and CPV-GRI isologs	Identity ^d	References
A39R	145,363	146,169	268			A40R VAR (68 aa)	89.6/67	
						A37R VAC (263 aa)	96.2/262	
						A38R CPV (268 aa)	95.9/268	
A40L	147,254	146,421	277		Integral membrane	A41L VAR (277 aa)	95.7/277	Parkinson <i>et al.</i> (1995);
					glycoprotein, Ig-like,	A38L VAC (277 aa)	96.0/277	Sanderson et al. (1996)
					regulates influx of extracellular Ca ²⁺	A40L CPV (277 aa)	99.3/277	
A41L	148,646	147,981	221	E-L	Secreted protein reduces	A46L VAR (218 aa)	91.4/222	Ng <i>et al.</i> (2001)
					influx of inflammatory cells	A41L VAC (219 aa)	94.1/222	
						A43L CPV (219 aa)	94.1/222	
A42R	148,842	149,243	133	L	Profilin-like	A47R VAR (133 aa)	99.2/133	Goebel <i>et al.</i> (1990);
						A42R VAC (133 aa)	97.7/133	Blasco <i>et al.</i> (1991)
						A44L CPV (133 aa)	100/133	
A43R	149,281	149,874	197	E-L	Membrane glycoprotein	A48R VAR (195 aa)	92.9/196	Duncan and Smith (1992)
						A43R VAC (194 aa)	92.9/197	
						A45R CPV (196 aa)	94.4/197	
A44R	149,894	150,118	74			— VAR	_	
						— VAC	—	
						A46R CPV (78 aa)	95.9/73	
A45L	151,252	150,212	346	E	3-β-Hydroxy-delta5-steroid	A49L VAR (210 aa)	94.9/197	Moore and Smith (1992)
					dehydrogenase	A50L VAR (61 aa)	88.1/59	
						A44L VAC (346 aa)	98.3/346	
						A47L CPV (346 aa)	98.8/346	
A46R	151,299	151,676	125	L	Superoxide dismutase-like,	A51R VAR (125 aa)	96.8/125	Goebel <i>et al.</i> (1990);
					virion core protein	A45R VAC (125 aa)	96.0/125	Almazan <i>et al.</i> (2001)
						A48R CPV (125 aa)	98.4/125	
A47R	151,666	152,388	240			A52R VAR (240 aa)	95.8/240	
						A46R VAC (214 aaa)	90.6/203	
						A49R CPV (240 aa)	96.3/240	
A48R	152,404	152,658	84			— VAR	—	
						— VAC	—	
				_		- CPV		
A49R	153,468	154,082	204	E	Thymidylate kinase	J2R VAR (205 aa)	98.5/205	Smith <i>et al.</i> (1989a);
						A48R VAC (204 aa)	99.0/204	Hughes <i>et al.</i> (1991)
	1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	150.010		-	DNA lizzoa	A51R CPV (227 aa)	99.0/204	Karr and Craith (1000);
ASUR	154,648	156,312	554	E	DINA ligase	J4R VAR (552 aa)	96.4/554	Kerr and Smith (1989);
						A50R VAC (552 aa)	97.8/554	Smith <i>et al.</i> (1989b)
	156.066	157 070	224			A53R CPV (552 aa)	97.8/554	
ADIR	100,300	157,370	334			JOR VAR (334 88)	92.2/334	
						ASTR VAC (334 ad) $AEAR ODV (334 ad)$	90.0/334	
R1R	158 318	158 530	70		Kelch-like	ISB VAR (172 aa)	77 4/62	Xue and Cooley (1993)
DIII	100,010	100,000	70		Kelon like	A55B VAC (564 aa)	86 7/60	Shchelkunov et al
						A57B CPV (564 aa)	86 7/60	(1998)
B2R	158 617	159 558	313	F-I	EEV membrane glycoprotein	19B VAB (313 aa)	81 2/319	Shida (1986): Seki <i>et al</i>
0211	100,017	100,000	0.0		hemagalutinin prevents	A56B VAC (315 aa)	93.0/315	(1990): Brown <i>et al</i>
					cell fusion	A58R CPV (314 aa)	91 7/315	(1991)
B3R	160.325	161.224	299	Е	Serine/threonine protein	B1R VAR (300 aa)	93.6/297	Banham and Smith (1992):
		. ,			kinase, essential for DNA	B1R VAC (300 aa)	97.0/298	Lin et al. (1992): Rempel
					replication, intermediate	B1R CPV (300 aa)	97.3/298	and Traktman (1992):
					transcription factor			Kovacs <i>et al.</i> (2001)
B4R	161.299	162.810	503		Schlafen-like	— VAR	_	Schwarz <i>et al.</i> (1998):
-	. ,===	. ,=				B2R VAC (219 aa)	90.7/214	Shchelkunov et al.
						B3R VAC (124 aa)	81.3/123	(2000)
						B2R CPV (503 aa)	89.3/503	
B5R	163,058	164,743	561		Ankyrin-like	B6R VAR (558 aa)	91.8/562	Shchelkunov <i>et al.</i> (1993b,
					-	B4R VAC (558 aa)	93.1/562	1998)
						B3R CPV (558 aa)	94.5/562	

TABLE	1-	Continued
-------	----	-----------

	Translation				VAR-IND,					
ORF	Start	Stop	Size (aa)²	Туре	Function/feature(s) ^c	VAC-COP, and CPV-GRI isologs	Identity ^d	References		
B6R	164,845	165,798	317	E-L	Palmitylated 42-kDa EEV glycoprotein required for efficient cell spread, complement control	B7R VAR (317 aa) B5R VAC (317 aa) B4R CPV (317 aa)	93.0/316 95.9/317 98.4/317	Engelstad and Smith (1992, 1993); Isaacs <i>et al.</i> (1992); Wolffe <i>et al.</i> (1993)		
B7R	165,891	166,421	176		protein-like	B8R VAR (56 aa) B6R VAC (173 aa)	87.0/46 87.6/177			
B8R	166,458	167,006	182			B5R CPV (183 aa) — VAR B7R VAC (182 aa)	96.7/182			
B9R	167,061	167,864	267	E	Secreted IFN- γ binding protein	B6R CPV (182 aa) B9R VAR (266 aa) B8R VAC (272 aa) B7R CPV (271 aa)	96.7/182 90.9/263 97.4/267 97.3/263	Alcami and Smith (1995); Seregin <i>et al.</i> (1996)		
B10R	167,957	168,622	221		Shope fibroma virus T4 protein-like	— VAR B9R VAC (77 aa) B8R CPV (221 aa)		Shchelkunov et al. (1998)		
B11R	169,744	170,592	282	E	Protein kinase-like	B12R VAR (134 aa) B12R VAC (283 aa) B11R CPV (283 aa)	77.5/71 97.2/283 96.1/283	Banham and Smith (1993)		
B12R	170,707	171,741	344	E	Serine protease inhibitor-like, SPI-2, inhibits IL-1 β converting enzyme	B13R VAR (344 aa) B13R VAC (116 aa) B14R VAC (222 aa) B12R CPV (345 aa)	93.6/344 95.6/114 90.5/220 97.1/344	Kotwal and Moss (1989); Ray <i>et al.</i> (1992); Kettle <i>et al.</i> (1997)		
B13R	171,868	172,317	149		VAC B15R	B14R VAR (149 aa) B15R VAC (149 aa) B13R CPV (149 aa)	94.6/149 93.3/149 94.0/149			
B14R	172,403	173,383	326	E	Secreted, IL-1β binding, inhibits virus induced fever	B15R VAR (63 aa) B17R VAR (69 aa) B16R VAC (290 aa) B14R CPV (226 aa)	88.5/61 83.8/68 95.5/290	Spriggs <i>et al.</i> (1992); Alcami and Smith (1992); Alcami and Smith (1996)		
B15L	173,665	173,429	78			B141 CFV (320 aa) B18L VAR (340 aa) B17L VAC (340 aa) B15L CPV (340 aa)	93.3/75 96.0/75 95.9/74	Sinti (1990)		
B16R	174,203	175,261	352	E	Cell surface antigen and secreted IFN-α/β-binding protein	B20R VAR (354 aa) B19R VAC (353 aa) B17R CPV (351 aa)	85.6/353 93.8/353 92.0/351	Ueda <i>et al.</i> (1990); Symons <i>et al.</i> (1995)		
B17R	175,330	177,711	793		Ankyrin-like	B21R VAR (787 aa) B20R VAC (127 aa) B18R CPV (795 aa)	87.9/795 95.9/123 95.9/800	Shchelkunov <i>et al.</i> (1993b, 1998)		
B18R	177,857	178,069	70		Kelch-like	— VAR — VAC B19R CPV (557 aa)	 90.9/55	Shchelkunov et al. (1998)		
B19R	178,963	180,036	357	E	Serine protease inhibitor-like, SPI-1, apoptosis inhibition	B25R VAR (372 aa) C12L VAC (353 aa) B20R CPV (375 aa)	93.0/357 95.2/357 93.9/358	Kotwal and Moss (1989); Smith <i>et al.</i> (1989c)		
B20R	180,215	180,787	190			— VAR — VAC B21R CPV (190 aa)	 			
B21R	181,046	186,685	1879	E	Putative membrane- associated glycoprotein, cadherin-like domain	B26R VAR (1896 aa) — VAC B22R CPV (1933 aa)	85.9/1896 — 92 5/1935	Shchelkunov <i>et al.</i> (1994); Marennikova and Shchelkunov (1998)		
K1R	187,567	187,779	70		Tumor necrosis factor receptor-like	— VAR — VAC K3B CPV (167 aa)	91 9/62	Shchelkunov <i>et al.</i> (1998)		
R1R	188,372	188,689	105			— VAR — VAC S1R CPV (210 aa)				

