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Abstract: Hepatocellular carcinoma (HCC) is a major cause of increases in the mortality rate due to
cancer that usually develops in patients with liver fibrosis and impaired hepatic immunity. Hepatic
stellate cells (HSCs) may directly or indirectly crosstalk with various hepatic cells and subsequently
modulate extracellular remodeling, cell invasion, macrophage conversion, and cancer deterioration.
In this regard, the tumor microenvironment created by activated HSC plays a critical role in mediating
pathogenesis and immune escape during HCC progression. Herein, intermediately differentiated
human liver cancer cell line (J5) cells were co-cultured with HSC-conditioned medium (HSC-CM);
changes in cell phenotype and cytokine profiles were analyzed to assess the impact of HSCs on the
development of hepatoma. The stage of liver fibrosis correlated significantly with tumor grade, and
the administration of conditioned medium secreted by activated HSC (aHSC-CM) could induce the
expression of N-cadherin, cell migration, and invasive potential, as well as the activity of matrix
metalloproteinases in J5 cells, implying that aHSC-CM could trigger the epithelial-mesenchymal
transition (EMT). Next, the HSC-CM was further investigated and network analysis indicated that
specific cytokines and soluble proteins, such as activin A, released from activated HSCs could remark-
ably affect the tumor-associated immune microenvironment involved in macrophage polarization,
which would, in turn, diminish a host’s immune surveillance and drive hepatoma cells into a more
malignant phenotype. Together, our findings provide a novel insight into the integral roles of HSCs
to enhance hepatocarcinogenesis through their immune-modulatory properties and suggest that HSC
may serve as a potent target for the treatment of advanced HCC.

Keywords: hepatocellular carcinoma; hepatic stellate cells; epithelial-mesenchymal transition; cy-
tokine array; macrophage; network analysis

1. Introduction

Hepatocellular carcinoma (HCC) is an significant cause of death due to cancer, which is
associated with the increase in the incidences of liver fibrosis/cirrhosis induced by various
etiologies, including viral hepatitis, immune disorders, alcoholic cirrhosis, and nonalcoholic
steatohepatitis, suggesting that liver fibrogenesis plays a key role in the changes of tumor
microenvironment in HCC [1–3]. This is predominantly caused by the high risk of chronic
hepatic inflammation. Until now, the overall prognosis of patients with HCC remains poor,

Int. J. Mol. Sci. 2022, 23, 10777. https://doi.org/10.3390/ijms231810777 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms231810777
https://doi.org/10.3390/ijms231810777
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-6495-7221
https://orcid.org/0000-0002-4004-2518
https://orcid.org/0000-0002-0187-8689
https://doi.org/10.3390/ijms231810777
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms231810777?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 10777 2 of 15

and the fibrogenic microenvironment, as well as the pathways linked to the progression of
HCC, should be urgently addressed.

The development of HCC is modulated by the hepatic microenvironment, which
consists of multiple cell types, including hepatocytes, HSCs, and immune cells [4]. Of
note, activated HSCs lead to phenotypic changes and increase cell proliferation, while
HSCs stimulate the release of cytokines, chemokines, MMPs, and growth factors, which
may aggravate liver inflammation and promote HCC progression by inducing EMT [5–8].
Meanwhile, activated HSCs also release chemokines to recruit immune cells and these
immune cells further activate HSCs via cytokine secretion or direct crosstalk between
cells [9–11]. Among immune cells in the tumor microenvironment, macrophages are the
most abundant normal cells. The macrophages, which produce profibrogenic cytokines,
have critical roles in liver fibrogenesis and act bidirectionally in the regulation of matrix
deposition and resolution. On the other hand, tumor-associated macrophages (TAMs),
which may suppress the T cell responses, exhibit protumoral effects, including angiogene-
sis, tumor cell invasion, and persistent growth [12–14]. Therefore, the liver macrophage
phenotype is pivotal for HCC initiation [15]. This research implies that the events occurring
in the hepatic microenvironment might promote the susceptibility to HCC progression and
elicit the prospect of attenuated risk of HCC after successful anti-fibrotic treatment.