TABLE 1-	-Continued
----------	------------

	Translation					VAR-IND,				
ORF	Start	Stop	Size (aa)ª	Type ^b	Function/feature(s)°	VAC-COP, and CPV-GRI isologs	Identity ^d	References		
N1R	188,894	189,355	153		VAC B15R-like	— VAR B22R VAC (181 aa) H1R CPV (153 aa)	— 91.5/153 92 8/153			
N2R	189,703	189,924	73		C-terminal part of CPV C3L	- VAR - VAC				
N3R	190,103	190,633	176		CPV C2L	- CPV - VAR - VAC	_ _ _			
N4R*	190,749	192,062	437		CPV C1L, ankyrin-like	- CPV - VAR - VAC	_ _ _			
J1R*	192,219	193,982	587		Ankyrin-like	— CPV G1R VAR (585 aa) B25R VAC (259 aa) B26R VAC (103 aa) B27R VAC (113 aa) H3B CPV (586 aa)		Shchelkunov <i>et al.</i> (1993b)		
J2R*	194,073	195,119	348	E	Secreted TNF-binding protein	G2R VAR (349 aa) B28R VAC (122 aa) H4R CPV (351 aa)	85.1/349 83.5/91 90.3/351	Upton <i>et al.</i> (1991); Shchelkunov <i>et al.</i> (1993a): Hu <i>et al.</i> (1994)		
J3R*	195,248	195,988	246	E-L	Secreted CC-chemokine- binding protein	G3R VAR (253 aa) B29R VAC (244 aa) H5R CPV (255 aa)	83.5/254 86.4/242 86.7/255	Graham <i>et al.</i> (1997); Smith <i>et al.</i> (1997)		

Note. A dash indicates a deletion in the coding sequence of one virus relative to the other. An asterisk denotes ORFs from the inverted terminal repeats of the viral genome. IV, IMV, IEV, CEV, and EEV are immature virion, intracellular mature virion, intracellular enveloped virion, cell-associated extracellular enveloped virion, and extracellular enveloped virion, respectively.

^a Number of deduced amino acids (aa) encoded within an ORF.

^b Expression time of the corresponding VAC genes revealed experimentally is presented. E, early; E–L, early–late; I, intermediate; L, late. Putative expression time presupposed from sequence data is in parentheses.

^c Experimentally revealed functions of viral proteins or homologies based on searching of PIR and SWISS-PROT databases.

^d Values of amino acid sequence identity (in percent) are presented and calculated by FASTA analysis (Pearson and Lipman, 1988) for overlapping regions of homologous ORFs.

ceeded in cloning one of the two complementary, incompletely base-paired hairpin loop strands of MPV-ZAI DNA. Alignment of this sequence with those of other orthopoxviruses indicated considerable conservation and suggested that only the four nucleotides comprising the loop were missing (Fig. 1). Interestingly, the putative telomere resolution sequence of MPV (Fig. 1) is identical to that of VAC and VAR (Merchlinsky, 1990). The region of tandem repeats adjacent to the terminal hairpin is rather short in the MPV-ZAI genome and comprises NR I (85 bp) and NR II (322 bp), separated by two 70-bp repeats, one element of 70 bp, and two elements of 54 bp, located between NR II and the ITR coding sequence (Fig. 2). The organization of this region of MPV-ZAI DNA is most similar to that of VAR-GAR (Fig. 2). However, the terminal regions of all the VAR strains have very short ITRs that lack ORFs and the sets of repeats at the right and left termini differ (Fig. 2) (Massung et al., 1995).

Coding region

Computer-assisted analysis identified the 190 open reading frames (ORFs) containing \geq 60 amino acid resi-

dues listed in Table 1. The corresponding ORFs of VAR-IND, VAC-COP, and CPV-GRI are indicated along with their predicted amino acid lengths. Four ORFs at the left side of the MPV-ZAI genome (Fig. 3A) are located within the ITR and thus have counterparts on the right side of the genome (Fig. 3B). As expected, all genes known to be essential in other orthopoxviruses are present in MPV and occupy the central region of the genome (ORFs C10L to A25R). These ORFs have greater than 90% sequence identity with those of other orthopoxviruses. The majority of species- and strain-specific differences between orthopoxviruses reside in the left and right terminal regions, as can also be seen for MPV-ZAI (Figs. 3A and 3B). MPV-ZAI has no unique genes. On the contrary, MPV-ZAI is missing 25 ORFs that are found in CPV-GRI (Shchelkunov et al., 1998) and 19 potential ORFs calculated for VAR-IND (Shchelkunov et al., 1993d). While the roles for some of these genes remain entirely unknown, they include many that are probably involved in immune evasion, host range, and cell proliferation (Alcami and Koszinowski, 2000; Moss and Shisler, 2001). We previously

FIG. 3. Graphic alignment of the ORFs within the left (A) and right (B) terminal variable genomic region of MPV with corresponding genome segments of other orthopoxviruses. The sizes and directions of ORFs are marked with arrows. Deletions within the DNA and proteins of one virus relative to another, exceeding 150 bp and 50 amino acids, respectively, are marked with dots. The black blocks mark the sequences within the ITR regions. Nucleotide numbers are shown on the right.

compared the genes in these categories from MPV and VAR (Shchelkunov *et al.*, 2001), but we have added the growth factor and immune evasion genes of VAC and CPV in Table 2 because the latter contains all such known to be present in orthopoxviruses. Based on the number of intact and not extensively truncated virulence genes (indicated in parentheses), we obtain the following: CPV-GRI (17) > VAR-IND (11) = VAR-GAR (11) > MPV-ZAI (10) > VAC-COP (9) > VAC-MVA (6). MPV-ZAI also contains fewer ankyrin repeat genes than CPV, as previously noted (Shchelkunov *et al.*, 2001).

CPV-GRI encodes six ~500 amino acid proteins of unknown function with 22–26% identity to each other that belong to the kelch superfamily (Kumar *et al.*, 1993; Shchelkunov *et al.*, 1998). Although VAC-COP encodes three full-size kelch-like proteins, which are homologous to the corresponding CPV-GRI proteins (99.4, 97.9, and 98.6% identity, respectively), the MPV-ZAI genome encodes only one (C9L) with 97.3% identity to CPV-GRI protein G3L. In the genome of VARs, these ORFs all appear to be disrupted, indicating that they are nonessential for replication.

MONKEYPOX VIRUS GENOME

VAC contains two ORFs with phospholipase D motifs: F13L is necessary for the formation of extracellular virus and efficient cell-to-cell spread of infection, whereas K4L is dispensable for replication in tissue culture (Blasco and Moss, 1991; Cao *et al.*, 1997; Sung *et al.*, 1997). CPV contains both of these ORFs as well as an additional putative lipid metabolizing enzyme that is homologous to lysophospholipase, which is mutated in VAC strains (Antoine *et al.*, 1998). MPV-ZAI contains intact versions of these three ORFs (C4L, C5L, and C19L, Table 1), whereas VAR strains lack C4L and C5L homologs as a result of deletion of a DNA segment (Fig. 3A). The functions of the C4L and C5L proteins are not yet known, although both are encoded by the two orthopoxviruses, MPV and CPV, with relatively wide host ranges.

FIG. 3-Continued

Phylogenetic analysis

Based on the DNA sequences of the terminal variable regions, we considered that the organization of CPV most closely resembles that of the ancestral orthopoxvirus species and that VAR was slightly more distant from MPV than from VAC (Shchelkunov *et al.*, 2001). By analyzing the left and right variable regions separately, however, the situation appears more complex. The VAC strains appear closer to MPV-ZAI with respect to their left

186

MONKEYPOX VIRUS GENOME

terminal variable region and to VAR strains with respect to the right terminal variable region (Fig. 4). This discrepancy may be due to a complex recombinational origin of VAC, as suggested by others (Bedson and Dumbell, 1964; Marennikova and Shchelkunov, 1998).

Concluding remarks

In summary, the genome of MPV appears to be typical of orthopoxviruses, including a central conserved region,

more variable left and right end regions, and an ITR with tandem repeats. Comparative analysis of the MPV, VAR, CPV, and VAC genomes confirmed that MPV is a discrete species exhibiting multiple differences from other orthopoxviruses pathogenic for humans. It seems likely that the orthopoxviruses analyzed thus far evolved independently from a cowpox-like ancestor virus, although recombination between species in the case of VAC is possible.

TABLE 2

Orthopoxviral Growth Factor and Immune Evasion Genes

	VAR-IND		VAR-GAR		MPV-ZAI		CPV-GRI		VAC-COP		VAC-MVA	
	ORF	Size (aa)	ORF	Size (aa)	ORF	Size (aa)	ORF	Size (aa)	ORF	Size (aa)	ORF	Size (aa)
Viral growth factor	D2R	140	B3R	140	D3R	142	C5R	138	C11R	142	005R	140
IL-18 binding protein	D5L	126	B6L	126	D6L	126	C8L	124	<u> </u>	_	008L	120
Complement binding protein	D12L	263	B18L	263	D14L†	216	C17L	259	C3L	263	<u> </u>	_
Interferon resistance factor, homolog of eIF-2 α	C3L	88	P3L	88	—†	_	M3L	88	K3L	88	024L	88
Interferon resistance factor, dsRNA-binding protein	E3L	190	C3L	192	F3L†	153	F3L	190	E3L	190	050L	190
$3-\beta$ -Hydroxy-delta5-steroid dehydrogenase	A50Lt	61	A54L†	61	A45L	346	A47L	346	A44L	346	157L	346
Interferon- γ binding protein	B9R	266	H9R	266	B9R	267	B7R	271	B8R	272	176R†	226
Serine protease inhibitor homolog, SPI-2, inhibition of IL-1 β converting enzyme, apoptosis inhibition	B13R	344	D2R	344	B12R	344	B12R	345	B13R†	116	181R†	116
Interleukin-1 β -binding protein	B15R†	63	D4R†	63	B14R	326	B14R	326	B16R†	290	184R	326
Interferon- α/β -binding protein	B20R	354	D9R	355	B16R	352	B17R	351	B19R	353	187R†	234
Serine protease inhibitor homolog, SPI-1, apoptosis inhibition	B25R	357	D14R	357	B19R	357	B20R	375	C12L	353	—†	—
Tumor necrosis factor binding protein, CrmB	_	_	_	_	J2L*	348	D2L*	351	C22L* [,] †	122	002L* [,] †	176
	G2R	349	G2R	349	J2R*	348	H4R*	351	B28R* [,] †	122	192R* [,] †	176
Tumor necrosis factor binding protein, CrmC	-+	_	<u> </u>	_	<u> </u>	_	A56R	186	A53R†	103	<u> </u>	_
Tumor necrosis factor binding protein, CrmD	<u>_</u> †	_	<u> </u>	_	<u> </u>	_	K2R	322	<u> </u>	_	<u> </u>	_
Tumor necrosis factor binding protein, CrmE	-+	_	<u> </u>	_	K1R†	70	K3R	167	<u> </u>	_	<u> </u>	_
Chemokine binding protein	_	_	_	_	J1L*	246	D1L*	255	C23L*'†	244	001L*'†	136
<u> </u>	G3R	253	G3R	253	J3R*	246	H5R*	255	B29R* [.] †	244	193R* [,] †	136
Semaphorin-like	A42R†	74	A45R†	74	—†	_	A41R	402	A39R	403	150R†	83

Note. An asterisk denotes an ORFs that are duplicated in left and right inverted terminal repeat regions (ITR). ORFs that have functionally important differences from the corresponding ORFs of CPV-GRI are denoted by a dagger.

MATERIALS AND METHODS

The genome sequence of MPV-ZAI was determined as described (Shchelkunov *et al.*, 2001) and deposited with GenBank under Accession No. AF380138. Sequences were analyzed using software developed at the State

FIG. 4. Phylogenetic analysis of the left (A) and right (B) terminal variable genome regions of indicated orthopoxviruses.

Research Center for Virology and Biotechnology "Vector," Koltsovo, Russia (Resenchuk and Blinov, 1995). Protein homology searches were carried out by BLAST analyses (Altschul *et al.*, 1997) using NCBI internet resources. Sequences alignments were prepared using Clustal W (Thompson *et al.*, 1994). Phylogenies were calculated with the neighbor-joining (NJ) method (Saitou and Nei, 1987) using the MEGA package of software (Kumar *et al.*, 1993). For this analysis we used the 47.5-kb right-terminal and 50.3-kb left-terminal genomic fragments of MPV-ZAI and the corresponding DNA fragments of VAR-IND, VAR-BSH, VAR-GAR, VAC-COP, VAC-MVA, and CPV-GRI. The reliability of the phylogenetic relationship was statistically evaluated from 1000 bootstrap replicates.

ACKNOWLEDGMENTS

This work was supported by Grants 884-97 and 884-2p of ISTC and NAS, Grant RN2-413 of CRDF and NIH, and Grant 00-04-49558 of the Russian Foundation of Basic Research.

REFERENCES

Ahn, B. Y., and Moss, B. (1992a). Glutaredoxin homolog encoded by vaccinia virus is a virion-associated enzyme with thioltransferase

and dehydroascorbate reductase activities. *Proc. Natl. Acad. Sci. USA* **89**, 7060–7064.

- Ahn, B.-Y., and Moss, B. (1992b). RNA polymerase-associated transcription specificity factor encoded by vaccinia virus. *Proc. Natl. Acad. Sci.* USA 89, 3536–3540.
- Ahn, B.-Y., Gershon, P. D., Jones, E. V., and Moss, B. (1990a). Identification of *rpo30*, a vaccinia virus RNA polymerase gene with structural similarity to a eucaryotic transcription elongation factor. *Mol. Cell. Biol.* **10**, 5433–5441.
- Ahn, B.-Y., Jones, E. V., and Moss, B. (1990b). Identification of the vaccinia virus gene encoding an 18-kilodalton subunit of RNA polymerase and demonstration of a 5' poly(A) leader on its early transcript. J. Virol. 64, 3019–3024.
- Ahn, B.-Y., Rosel, J., Cole, N. B., and Moss, B. (1992). Identification and expression of *rpo19*, a vaccinia virus gene encoding a 19-kilodalton DNA-dependent RNA polymerase subunit. *J. Virol.* **66**, 971–982.
- Alcami, A., and Koszinowski, U. H. (2000). Viral mechanisms of immune evasion. *Trends Microbiol.* **8**, 410–418.
- Alcami, A., and Smith, G. L. (1992). A soluble receptor for interleukin-1 β encoded by vaccinia virus: A novel mechanism of viral modulation of the host response to infection. *Cell* **71**, 153–167.
- Alcami, A., and Smith, G. L. (1995). Vaccinia, cowpox, and camelpox viruses encode soluble γ interferon receptors with novel broad species specificity. *J. Virol.* **69**, 4633–4639.
- Alcami, A., and Smith, G. L. (1996). A mechanism for the inhibition of fever by a virus. *Proc. Natl. Acad. Sci. USA* **93**, 11029–11034.
- Almazan, F., Tscharke, D. C., and Smith, G. L. (2001). The vaccinia virus superoxide dismutase-like protein (A45R) is a virion component that is nonessential for virus replication. J. Virol. 75, 7018–7029.
- Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. *Nucleic Acids Res.* 25, 3389–3402.
- Amegadzie, B. Y., Ahn, B.-Y., and Moss, B. (1991a). Identification, sequence, and expression of the gene encoding a Mr 35000 subunit of the vaccinia virus DNA-dependent RNA polymerase. J. Biol. Chem. 266, 13712–13718.
- Amegadzie, B. Y., Holmes, M. H., Cole, N. B., Jones, E. V., Earl, P. L., and Moss, B. (1991b). Identification, sequence, and expression of the gene encoding the second-largest subunit of the vaccinia virus DNA-dependent RNA polymerase. *Virology* 180, 88–98.
- Amegadzie, B. Y., Ahn, B.-Y., and Moss, B. (1992). Characterization of a 7-kilodalton subunit of vaccinia virus DNA-dependent RNA polymerase with structural similarities to the smallest subunit of eukaryotic RNA polymerase II. J. Virol. 66, 3003–3010.
- Antoine, G., Scheiflinger, F., Dorner, F., and Falkner, F. G. (1998). The complete genomic sequence of the modified vaccinia Ankara strain: Comparison with other orthopoxviruses. *Virology* 244, 365–396.
- Baek, S. H., Kwak, J. Y., Lee, S. H., Lee, T., Ryu, S. H., and Uhlinger, D. J. (1997). Lipase activities of p37, the major envelope protein of vaccinia virus. J. Biol. Chem. 272, 32042–32049.
- Banham, A. H., and Smith, G. L. (1992). Vaccinia virus gene B1R encodes a 34-kDa serine/threonine protein kinase that localizes in cytoplasmic factories and is packaged into virions. *Virology* **191**, 803–812.
- Banham, A. H., and Smith, G. L. (1993). Characterization of vaccinia virus gene B12R. J. Gen. Virol. 74, 2807–2812.
- Baroudy, B. M., Venkatesan, S., and Moss, B. (1982). Incompletely base-paired flip-flop terminal loops link the two DNA strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. *Cell* **28**, 315–324.
- Bayliss, C. D., and Smith, G. L. (1996). Vaccinia virion protein I8R has both DNA and RNA helicase activities: Implications for vaccinia virus transcription. J. Virol. 70, 794–800.
- Bayliss, C. D., Wilcock, D., and Smith, G. L. (1996). Stimulation of vaccinia virion DNA helicase I8R, but not A18R, by a vaccinia core protein L4R, an ssDNA binding protein. J. Gen. Virol. 77, 2827–2831.