A large number of proteins and molecules are changed both in quantity and quality
during the hepatic carcinogenesis [16]; thus, bioinformatic analyses for data mining offers
a feasible tool for high-throughput screening and differentially identifying protein targets
that are connected to the pathogenesis and pinpointing the signaling pathways, resulting
in the deterioration of HCC [17,18]. Herein, we used the MetaCore™ pathway software
to comprehensively analyze the differences in protein and cytokine levels for further
delineation of cellular interactions and identified associated molecular mechanisms related
to the HSC-mediated HCC development.

A pile of evidence has indicated that HSC-derived signaling molecules may conse-
quentially contribute to the recruitment and differentiation of immune cells in the liver,
whereas their specific roles linked to the malignant potential of HCC remain to be further
explored. Collectively, the present study demonstrated an involvement of activated HSC,
HSC-secreted cytokines/molecules, hepatocytes, and macrophages in the development
of HCC.

2. Results
2.1. The Levels of α-Smooth Muscle Actin (SMA) Implicate the Association between the Degrees of
Hepatic Fibrosis and HCC Stage

We first investigated whether liver fibrosis is linked to clinicopathological characteris-
tics of HCC by comparing the status of hepatic fibrosis and the level of α-SMA with various
tumor grades. As shown in Figure 1, the hematoxylin-eosin (H&E) staining demonstrated
that an intact lobular architecture and normal hepatic cells could be observed in the control
sample, whereas the hepatic injuries, manifested as massive necrosis of the hepatocytes;
obvious sinusoidal congestion; and inflammatory cell infiltration were worsening with an
increasing degree of liver fibrosis. Again, the expression of α-SMA increased significantly
in the HCC patients graded as 3, whereas a mild signal of α-SMA was detected in tumor
specimens under grade 2, indicating the stage of liver fibrosis could be applied as a valuable
indicator for HCC prognosis.
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200 μm and 100 μm). Lower panels: IHC analysis of α-smooth muscle actin (α-SMA) expression in 

normal and different stages of hepatocellular carcinoma tissues (bar scale 200 μm and 50 μm). The 

positive signal is indicated in brown and their magnified images are shown in lower right squares. 

I, II and III indicated stages of HCC. 
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J5 cells significantly increased the expression of N-cadherin, compared to that treated with 

qHSC-CM, whereas ZO-1 protein was remarkably upregulated in the presence of qHSC-
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Figure 1. Histological analysis of the association between hepatic fibrosis and HCC stages (I, II, III).
Upper panels: Liver fibrosis was determined by hematoxylin and eosin (H&E) staining (bar scale
200 µm and 100 µm). Lower panels: IHC analysis of α-smooth muscle actin (α-SMA) expression in
normal and different stages of hepatocellular carcinoma tissues (bar scale 200 µm and 50 µm). The
positive signal is indicated in brown and their magnified images are shown in lower right squares. I,
II and III indicated stages of HCC.

2.2. HSC-CM Stimulated Migration and Invasion of J5 Cells under Application of TGF-β1

To further examine any correlation between particular molecules derived from acti-
vated HSCs and the metastatic potential in HCC cells, HSC-CM obtained from HSC-T6
cells treated with or without TGF-β1 (aHSC-CM or qHSC-CM) was applied to J5 cells. At
first, HSC-T6 cells were activated with TGF-β1 for 24 hours (h), which was manifested by
notably increased protein expressions of α-SMA and collagen I (COLA1), compared with
the control group. Western blot analysis also demonstrated that exposure of aHSC-CM to
J5 cells significantly increased the expression of N-cadherin, compared to that treated with
qHSC-CM, whereas ZO-1 protein was remarkably upregulated in the presence of qHSC-
CM, with respect to the sample administrated with aHSC-CM, suggesting that the liver
fibrogenic microenvironment could largely affect the EMT of HCC cells (Figure 2A). Next,
scratch-wound assays indicated that the aHSC-CM-applied J5 cells migrated particularly
rapidly in this assay and filled the empty space within 24 h, but the qHSC-CM-treated
cells repopulated the cleared space at a much slower rate within the same time point
(Figure 2B). In addition, an 88% increase in the invasive cell number was identified in
J5 cells treated with aHSC-CM, compared to that in the control and qHSC-CM-exposed
samples (Figure 2C). In line with these results, zymographic experiments indicated that
treatment of aHSC-CM significantly promoted the activity of MMPs in J5 cells, while only
a trace signal was detected in the control and qHSC-CM-applied samples (Figure 2D).

2.3. Characterization of the Changes in Global Cytokine/Chemokine Profile of Different HSC-CM

The aforementioned results showed that aHSC-CM application might induce the
canonical cascades involved in the depravation of HCC. Accordingly, we utilized the cy-
tokine array to delineate the global changes in the expression of cytokines and chemokines
that mediated HCC advancement. As demonstrated in Figure 3A, low levels of cytokines
and chemokines were detected in the qHSC-CM; several cytokines/chemokines, including
the tumor necrosis factor (TNF)-α, IL-13, vascular endothelial growth factor, granulocyte-
macrophage colony-stimulating factor (GM-CSF), intercellular adhesion molecule (ICAM)-
1, activin A, interferon (IFN)-γ, agrin, interleukin (IL)-1β, CD86, platelet-derived growth fac-
tor (PDGF), β-nerve growth factor (β-NGF), cytokine-induced neutrophil chemoattractant-1
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(CINC-1), IL-4, IL-6, IL-10, thymus chemokine 1, and tissue inhibitor of metalloproteinase
(TIMP), were significantly induced in the aHSC-CM (Figure 3B). Of note, activin A, which
is the pluripotent growth and proinflammatory factor of the TGF superfamily was further
verified by the functional experiment, utilizing the siRNAs in HSC-T6. The knockdown
of activin A obviously suppressed the level of α-SMA, while p-ERK was also significantly
arrested with respect to the mock (Figure 3C). The silence of activin A also significantly
suppressed the migration and invasion in J5 cells (Supplement Figure S1). In the clinical
samples, the expression of activin A were further confirmed, and high levels of activin
A were identified in the stage III HCC subject with respect to that of the normal control
and lower stage HCC samples, suggesting that activin A could warrant the subsequent
malignance of HCC (Figure 3D).
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Figure 2. The efficacy of HSC-CM upon HCC J5 cells. (A) Validation of the changes of protein
levels in HSCs treated with or without TGF-β1 and J5 cells exposed to aHSC-CM or qHSC-CM
through Western blot analysis. GAPDH was used as the loading control. The quantified results were
indicated by the bar chart (* p < 0.05, *** p < 0.001). (B) aHSC-CM administration enhanced wound
closure. Representative phase-contrast micrographs of scratch-wounded confluent cultures with
regular DMEM (−), qHSC-CM, and aHSC-CM-treated J5 cells at 0, 24, 48, and 72 h post-wounding
(* p < 0.05, *** p < 0.001, n.s. indicated no significance). (C) A marked increase in cell invasion was
observed in the human liver cancer J5 cells treated with aHSC-CM, compared to that of regular
DMEM (−) and qHSC-CM (bar scale 200 µm). A comparison of the number of transmembrane
cells indicates 88% enhancement after the administration of aHSC-CM. The quantified results were
demonstrated by the bar chart and represent the mean ± SD of three independent experiments
(* p < 0.05, *** p < 0.001). (D) Gelatin zymographic assay was performed using the medium of J5 cells
treated with regular DMEM (−), qHSC-CM, and aHSC-CM. The quantitative results were shown as
bar charts (*** p < 0.001).
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A expression in adjacent normal part, stage I, and stage III of hepatic cancer tissues. The positive 
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underlying pathways regulated by these 34 proteins were built by MetaCore™ software. 
The MetaCore™ Pathway Maps indicated that these proteins were mainly associated with 
immune responses, proinflammatory cytokines, and macrophage phenotype shift (Figure 
4A). To confirm the above results, the in-situ expression patterns of different macrophage 
subpopulations was verified by IHC, and a highly expressed M2 macrophage with CD163 
marker was found in the tumor and peritumoral liver tissue of stage 2 or 3 HCC samples, 
compared to that of the normal part and lower grade of HCC. In addition, the cluster of 
differentiation CD68 may be considered as an M1 macrophage marker. The peri-tumor 
lesions stained positively for CD68, whereas the majority of tumor cells and hepatic cells 