- Beattie, E., Tartaglia, J., and Paoletti, E. (1991). Vaccinia-virus encoded eIF- 2α homolog abrogates the antiviral effect of interferon. *Virology* **183**, 419–422.
- Bedson, H. S., and Dumbell, K. R. (1964). Hybrids derived from the viruses of variola major and cowpox. J. Hyg. 62, 147–158.
- Belle Isle, H., Venkatesan, S., and Moss, B. (1981). Cell-free translation of early and late mRNAs selected by hybridization to cloned DNA fragments derived from the left 14 million to 72 million daltons of the vaccinia virus genome. *Virology* **112**, 306–317.
- Betakova, T., Wolffe, E. J., and Moss, B. (1999). Regulation of vaccinia virus morphogenesis: Phosphorylation of the A14L and A17L membrane proteins and C-terminal truncation of the A17L protein are dependent on the F10L kinase. J. Virol. **73**, 3534–3543.
- Blasco, R., and Moss, B. (1991). Extracellular vaccinia virus formation and cell-to-cell virus transmission are prevented by deletion of the gene encoding the 37000 Dalton outer envelope protein. J. Virol. 65, 5910–5920.
- Blasco, R., Cole, N. B., and Moss, B. (1991). Sequence analysis, expression, and deletion of a vaccinia virus gene encoding a homolog of profilin, a eukaryotic actin-binding protein. J. Virol. 65, 4598–4608.
- Blasco, R., Sisler, J. R., and Moss, B. (1993). Dissociation of progeny vaccinia virus from the cell membrane is regulated by a viral envelope glycoprotein: Effect of a point mutation in the lectin homology domain of the A34R gene. J. Virol. 67, 3319–3325.
- Blomquist, M. C., Hunt, L. T., and Barker, W. C. (1984). Vaccinia virus 19-kilodalton protein: Relationship to several mammalian proteins, including two growth factors. *Proc. Natl. Acad. Sci. USA* **81**, 7363– 7367.
- Born, T. L., Morrison, L. A., Esteban, D. J., VandenBos, T., Thebeau, L. G., Chen, N., Spriggs, M. K., Sims, J. E., and Buller, R. M. L. (2000). A poxvirus protein that binds to and inactivates IL-18, and inhibits NK cell response. J. Immunol. 164, 3246–3254.
- Breman, J. G. (2000). Monkeypox: An emerging infection of humans? *In* "Emerging Infections 4" (W. M. Scheid, W. A. Craig, and J. M. Hughes, Eds.), pp. 45–67. ASM Press, Washington, D.C.
- Brick, D. J., Burke, R. D., Minkley, A. A., and Upton, C. (2000). Ectromelia virus virulence factor p28 acts upstream of caspase-3 in response to UV linght-induced apoptosis. J. Gen. Virol. 81, 1087–1097.
- Brown, C. K., Turner, P. C., and Moyer, R. W. (1991). Molecular characterization of the vaccinia virus hemagglutinin gene. J. Virol. 65, 3598–3606.
- Broyles, S. S., and Fesler, B. S. (1990). Vaccinia virus gene encoding a component of the viral early transcription factor. J. Virol. 64, 1523– 1529.
- Broyles, S. S., and Moss, B. (1986). Homology between RNA polymerase of poxviruses, prokaryotes, and eukaryotes: Nucleotide sequence and transcriptional analysis of vaccinia virus genes encoding 147-kDa and 22-kDa subunits. *Proc. Natl. Acad. Sci. USA* 83, 3141–3145.
- Broyles, S. S., and Moss, B. (1987). Identification of the vaccinia virus encoded nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase. *J. Virol.* **61**, 1738–1742.
- Bugert, J. J., and Darai, G. (2000). Poxvirus homologues of cellular genes. *Virus Genes* 21, 111-133.
- Buller, R. M. L., Chakrabarti, S., Moss, B., and Frederickson, T. (1988). Cell proliferative response to vaccinia virus is mediated by VGF. *Virology* 164, 182–192.
- Calderara, S., Xiang, Y., and Moss, B. (2001). Orthopoxvirus IL-18 binding proteins: Affinities and antagonistic activities. *Virology* **279**, 619– 623.
- Cao, J., Koop, B. F., and Upton, C. (1997). A human homolog of the vaccinia virus *Hin*dIII K4L gene is a member of the phospholipase D superfamily. *Virus Res.* **48**, 11–18.
- Cassetti, M. C., Merchlinsky, M., Wolffe, E. J., Weisberg, A. S., and Moss, B. (1998). DNA packaging mutant: Repression of the vaccinia virus A32 gene results in noninfectious, DNA-deficient, spherical, enveloped particles. J. Virol. **72**, 5769–5780.

- Chang, H.-W., Watson, J. C., and Jacobs, B. L. (1992). The E3L gene of vaccinia virus encodes an inhibitor of the interferon-induced, doublestranded RNA-dependent protein kinase. *Proc. Natl. Acad. Sci. USA* 89, 4825–4829.
- Chen, W., Drillen, R., Spehner, D., and Buller, R. M. (1992). Restricted replication of ectromelia virus in cell culture correlates with mutations in virus-encoded host range gene. *Virology* **187**, 433–442.
- Chertov, O. Yu., Telezhinskaya, I. N., Ziatseva, E. V., Golubeva, T. B., Zinov'ev, V. V., Ovechkina, L. G., Mazkova, L. B., and Malygin, E. G. (1991). Amino acid sequence determination of vaccinia virus immunodominant protein p34 and identification of the gene. *Biomed. Sci.* 2, 151–154.
- Christen, L. M., Sanders, M., Wiler, C., and Niles, E. G. (1998). Vaccinia virus nucleotide triphosphate phosphohydrolase I is an essential viral early gene transcription termination factor. *Virology* **245**, 360–371.
- Chung, C.-S., Hsiao, J.-C., Chang, Y.-S., and Chang, W. (1998). A27L protein mediates vaccinia virus interaction with cell surface heparan sulfate. *J. Virol.* **72**, 1577–1585.
- Cooper, J. A., Wittek, R., and Moss, B. (1981). Extension of the transcriptional map of the left end of the vaccinia virus genome to 21 kilobase pairs. *J. Virol.* **39**, 733–745.
- da Fonseca, F. G., Weisberg, A., Wolffe, E. J., and Moss, B. (2000). Characterization of the vaccinia virus H3L envelope protein: Topology and post-translational membrane insertion via the C-terminal hydrophobic tail. *J. Virol.* **74**, 7508–7517.
- Damaso, C. R. A., Esposito, J. J., Condit, R. C., and Moussatche, N. (2000). An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. *Virology* 277, 439–449.
- Davies, M. V., Elroy-Stein, O., Jagus, R., Moss, B., and Kaufman, R. J. (1991). The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA activated protein kinase and phosphorylation of the α subunit of eukaryotic initiation factor 2. *J. Virol.* **66**, 1943–1950.
- Davis, R. E., and Mathews, C. K. (1993). Acidic C terminus of vaccinia virus DNA-binding protein interacts with ribonucleotide reductase. *Proc. Natl. Acad. Sci. USA* **90**, 745–749.
- Douglass, N., and Dumbell, K. (1992). Independent evolution of monkeypox and variola viruses. J. Virol. 66, 7565–7567.
- Duncan, S. A., and Smith, G. L. (1992). Vaccinia virus gene SaIF5R is non-essential for virus replication in vitro and in vivo. J. Gen. Virol. 73, 1235–1242.
- Dyster, L. M., and Niles, E. G. (1991). Genetic and biochemical characterization of vaccinia virus genes D2L and D3R which encode virion structural proteins. *Virology* 182, 455–467.
- Earl, P. L., Jones, E. V., and Moss, B. (1986). Homology between DNA polymerase of poxviruses, herpesviruses, and adenoviruses: Nucleotide sequence of the vaccinia virus DNA polymerase gene. *Proc. Natl. Acad. Sci. USA* 83, 3659–3663.
- Englestad, M., Howard, S. T., and Smith, G. L. (1992). A constitutively expressed vaccinia virus gene encodes a 42-kDa glycoprotein related to complement control factors that forms part of the extracellular virus envelope. *Virology* **188**, 801–810.
- Engelstad, M., and Smith, G. L. (1993). The vaccinia virus 42-kDa envelope protein is required for the envelopment and egress of extracellular virus and for virus virulence. *Virology* **194**, 627–637.
- Esposito, J. J., and Knight, J. C. (1984). Nucleotide sequence of the thymidine kinase gene region of monkeypox and variola viruses. *Virology* **135**, 561–567.
- Esposito, J. J., and Knight, J. C. (1985). Orthopoxvirus DNA: A comparison of restriction profiles and maps. *Virology* **143**, 230–251.
- Esposito, L. J., and Fenner, F. (2001). Poxviruses. *In* "Fields Virology"
 (D. M. Knipe, and P. M. Howley, Eds.), Vol. 2, pp. 2885–2921. Lippincott, Williams & Wilkins, Philadelphia.
- Evans, E., Klemperer, N., Ghosh, R., and Traktman, P. (1995). The vaccinia virus D5 protein, which is required for DNA replication, is a

nucleic acid-independent nucleoside triphosphatase. J. Virol. 69, 5353-5361.