Figure 3. Reveal the overall cytokine/chemokine profile changes by cytokine array. (A) Levels of
cytokine/chemokine in the aHSC-CM and qHSC-CM were assessed by cytokine arrays. (B) The inten-
sity of the chemiluminescent signals for each spot was quantified by GeneTools software. Expression
levels were normalized with respect to positive controls on the array membrane. The quantitative
results indicate the differences in expression values of cytokine/chemokine and demonstrated as
a bar chart. (C) HSC-T6 cells were transfected with or without siRNA of activin A. Protein levels
were measured by Western blot analysis. β-actin was used as an internal control. The quantified
results were indicated by the bar chart (*** p < 0.001). (D) Immunohistochemical study of activin A
expression in adjacent normal part, stage I, and stage III of hepatic cancer tissues. The positive signal
was presented in brown (bar scale 100 µm).

2.4. Functional Impact of Activated HSCs on HCC Microenvironment

To obtain the functional insight of the molecules released from activated HSCs, the
underlying pathways regulated by these 34 proteins were built by MetaCore™ software.
The MetaCore™ Pathway Maps indicated that these proteins were mainly associated
with immune responses, proinflammatory cytokines, and macrophage phenotype shift
(Figure 4A). To confirm the above results, the in-situ expression patterns of different
macrophage subpopulations was verified by IHC, and a highly expressed M2 macrophage
with CD163 marker was found in the tumor and peritumoral liver tissue of stage 2 or
3 HCC samples, compared to that of the normal part and lower grade of HCC. In addition,
the cluster of differentiation CD68 may be considered as an M1 macrophage marker. The
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peri-tumor lesions stained positively for CD68, whereas the majority of tumor cells and
hepatic cells stained negatively (Figure 4B). Finally, qHSC-CM and aHSC-CM were applied
to RAW264.7 cells to directly observe the macrophage phenotype shift, while LPS was
utilized as the positive control. As expected, LPS stimulated the inflammatory response,
which manifested as an increase in both CD63 and CD168. The aHSC-CM application
significantly promoted the expression of CD168, compared to that treated with qHSC-
CM, whereas the level of CD68 showed no obvious difference between samples exposed
to qHSC-CM and aHSC-CM, respectively (Figure 4C). These findings indicated that the
treatment of aHSC-CM will reprogram the macrophages and activate M2-related genes,
which was in congruence with the results obtained from the network analysis.
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Figure 4. Network analysis to predict the influence of activated HSCs on phenotype shift of
macrophages. (A) Top-ranked pathways from the GeneGo MetaCore™ pathway analysis are indi-
cated. Pathways were ranked according to p values, and bars represent the inverse log of the p values.
(B) Upper panels: the expression levels and patterns of peritumoral infiltrated CD68+ macrophages
in different stages of HCC samples. Lower panels: the expression levels of CD163+ as indicated
by red arrows were significantly increased in the advanced stage of HCC. (bar scale 200 µm) (C)
RAW264.7 cells were cultured with LPS, aHSC-CM, and qHSC-CM. The expression levels of CD68
and CD163 were determined by Western blotting analysis and β-actin was used as an internal control.
The quantitative results were demonstrated as bar charts (** p < 0.01, *** p < 0.001, n.s. indicated no
significance).

3. Discussion

Hepatic fibrosis is an important risk factor for HCC etiology and the activation of HSCs
is the central event of hepatic fibrosis and the development of advanced HCC [19–21]. In
this regard, the tumor microenvironment built as a result of the interplays among activated
HSCs, HCC cells, hepatic ECM, and immune system should be addressed to elucidate the
molecular therapeutic targets for preventing liver fibrosis and HCC progression.