- Fenner, F. (1977). The eradication of smallpox. Prog. Med. Virol. 23, 1-21.
- Fenner, F., Henderson, D. A., Arita, I., Jezek, Z., and Ladnyi, I. D. (1988). "Smallpox and Its Eradication." World Health Organization, Geneva.
- Fenner, F., Wittek, R., and Dumbell, K. R. (1989). "The Orthopoxviruses." Academic Press, San Diego.
- Frischknecht, F., Moreau, V., Rottger, S., Gonfloni, S., Reckmann, I., Superti-Furga, G., and Way, M. (1999). Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signalling. *Nature* **401**, 926– 929.
- Funahashi, S., Sato, T., and Shida, H. (1988). Cloning and characterization of the gene encoding the major protein of the A-type inclusion body of cowpox virus. J. Gen. Virol. 69, 35–47.
- Garon, C. F., Barbosa, E., and Moss, B. (1978). Visualization of an inverted terminal repetition in vaccinia virus DNA. *Proc. Natl. Acad. Sci. USA* **75**, 4863–4867.
- Gershon, P. D., and Moss, B. (1990). Early transcription factor subunits are encoded by vaccinia virus late genes. *Proc. Natl. Acad. Sci. USA* **87**, 4401–4405.
- Gershon, P. D., Ahn, B.-Y., Garfield, M., and Moss, B. (1991). Poly(A) polymerase and a dissociable polyadenylation stimulatory factor encoded by vaccinia virus. *Cell* **66**, 1269–1278.
- Gillard, S., Spehner, D., Drillien, R., and Kirn, A. (1986). Localization and sequence of a vaccinia virus gene required for multiplication in human cells. *Proc. Natl. Acad. Sci. USA* **83**, 5573–5577.
- Goebel, S. J., Johnson, G. P., Perkus, M. E., Davis, S. W., Winslow, J. P., and Paoletti, E. (1990). The complete DNA sequence of vaccinia virus. *Virology* **179**, 247–266; *Virology* **179**, 517–563.
- Golini, F., and Kates, J. R. (1984). Transcriptional and translational analysis of a strongly expressed early region of the vaccinia virus genome. *J. Virol.* **49**, 459–470.
- Graham, K. A., Lalani, A. S., Macen, J. L., Ness, T. L., Barry, M., Liu, L.-Y., Lucas, A., Clark-Lewis, I., Moyer, R. W., and McFadden, G. (1997). The T1/35kDa family of poxvirus-secreted proteins bind chemokines and modulate leukocyte influx into virus-infected tissues. *Virology* 229, 12–24.
- Gross, C. H., and Shuman, S. (1998). The nucleoside triphosphatase and helicase activities of vaccinias virus NPH-II are essential for virus replication. *J. Virol.* **72**, 4729–4736.
- Guan, K., Broyles, S. S., and Dixon, J. E. (1991). A Tyr/Ser protein phosphatase encoded by vaccinia virus. *Nature* **350**, 359–362.
- Gvakharia, B. O., Koonin, E., and Mathews, C. (1996). Vaccinia virus G4L gene encodes a second glutaredoxin. *Virology* **226**, 408–411.
- Hirt, P., Hiller, G., and Wittek, R. (1986). Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. J. Virol. 58, 757–764.
- Hooda-Dhingra, U., Patel, D. D., Pickup, D. J., and Condit, R. C. (1990). Fine structure mapping and phenotypic analysis of five temperaturesensitive mutations in the second largest subunit of vaccinia virus DNA-dependent RNA polymerase. *Virology* **174**, 60–69.
- Hsiao, J.-C., Chung, C.-S., and Chang, W. (1999). Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J. Virol. 73, 8750–8761.
- Hu, F., Smith, C. A., and Pickup, D. J. (1994). Cowpox virus contains two copies of a early gene encoding a soluble secreted form of the type II TNF receptor. *Virology* **204**, 343–356.
- Hu, X., Wolffe, E. J., Weisberg, A. S., Carroll, L. J., and Moss, B. (1998).
 Repression of the A8L gene, encoding the early transcription factor 82-kilodalton subunit, inhibits morphogenesis of vaccinia virions. *J. Virol.* 72, 104–112.
- Hughes, S. J., Johnston, L. H., De Carlos, A., and Smith, G. L. (1991). Vaccinia virus encodes an active thymidylate kinase that complements a *cdc8* mutant of *Saccharomyces cerevisiae*. J. Biol. Chem. 266, 20103–20109.

- Hutin, Y. J. F., Williams, R. J., Malfait, P., Pebody, R., Loparev, V. N., Ropp, S. L., Rodriguez, M., Knight, J. C., Tshioko, F. K., Khan, A. S., Szczeniowski, M. V., and Esposito, J. J. (2001). Outbreak of human monkeypox, Democratic Republic of Congo, 1996–1997. *Emerg. Infect. Dis.* 7, 434–438.
- Ichihashi, Y., Takahashi, T., and Oie, M. (1994). Identification of a vaccinia virus penetration protein. *Virology* **202**, 834–843.
- Isaacs, S. N., Wolffe, E. J., Payne, L. G., and Moss, B. (1992). Characterization of a vaccinia virus-encoded 42-kilodalton class I membrane glycoprotein component of the extracellular virus envelope. *J. Virol.* 66, 7217–7224.
- Ishii, K., and Moss, B. (2001). Role of vaccinia virus A20R protein in DNA replication: Construction and characterization of temperature-sensitive mutants. J. Virol. 75, 1656–1663.
- Jezek, Z., and Fenner, F. (1988). Human monkeypox. *Monogr. Virol.* 17, 1-140.
- Kane, E. M., and Shuman, S. (1992). Temperature-sensitive mutations in the vaccinia virus H4 gene encoding a component of the virion RNA polymerase. J. Virol. 66, 5752–5762.
- Kane, E. M., and Shuman, S. (1993). Vaccinia virus morphogenesis is blocked by a temperature-sensitive mutation in the I7 gene that encodes a virion component. J. Virol. 67, 2689–2698.
- Kao, S.-Y., and Bauer, W. R. (1987). Biosynthesis and phosphorylation of vaccinia virus structural protein VP11. Virology 159, 339–407.
- Keck, J. G., Baldick, C. J., and Moss, B. (1990). Role of DNA replication in vaccinia virus gene expression: A naked template is required for transcription of three late trans-activator genes. *Cell* **61**, 801–809.
- Keck, J. G., Feigenbaum, F., and Moss, B. (1993a). Mutations analysis of a predicted zinc-binding motif in the 26-kilodalton protein encoded by the vaccinia virus A2L gene: Correlation of zinc binding with late transcriptional transactivation activity. J. Virol. 67, 5749–5753.
- Keck, J. G., Kovacs, G. R., and Moss, B. (1993b). Overexpression, purification, and late transcription factor activity of the 17-kilodalton protein encoded by the vaccinia virus A1L gene. J. Virol. 67, 5740– 5748.
- Kerr, S. M., and Smith, G. L. (1989). Vaccinia virus encodes a polypeptide with DNA ligase activity. *Nucleic Acids Res.* 17, 9039–9050.
- Kettle, S., Alcami, A., Khanna, A., Ehret, R., Jassoy, C., and Smith, G. L. (1997). Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1-β converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1β-induced fever. J. Gen. Virol. 78, 677–685.
- Klemperer, N., McDonald, W., Boyle, K., Unger, B., and Traktman, P. (2001). The A20R protein is a stoichiometric component of the processive form of vaccinia virus DNA polymerase. J. Virol. 75, 12298– 12307.
- Koonin, E. V. (1993). A highly conserved sequence motif defining the family of MutT-related proteins from eubacteria, eukaryotes and viruses. *Nucleic Acids Res.* **21**, 4847.
- Kotwal, G. J., and Moss, B. (1988). Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. *Nature* 335, 176–178.
- Kotwal, G. J., and Moss, B. (1989). Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily. J. Virol. 63, 600–606.
- Kovacs, G. R., and Moss, B. (1996). The vaccinia virus H5R gene encodes late gene transcription factor 4: Purification, cloning and overexpression. J. Virol. 70, 6796–6802.
- Kovacs, G. R., Vasilakis, N., and Moss, B. (2001). Regulation of viral intermediate gene expression by the vaccinia virus B1 protein kinase. J. Virol. 75, 4048–4055.
- Kumar, S., Tamura, K., and Nei, M. (1993). "MEGA: Molecular Evolutionary Genetics Analysis," Pennsylvania State Univ., University Park, PA.
- Law, K. M., and Smith, G. L. (1992). A vaccinia serine protease inhibitor which prevents virus-induced cell fusion. J. Gen. Virol. 73, 549–557.
- Lee-Chen, G.-J., Bourgeois, N., Davidson, K., Condit, R. C., and Niles, E. G. (1988). Structure of the transcription initiation and termination

sequences of seven early genes in the vaccinia virus *Hin*dIII D fragment. *Virology* **163**, 64-79.

- Lin, S., Chen, W., and Broyles, S. S. (1992). The vaccinia virus B1R gene product is a serine/threonine protein kinase. *J. Virol.* 66, 2717–2723.
- Lin, S., and Broyles, S. S. (1994). Vaccinia protein kinase 2: A second essential serine/threonine protein kinase encoded by vaccinia virus. *Proc. Natl. Acad. Sci. USA* **91**, 7653–7657.
- Lin, C. L., Chung, C. S., Heine, H. G., and Chang, W. (2000). Vaccinia virus envelope H3L protein binds to cell surface heparan sulfate and is important for intracellular mature virion morphogenesis and virus infection in vitro and in vivo. J. Virol. 74, 3353–3365.
- Maa, J.-S., and Esteban, M. (1987). Structural and functional characterization of cell surface binding protein of vaccinia virus. *J. Virol.* **61**, 3910–3919.
- Maa, J.-S., Rodriguez, J. F., and Esteban, M. (1990). Structural and functional characterization of a cell surface binding protein of vaccinia virus. J. Biol. Chem. 265, 1569–1577.
- Mackett, M., and Archard, L. C. (1979). Conservation and variation in orthopoxvirus genome structure. J. Gen. Virol. 45, 683–701.
- Marennikova, S. S., Seluhina, E. M., Mal'ceva, N. N., Cimiskjan, K. L., and Macevic, G. R. (1972). Isolation and properties of the causal agent of a new variola-like disease (monkeypox) in man. *Bull. World Health Organ.* 46, 599–611.
- Marennikova, S. S., and Shchelkunov, S. N. (1998). "Orthopoxviruses Pathogenic for Humans." KMK Press Ltd., Moscow.
- Martin, K. H., Grosenbach, D. W., Franke C. A., and Hruby, D. E. (1997). Identification and analysis of three myristylated vaccinia virus late proteins. J. Virol. 71, 5218–5226.
- Massung, R. F., Knight, J. C., and Esposito, J. J. (1995). Topography of variola smallpox virus inverted terminal repeats. *Virology* 211, 350– 355.
- Massung, R. F., Liu, L.-I., Qi, J., Knight, J. C., Yuran, T. E., Kerlavage, A. R., Parsons, J. M., Venter, J. C., and Esposito, J. (1994). Analysis of the complete genome of smallpox variola major virus strain Bangladesh—1975. *Virology* **201**, 215–240.
- McDonald, W. F., Klemperer, N., and Traktman, P. (1997). Characterization of a processive form of the vaccinia virus DNA polymerase. *Virology* **234**, 168–175.
- McGeoch, D. J. (1990). Protein sequence comparisons show that "pseudoproteases" encoded by the poxviruses and certain retroviruses belong to the deoxyuridine triphosphatase family. *Nucleic Acids Res.* 18, 4105–4110.
- McIntosh, A. A. G., and Smith, G. L. (1996). Vaccinia virus glycoprotein A34R is required for infectivity of extracellular enveloped virus. *J. Virol.* **70**, 272–281.
- Meis, R. J., and Condid, R. C. (1991). Genetic and molecular biological characterization of vaccinia virus gene which renders the virus dependent on isatin-b-thiosemicarbazone (IBT). *Virology* 182, 442–454.
- Merchlinsky, M. (1990). Mutational analysis of the resolution sequence of vaccinia virus DNA—Essential sequence consists of 2 separate AT-rich regions highly conserved among poxviruses. J. Virol. 64, 5029–5035.
- Moore, J. B., and Smith, G. L. (1992). Steroid hormone synthesis by a vaccinia enzyme: A new type of virus virulence factor. *EMBO J.* 11, 1973–1980.
- Morgan, J. R., and Roberts, B. E. (1984). Organization of RNA transcripts from a vaccinia virus early gene cluster. *J. Virol.* **51**, 283–297.
- Morgan, J. R., Cohen, L. K., and Roberts, B. E. (1984). Identification of the DNA sequence encoding the large subunit of the mRNA-capping enzyme of vaccinia virus. J. Virol. 52, 206–214.
- Moss, B. (2001). Poxviridae: The viruses and their replication. *In* "Fields Virology" (D. M. Knipe, and P. M. Howley, Eds.), Vol. 2, 4th ed., pp. 2849–2883. Lippincott, Williams & Wilkins, Philadelphia.
- Moss, B., and Shisler, J. L. (2001). Immunology 101 at poxvirus U: Immune evasion genes. *Semin. Immunol.* **13**, 59–66.
- Mukinda, V. B., Mwema, G., Kilundu, M., Heymann, D. L., Khan, A. S., and Esposito, J. J. (1997). Re-emergence of human monkeypox in

Zaire in 1996. Monkeypox Epidemiologic Working Group. *Lancet* **349**, 1449–1450.

- Najarro, P., Traktman, P., and Lewis, J. A. (2001). Vaccinia virus blocks gamma interferon signal transduction: Viral VH1 phosphatase reverses Stat1 activation. J. Virol. 75, 3185–3196.
- Ng, A., Tscharke, D. C., Reading, P. C., and Smith, G. L. (2001). The vaccinia virus A41L protein is a soluble 30 kDa glycoprotein that affects virus virulence. *J. Gen. Virol.* **82**, 2095–2105.
- Niles, E. G., and Seto, J. (1988). Vaccinia virus gene D8 encodes a virion transmembrane protein. J. Virol. 62, 3772–3778.
- Niles, E. G., Lee-Chen, G.-J., Shuman, S., Moss, B., and Broyles, S. S. (1989). Vaccinia virus gene D12L encodes the small subunit of the viral mRNA capping enzyme. *Virology* **172**, 513–522.
- Noble, J., Jr. (1970). A study of New and Old World monkeys to determine the likelihood of a simian reservoir of smallpox. *Bull. World Health Organ.* **42**, 509–514.
- Panicali, D., and Paoletti, E. (1982). Construction of poxviruses as cloning vectors: Insertion of the thymidine kinase gene from herpes simplex into the DNA of infectious vaccinia virus. *Proc. Natl. Acad. Sci. USA* **79**, 4927–4931.
- Parkinson, J. E., and Smith, G. L. (1994). Vaccinia virus gene A36R encodes a M_r 50K protein on the surface of extracellular enveloped virus. *Virology* **204**, 376–390.
- Parkinson, J. E., Sanderson, C. M., and Smith, G. L. (1995). The vaccinia virus A38L gene product is a 33-kDa integral membrane glycoprotein. *Virology* 214, 177–188.
- Rajagopal, I., Ahn, B.-Y., Moss, B., and Mathews C. K. (1995). Roles of vaccinia virus ribonucleotide reductase and glutaredoxin in DNA precursor biosynthesis. J. Biol. Chem. 270, 27415–27418.
- Ravanello, M. P., and Hruby, D. E. (1994). Conditional lethal expression of the vaccinia virus L1R myristylated protein reveals a role in virion assembly. J. Virol. 68, 6401–6410.
- Ray, C. A., Black, R. A., Kronheim, S. R., Greenstreet, T. A., Sleath, P. R., Salvesen, G. S., and Pickup, D. J. (1992). Viral inhibition of inflammation: Cowpox virus encodes an inhibitor of the interleukin-1β-converting enzyme. *Cell* **69**, 597–604.
- Rempel, R. E., and Traktman, P. (1992). Vaccinia virus-B1 kinase— Phenotypic analysis of temperature-sensitive mutants and enzymatic characterization of recombinant proteins. J. Virol. 66, 4413–4426.
- Resenchuk, S. M., and Blinov, V. M. (1995). ALIGNMENT SERVICE: Creation and processing of alignment of sequences of unlimited length. *Comput. Appl. Biosci.* **11**, 7–11.
- Rivas, C., Gil, J., Melkova, Z., Esteban, M., and Diaz-Guerra, M. (1998). Vaccinia virus E3L protein is an inhibitor of the interferon (IFN)induced 2–5A synthetase enzyme. *Virology* 243, 406–414.
- Rochester, S. C., and Traktman, P. (1998). Characterization of the singlestranded DNA binding protein encoded by the vaccinia virus I3 gene. *J. Virol.* **72**, 2917–2926.
- Rodriguez, J. F., and Esteban, M. (1987). Mapping and nucleotide sequence of the vaccinia virus gene that encodes a 14-kilodalton fusion protein. *J. Virol.* **61**, 3550–3554.
- Rodriguez, J. F., Kahn, J. S., and Esteban, M. (1986). Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic aciddependent nucleoside triphosphatase gene. *Proc. Natl. Acad. Sci.* USA 83, 9566–9570.
- Rodríguez, D., Esteban, M., and Rodríguez, J. R. (1995). Vaccinia virus A17L gene product is essential for an early step in virion morphogenesis. *J. Virol.* **69**, 4640–4648.
- Roper, R. L., and Moss, B. (1999). Envelope formation is blocked by mutation of a sequence related to the HKD phospholipid metabolism motif in the vaccinia virus F13L protein. *J. Virol.* **73**, 1108–1117.
- Roper, R. L., Payne, L. G., and Moss, B. (1996). Extracellular vaccinia virus envelope glycoprotein encoded by the A33R gene. J. Virol. 70, 3753–3762.
- Roper, R. L., Wolffe, E. J., Weisberg, A., and Moss, B. (1998). The envelope protein encoded by the A33R gene is required for formation

of actin-containing microvilli and efficient cell-to-cell spread of vaccinia virus. *J. Virol.* **72**, 4129–4204.