Histopathological examination revealed the positive correlation with the degree of
liver fibrogenesis and the severity of HCC, indicating that some molecules released from
the activated HSC cells could be applied to stimulate the depravation of the HCC [22]. As
expected, aHSC-CM treatment enhanced the metastatic potential of J5 cells, as manifested
by the increased ability to invade and migrate. On examining the proteins associated
with EMT, we observed that epithelial markers, such as ZO-1, were downregulated, while
mesenchymal markers, such as N-cadherin, were upregulated in aHSC-CM-applied cells.
Meanwhile, the levels of matrix metalloproteinases (MMPs), including MMP-2 and MMP-9,
related with extracellular remodeling and HCC progression were increased under the
administration of aHSC-CM [23–25]. Therefore, we suggest that activated HSCs release
specific molecules to the microenvironment, which enables HCC cell line, such as J5 cell, to
acquire invasiveness and metastasis capacity.

The global cytokine surveys of HSC-CM have demonstrated that TNF-α, agrin, PDGF,
activin A, GM-CSF, IFN-γ, IL-1β, IL-4, IL-6, IL-10, IL-13, and TIMP-1, which subsequently
induce acute inflammation and liver fibrosis, were elevated in aHSC-CM relative to the
qHSC-CM. Of note, TNF-α and IL-13 trigger the activation of quiescent HSCs into my-
ofibroblasts, which stimulate the expression of α-SMA and collagen I, enhancing the
accumulation of ECM, as well as the metastatic potential of HCC [26]. The IL-6 level in
HCC patients is closely linked to tumor progression and relapse, since IL-6 could induce
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myeloid-derived suppressor cells to inhibit T-cell immunity and enhance HCC progres-
sion [27–29]. PDGF is an effective activator of HSC; likewise, we also observed that PDGF
expression was elevated in aHSC-CM, which, in turn, induced phenotypic changes in
hepatocytes in favor of tumor cell growth. Agrin, a proteoglycan, is a marker of liver
tissue because it is most commonly identified in the liver vasculature and in the base-
ment membrane of the bile ducts. It is secreted by activated HSCs in response to PDGF
stimulation. Thus, the blockage of PDGF could suppress liver inflammation and fibrosis,
as well as inhibiting argin-mediated hepatic carcinogenesis [30]. TIMP-1 secretion was
also found to increase in aHSC-CM, which enhances the deposition of ECM to generate
the tumor stroma and further abrogate the immune attack. In vitro increases in matrix
stiffness have been reported to directly stimulate the growth of the HCC cells and attenuate
chemotherapy-induced apoptosis [31]. In particular, activin A is a molecule of the TGF
superfamily, implicated in liver fibrosis and cancer [32]. We also confirmed that increased
levels of activin A were closely linked to the higher stages in HCC tissue. Moreover, the
knockdown of activin A in HSCs and J5 cells showed the roles of activin A in promoting
liver fibrosis and malignance of tumor cells. Taken together, the microenvironment created
by activated HSCs is prone to induce HCC deterioration via a particular combination of
cytokines and chemokines.

MetaCore™ software was used to elucidate cytokine data. The relative enrichment
was responsible mainly for the regulation of immune response and macrophage pheno-
type shift. Most importantly, great amounts of evidence suggests that macrophages and
macrophage-associated factors participate in the development and progression of hepatic
fibrosis and HCC [33,34]. Various cellular signals and molecules may trigger the M1-
/M2-macrophage polarization. The macrophages undergo classical M1 activation via the
stimulation of IL-1β and IFN-γ, while TGF-β1, activin A, IL-4, IL-10 and IL-13 cascades
induce alternative M2-macrophages [35–37]. CD163 is involved in immune dysregulation,
as well as pro-tumorigenesis and it is a confirmed as a specific marker of M2 macrophages.
Previous reports have indicated that intratumoral CD163+ macrophages are involved in
poor prognosis in various cancers [38]. Our results also showed that CD163+ macrophages
were found to increase significantly within more advanced HCC samples with metastatic
potent. On the other hand, the CD68+ M1 macrophage is characterized by high level
expression of pro-inflammatory cytokines, which modulate the immune microenvironment
to trigger liver fibrogenesis [39]. Herein, we observed that the densities of peritumoral
infiltrated CD163+ cells are positively correlated with expression of CD68+ macrophages,
demonstrating that the development of liver fibrosis should be closely linked to the advance-
ment and poor prognosis of HCC. We also found that administration of aHSC-CM could
stimulate the expression of CD163+ and inactivate inflammatory properties manifested as
decreases in CD68+. As mentioned above, our results imply that activated HSCs build up
a microenvironment where HSCs secrete specific cytokine/chemokine and molecules to
modulate the immune responses and to shift macrophage subtypes, in turn, resulting in
neoplastic progression.

In summary, the results of the present study recognized that activated HSCs could
enhance the progression of HCC to a great extent via specific pathways, as follows: a. HSC
activation during liver fibrosis creates a tumor microenvironment via releasing various
cytokines/chemokines or molecules to modulate the immune responses, ECM architecture,
and EMT, which plays a central role in the progression of HCC. b. the hepatocytes received
the activated HSC-secreted signals, including IL-6, IL-10, agrin, and activin A, which would
gain the malignant properties. c. activin A, as a pivotal factor, is closely linked to the shift
of macrophage subtypes, which is revealed by network analysis and verified by in vitro
experiment. Hence, targeting activin-A could be a novel therapeutic approach to control
immune responses and HCC progression. Meanwhile, the incompatible effects of hepatic
macrophages can be attributed to their heterogeneous phenotypes and interactions with
various nonparenchymal cells and hepatocytes, resulting in the hepatic tumorigenesis
(Figure 5).
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4. Materials and Methods
4.1. Tissue Array

We applied commercial tissue array (SuperBioChips Laboratories, Seoul, Korea) to
determine the liver morphology, as well as the expression levels of α-SMA, activin A, CD68,
and CD163 in clinical samples. These microarray blocks were further applied for H&E and
immunohistochemical (IHC) staining. Briefly, the sections were rehydrated with graded
ethanol and immersed in Tris-buffered saline after the removal of paraffin with xylene.
Next, IHC with antibody in phosphate-buffered saline (PBS) was utilized and sections were
counterstained with Mayer’s hematoxylin for 2 min [40]. The slides were observed under a
light microscope (Olympus BX51, Tokyo, Japan) and digital photomicrographs were then
processed with DP-72 (Olympus).

4.2. Cell Culture

The immortalized rat myofibroblast cell line HSC-T6 was a kind gift from Dr. Scott
L. Friedman (Mount Sinai School of Medicine, New York, NY, USA). The HSC-T6 cells
were maintained in Waymouth medium containing 10% fetal bovine serum (FBS) at 37 ◦C
in a humidified atmosphere of 5% CO2. The human hepatocellular carcinoma J5 cells
were cultured with Dulbecco’s modified Eagle’s medium (DMEM) containing 10% FBS
for evaluation of HCC cell migration and invasion. RAW264.7, a mouse macrophage cell
line, was cultured in RPMI-1640 containing 10% FBS, 100 U/mL penicillin, and 100 µg/mL
streptomycin to verify the phenotype shift of macrophages. Experiments were performed
with cells after 5~10 passages.

4.3. Collection of Conditioning Medium (CM) from HSCs

The rat hepatic stellate cell line, HSC-T6, was cultured in Waymouth medium with
0.2% FBS plus TGF-β1 (5 ng/mL; ProSpec-Tany TechnoGene, Rehovot, Israel). The culture
supernatant was collected after 2 days culture as a conditioned medium (aHSC-CM). HSC-
T6 cells were subcultured in Waymouth medium with 10% FBS, then transferred into serum
free Waymouth medium after attachment, and the supernatant was collected 2 days later
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(qHSC-CM). The supernatant was centrifuged at 2000 rpm for 10 min to deplete cell debris
and then stored at −20 ◦C.