- Rosales, R., Sutter, G., and Moss, B. (1994). A cellular factor is required for transcription of vaccinia viral intermediate-stage genes. *Proc. Natl. Acad. Sci. USA* **91**, 3794–3798.
- Rosel, J. L., and Moss, B. (1985). Transcriptional and translational mapping and nucleotide sequence analysis of a vaccinia virus gene encoding the precursor of the major core polypeptide 4b. *J. Virol.* 56, 830–838.
- Rosel, J. L., Earl, P. L., Weir, J. P., and Moss, B. (1986). Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the *Hind*III-H genome fragment. *J. Virol.* **60**, 436– 449.
- Ryazankina, O. I., Muravlev, A. I., Gutorov, V. V., Mikrjukov, N. N., Cheshenko, I. O., and Shchelkunov, S. N. (1993). Comparative analysis of the conserved region of the orthopoxvirus genome encoding the 36K and 12K proteins. *Virus Res.* **29**, 281–303.
- Safronov, P. F., Petrov, N. A., Ryazankina, O. I., Totmenin, A. V., Shchelkunov, S. N., and Sandakhchiev, L. S. (1996). Host range genes of cowpox virus. *Dokl. Akad. Nauk* 249, 829–833.
- Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. *Mol. Biol. Evol.* 4, 406–425.
- Salmons, T., Kuhn, A., Wylie, F., Schleich, S., Rodriguez, J. R., Rodriguez, D., Esteban, M., Griffiths, G., and Locker, J. K. (1997). Vaccinia virus membrane proteins p8 and p16 are cotranslationally inserted into the rough endoplasmic reticulum and retained in the intermediate compartment. J. Virol. **71**, 7404–7420.
- Sanderson, C. M., Parkinson, J. E., Hollinshead, M., and Smith, G. L. (1996). Overexpression of the vaccinia virus A38L integral membrane protein promotes Ca²⁺ influx into infected cells. J. Virol. **70**, 905–914.
- Sanz, P., and Moss, B. (1999). Identification of a transcription factor, encoded by two vaccinia virus early genes, that regulates the intermediate stage of viral gene expression. *Proc. Natl. Acad. Sci. USA* 96, 2692–2697.
- Sarov, I., and Joklik, W. K. (1972). Studies on the nature and location of the capsid polypeptides of vaccinia virions. *Virology* 50, 579–592.
- Schmitt, J. F. C., and Stunnenberg, H. G. (1988). Sequence and transcriptional analysis of the vaccinia virus *Hind*III I fragment. *J. Virol.* 62, 1889–1897.
- Schnierle, B. S., Gershon, P. D., and Moss, B. (1992). Cap-specific mRNA (nucleotide-O^{2'}-)-methyltransferase and poly(A) polymerase stimulatory activities of vaccinia virus are mediated by a single protein. *Proc. Natl. Acad. Sci. USA* **89**, 2897–2901.
- Schwarz, D. A., Katayama, C. D., and Hedrick, S. M. (1998). Schlafen, a new family of growth regulatory genes that affect thymocyte development. *Immunity* 9, 657–668.
- Seki, M., Oie, M., Ichihashi, Y., and Shida, H. (1990). Hemadsorption and fusion inhibition activities of hemagglutinin analyzed by vaccinia virus mutants. *Virology* **175**, 372–384.
- Senkevich, T. G., Koonin, E. V., and Buller, R. M. L. (1994). A poxvirus protein with a RING zinc finger motif is of crucial importance for virulence. *Virology* **198**, 118–128.
- Senkevich, T. G., White, C. L., Koonin, E. V., and Moss, B. (2000). A viral member of the ERV1/ALR protein family participates in a cytoplasmic pathway of disulfide bond formation. *Proc. Natl. Acad. Sci. USA* 97, 12068–12073.
- Seregin, S. V., Babkina, I. N., Nesterov, A. E., Sinyakov, A. N., and Shchelkunov, S. N. (1996). Comparative studies of gamma-interferon receptor-like proteins of variola major and variola minor viruses. *FEBS Lett.* 382, 79–83.
- Shchelkunov, S. N., Marennikova, S. S., Totmenin, A. V., Blinov, V. M., Chizhikov, V. E., Gutorov, V. V., Safronov, P. F., Pozdnyakov, S. G., Shelukhina, E. M., Gashnikov, P. V., Andzhaparidze, O. G., and Sandakhchiev, L. S. (1991). Construction of clonoteques of fragments of

smallpox virus DNA and structure-function investigation of viral host range genes. *Dokl. Akad. Nauk* **321**, 402–406.

- Shchelkunov, S. N., Blinov, V. M., and Sandakhchiev, L. S. (1993a). Genes of variola and vaccinia viruses necessary to overcome the host protective mechanisms. *FEBS Lett.* **319**, 80–83.
- Shchelkunov, S. N., Blinov, V. M., and Sandakhchiev, L. S. (1993b). Ankyrin-like proteins of variola and vaccinia viruses. *FEBS Lett.* **319**, 163–165.
- Shchelkunov, S. N., Blinov, V. M., Totmenin, A. V., Marennikova, S. S., Kolykhalov, A. A., Frolov, I. V., Chizhikov, V. E., Gutorov, V. V., Gashnikov, P. V., Belanov, E. F., Belavin, P. A., Resenchuk, S. M., Andzhaparidze, O. G., and Sandakhchiev, L. S. (1993c). Nucleotide sequence analysis of variola virus *Hind*III M, L, I genome fragments. *Virus Res.* 27, 25–35.
- Shchelkunov, S. N., Resenchuk, S. M., Totmenin, A. V., Blinov, V. M., Marennikova, S. S., and Sandakhchiev, L. S. (1993d). Comparison of the genetic maps of variola and vaccinia viruses. *FEBS Lett.* **327**, 321–324.
- Shchelkunov, S. N., Blinov, V. M., Resenchuk, S. M., Totmenin, A. V., Olenina, L. V., Chirikova, G. B., and Sandakhchiev, L. S. (1994). Analysis of the nucleotide sequence of 53 kbp from the right terminus of the genome of variola major virus strain India-1967. *Virus Res.* 34, 207–236.
- Shchelkunov, S. N., Massung, R. F., and Esposito, J. J. (1995). Comparison of the genome DNA sequences of Bangladesh-1975 and India-1967 variola viruses. *Virus. Res.* 36, 107–118.
- Shchelkunov, S. N., Safronov, P. F., Totmenin, A. V., Petrov, N. A., Ryazankina, O. I., Gutorov, V. V., and Kotwal, G. J. (1998). The genomic sequence analysis of the left and right species-specific terminal region of a cowpox virus strain reveals unique sequences and a cluster of intact ORFs for immunomodulatory and host range proteins. *Virology* 243, 432–460.
- Shchelkunov, S. N., Totmenin, A. V., Loparev, V. N., Safronov, P. F., Gutorov, V. V., Chizhikov, V. E., Knight, J. C., Parsons, J. M., Massung, R. F., and Esposito, J. J. (2000). Alastrim smallpox variola minor virus genome DNA sequences. *Virology* **266**, 361–386.
- Shchelkunov, S. N., Totmenin, A. V., Babkin, I. V., Safronov, P. F., Ryazankina, O. I., Petrov, N. A., Gutorov, V. V., Uvarova, E. A., Mikheev, M. V., Sisler, J. R., Esposito, J. J., Jahrling, P. B., Moss, B., and Sandakhchiev, L. S. (2001). Human monkeypox and smallpox viruses: Genomic comparison. *FEBS Lett.* **509**, 66–70.
- Shida, H. (1986). Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology 150, 451–462.
- Shors, T., Keck, J. G., and Moss, B. (1999). Down regulation of gene expression by the vaccinia virus D10 protein. *J. Virol.* **73**, 791–796.
- Shuman, S. (1992). Vaccinia virus RNA helicase: An essential enzyme related to the DE-II family of RNA-dependent NTPases. *Proc. Natl. Acad. Sci. USA* 89, 10935–10939.
- Shuman, S., and Morham, S. G. (1990). Domain structure of vaccinia virus mRNA capping enzyme. J. Biol. Chem. 265, 11967–11972.
- Shuman, S., and Moss, B. (1987). Identification of a vaccinia virus gene encoding a type I DNA topoisomerase. *Proc. Natl. Acad. Sci. USA* 84, 7478–7482.
- Simpson, D. A., and Condit, R. C. (1995). Vaccinia virus gene A18R encodes an essential DNA helicase. *J. Virol.* **69**, 6131–6139.
- Slabaugh, M. B., Roseman, N., Davis, R., and Matthews, C. (1988). Vaccinia virus encoded ribonucleotide reductase: Sequence conservation of the gene for the small subunit and its amplification in hydroxyurea-resistant mutants. J. Virol. 62, 519–527.
- Smith, G. L., de Carlos, A., and Chan, Y. S. (1989a). Vaccinia virus encodes a thymidylate kinase gene: Sequence and transcriptional mapping. *Nucleic Acids Res.* 17, 7581–7590.
- Smith, G. L., Chan, Y. S., and Kerr, S. M. (1989b). Transcriptional mapping and nucleotide sequence of a vaccinia virus gene encoding a polypeptide with extensive homology to DNA ligases. *Nucleic Acids Res.* 17, 9051–9062.
- Smith, G. L., Howard, S. T., and Chan, Y. S. (1989c). Vaccinia virus

encodes a family of genes with homology to serine proteinase inhibitors. *J. Gen. Virol.* **70**, 2333-2343.

- Smith, S. A., Mullin, N. P., Parkinson, J., Shchelkunov, S. N., Totmenin, A. V., Loparev, V. N., Srisatjaluk, R., Reynolds, D. N., Keeling, K. L., Justus, D. E., Barlow, P. N., and Kotwal, G. J. (2000). Conserved surface-exposed K/R-X-K/R motifs and net positive charge on poxvirus complement control proteins serve as putative heparin binding sites and contribute to inhibition of molecular interactions with human endothelial cells: A novel mechanism for evasion of host defense. J. Virol. **74**, 5659–5666.
- Smith, C. A., Smith, T. D., Smolak, P. J., Friend, D., Hagen, H., Gerhart, M., Park, L., Pickup, D. J., Torrance, D., Mohler, K., Schooley, K., and Goodwin, R. G. (1997). Poxvirus genomes encode a secreted, soluble protein that preferentially inhibits β chemokine activity yet lacks sequence homology to known chemokine receptors. *Virology* **236**, 316–327.
- Spehner, D., Gillard, S., Drillien, R., and Kirn, A. (1988). A cowpox virus gene required for multiplication in Chinese hamster ovary cells. *J. Virol.* 62, 1297–1304.
- Spriggs, M. K., Hruby, D. E., Maliszewski, C. R., Pickup, D. J., Sims, J. E., Buller, R. M. L., and Van Slyke, J. (1992). Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. *Cell* **71**, 145– 152.
- Stuart, D. T., Upton, C., Higman, M. A., Niles, E. G., and McFadden, G. (1993). A poxvirus-encoded uracil DNA glycosylase is essential for virus viability. *J. Virol.* 67, 2503–2512.
- Sung, T.-C., Roper, R. L., Zhang, Y., Rudge, S. A., Temel, R., Hammond, S. M., Morris, A. J., Moss, B., Engebrecht, J., and Frohman, M. A. (1997). Mutagenesis of phospholipase D defines a superfamily including a *trans*-Golgi viral protein required for poxvirus pathogenicity. *EMBO J.* **16**, 4519–4530.
- Symons, J. A., Alcami, A., and Smith, G. L. (1995). Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. *Cell* 81, 551–560.
- Takahashi, T., Oie, M., and Ichihashi, Y. (1994). N-terminal amino acid sequences of vaccinia virus structural proteins. *Virology* **202**, 844–852.
- Tamin, A., Villarreal, E. C., Weinrich, S. L., and Hruby, D. E. (1988). Nucleotide sequence and molecular genetic analysis of the vaccinia virus *Hind*III N/M region encoding the genes responsible for resistance to α-amanitin. *Virology* **165**, 141–150.
- Tengelsen, L. A., Slabaugh, M. B., Bibler, J. K., and Hruby, D. E. (1988). Nucleotide sequence and molecular genetic analysis of the large subunit of ribonucleotide reductase encoded by vaccinia virus. *Virology* **164**, 121–131.
- Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 22, 4673–4680.
- Traktman, P., Caligiuri, A., Jesty, S. A., and Sankar, U. (1995). Temperature-sensitive mutants with lesions in the vaccinia virus F10 kinase undergo arrest at the earliest stage of morphogenesis. *J. Virol.* 69, 6581–6587.
- Turner, P. C., Baquero, M. T., Yuan, S., Thoennes, S. R., and Moyer, R. W. (2000). The cowpox virus serpin SPI-3 complexes with and inhibits urokinase-type and tissue-type plasminogen activators and plasmin. *Virology* 272, 267–280.
- Ueda, Y., Morikawa, S., and Matsuura, Y. (1990). Identification and nucleotide sequence of the gene encoding a surface antigen induced by vaccinia virus. *Virology* 177, 588–594.
- Upton, C., Macen, J. L., Schreiber, M., and McFadden, G. (1991). Myxoma virus expresses secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence. *Virology* **184**, 370–382.
- Upton, C., Schiff, L., Rice, S. A., Dowdeswell, T., Yang, X., and McFadden, G. (1994). A poxvirus protein with a RING finger motif binds zinc and localizes in virus factories. J. Virol. 68, 4186–4195.

- Upton, C., Stuart, D. T., and McFadden, G. (1993). Identification of a poxvirus gene encoding a uracil DNA glycosylase. *Proc. Natl. Acad. Sci. USA* **90**, 4518–4522.
- Van Eijl, H., Hollinshead, M., and Smith, G. L. (2000). The vaccinia virus A36R protein is a type Ib membrane protein present on intracellular but not extracellular enveloped virus particles. *Virology* **271**, 26–36.
- Van Meir, E., and Wittek, R. (1988). Fine structure of the vaccinia virus gene encoding the precursor of the major core protein 4a. *Arch. Virol.* **102**, 19–27.
- Venkatesan, S., Gershowitz, A., and Moss, B. (1982). Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the inverted terminal repetition. J. Virol. 44, 637–646.
- Wang, S., and Shuman, S. (1995). Vaccinia virus morphogenesis is blocked by temperature-sensitive mutations in the F10 gene, which encodes protein kinase 2. J. Virol. 69, 6376–6388.
- Wang, S. P., and Shuman, S. (1996). A temperature-sensitive mutation of the vaccinia virus E11 gene encoding a 15-kDa virion component. *Virology* 216, 252–257.
- Weinrich, S. L., and Hruby, D. E. (1986). A tandemly-oriented late gene cluster within the vaccinia virus genome. *Nucleic Acids Res.* 14, 3003–3016.
- Weir, J. P., and Moss, B. (1983). Nucleotide sequence of the vaccinia virus thymidine kinase gene and the nature of spontaneous frameshift mutations. J. Virol. 46, 530–537.
- White, C. L., Weisberg, A. S., and Moss, B. (2000). A glutaredoxin, encoded by the G4L gene of vaccinia virus, is essential for virion morphogenesis. J. Virol. 74, 9175–9183.
- Whitehead, S. S., and Hruby, D. E. (1994). A transcriptionally controlled trans-processing assay: Putative identification of a vaccinia virusencoded proteinase which cleaves precursor protein P25K. J. Virol. 68, 7603–7608.
- Williams, O., Wolffe, E. I., Weisberg, A. S., and Merchlinsky, M. (1999). Vaccinia virus WR gene A5L is required for morphogenesis of mature virions. J. Virol. 73, 4590–4599.
- Wittek, R., and Moss, B. (1980). Tandem repeats within the inverted terminal repetition of vaccinia virus DNA. *Cell* **21**, 277–284.
- Wittek, R., Menna, A., Muller, K., Schumperli, D., Bosley, P. G., and Wyler, R. (1978). Inverted terminal repeats in rabbit poxvirus and vaccinia virus DNA. J. Virol. 28, 171–181.

- Wolffe, E. J., Isaacs, S. N., and Moss, B. (1993). Deletion of the vaccinia virus B5R gene encoding a 42-kilodalton membrane glycoprotein inhibits extracellular virus envelope formation and dissemination. *J. Virol.* 67, 4732–4741.
- Wolffe, E. J., Moore, D. M., Peter, P. J., and Moss, B. (1996). Vaccinia virus A17L open reading frame encodes an essential component of nascent viral membranes that is required to initiate morphogenesis. *J. Virol.* **70**, 2797–2808.
- Wolffe, E. J., Katz, E., Weisberg, A., and Moss, B. (1997). The A34R glycoprotein gene is required for induction of specialized actincontaining microvilli and efficient cell-to-cell transmission of vaccinia virus. J. Virol. **71**, 3904–3915.
- Wolffe, E. J., Weisberg, A. S., and Moss, B. (1998). Role for the vaccinia virus A36R outer envelope protein in the formation of virus-tipped actin-containing microvilli and cell-to-cell virus spread. *Virology* 244, 20–26.
- Xiang, Y., Simpson, D. A., Spiegel, J., Zhou, A., Silverman, R. H., and Condit, R. C. (1998). The vaccinia virus A18R DNA helicase is a postreplicative negative transcription elongation factor. *J. Virol.* 72, 7012–7023
- Xue, F., and Cooley, L. (1993). kelch encodes a component of intercellular bridges in Drosophila egg chambers. Cell 72, 681–693.
- Yang, W.-P., Kao, S.-Y., and Bauer, W. R. (1988). Biosynthesis and posttranslational cleavage of vaccinia virus structural protein VP8. *Virol*ogy 167, 585–590.
- Zajac, P., Spehner, D., and Drillien, R. (1995). The vaccinia virus J5L open reading frame encodes a polypeptide expressed late during infection and required for viral multiplication. *Virus Res.* 37, 163–173.
- Zhang, Y., and Moss, B. (1992). Immature viral envelope formation is interrupted same stage by *lac* operator-mediated repression of the vaccinia virus D13L gene and by the drug rifampicin. *Virology* 187, 643–653.
- Zhang, Y., Ahn, B.-Y., and Moss, B. (1994). Targeting of a multicomponent transcription apparatus into assembling vaccinia virus particles requires RAP94, an RNA polymerase-associated protein. *J. Virol.* 68, 1360–1370.
- Zhang, W.-H., Wilcock, D., and Smith, G. L. (2000). Vaccinia virus F12L protein is required for actin tail formation, normal plaque size, and virulence. *J. Virol.* **74**, 11654–11662.