4.4. Wound-Migration Assay

J5 cells were seeded on a six well plate (1 × 105 cells/well) and cultured with DMEM
supplemented with 10% FBS. Twenty-four hours later, the cell layers were scratched with
the tip of a pipette and the supernatant was replaced with 2 mL regular medium, aHSC-CM
and qHSC-CM. A wound was formed using a 200 µL pipette tip to clear the cell monolayer,
and the boundary of the wound was marked. Cells were then washed three times with
PBS and incubated for 24 h at 37 ◦C under a 5% CO2 atmosphere. After incubation, cell
migration was measured by counting the number of cells that migrated into the clear
space using an Olympus microscope (IX71) at 20× fitted with an ocular grid. Results
presented are the mean of four random fields of wounds sampled from three independent
experiments. The areas of cell migration were determined by dividing the mean number of
cells that moved from the edge to the wounded area by cells that moved from the edge in
the control culture. The percentage wound area that was filled with proliferated J5 cells for
24 h was calculated as follows: [(mean wound breadth–mean remaining breadth)/mean
wound breadth] × 100 (%).

4.5. Invasion Assay

Twenty-four well, 8 µm pore size Matrigel invasion chambers (Corning Inc., Corning,
NY, USA) were used for invasion assay. J5 cells were seeded into the upper chamber
(5 × 104 cells/well) and cultured with regular DMEM, aHSC-CM and qHSC-CM. Twenty-
four hours later, cells that had migrated through the Matrigel were stained with a trypan
blue solution (0.4%) and counted, and the invasion index was calculated by dividing the per-
cent of cells that migrated through the Matrigel by the percent of cells that moved through
the pores of an uncoated membrane. Invasion was quantified by counting the number of
cells in 4 fields per filter at × 100 magnification from three independent experiments.

4.6. Gelatin Zymography

Zymographic assays provide a reliable assessment in human cancer progression. J5
cells were cultured with regular DMEM, aHSC-CM, and qHSC-CM and the supernatants
were collected. Next, the gelatin zymography was performed as previously described [41].
After electrophoresis, gels were washed with 50 mM Tris–HCl, at pH 7.4, containing
2.5% Triton X-100 (v/v) for 1 h, then incubated at 37 ◦C overnight in 50 mM Tris–HCl
buffer containing 5 mM CaCl2. Digestion was terminated, and gels were stained with
0.5% Coomassie brilliant blue R250 followed by destaining with 10% acetic acid and
10% methanol. Enzyme-digested regions were observed as white bands against a blue
background. Zones of enzymatic activity were seen as negatively stained bands.

4.7. Cytokine Protein Array and Functional Analysis

The spectrum of cytokines/chemokines in the aHSC-CM and qHSC-CM was deter-
mined using an antibody-based protein microarray (RayBio Rat Cytokine C2, RayBiotech
Inc.) designed to detect 34 growth factors, cytokines, and chemokines. Proteins were
detected via an enhanced chemiluminescence procedure according to previously described
procedures [42]. By subtracting the background staining and normalizing to the positive
controls on the same membrane, we obtained the relative protein concentrations. To un-
derstand the functional role of these 34 growth factors, cytokines, and chemokines, we
applied MetaCore™ software (vers. 5.2 build 17389, GeneGo, St. Joseph, MI, USA) to reveal
associated ontological classes and relevant pathways. The algorithm builds biological
networks from uploaded proteins and assigns a biological process to each network [43].
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4.8. Western Blot Analysis

Western blot analysis was applied to perform and quantify the amount of protein.
The protein obtained from the skin was isolated using 1× cell lysis buffer (Cell Signaling,
Danvers, MA, USA) and the concentration was determined with the Bradford Protein
Assay Kit (AMRESCO, Solon, OH, USA). The specific antibodies used in the current study
were listed as follows: α-SMA (Santa Cruz, Dallas, TX, USA, sc-32251), COLA1 (Santa Cruz,
sc-8784), CD68 (Santa Cruz, sc-20060) and GAPDH (Santa Cruz, sc-25778), N-cadherin
(Epitomics, Burlingame, CA, USA, 2019-1), ZO-1 (Cell Signaling, 9782), phospho-ERK (Cell
Signaling, 9101) and ERK (Cell Signaling, 4695), activin A (myBioSource, San Diego, CA,
USA, MBS7103066 & MBS9201920), and CD163 (Bioss, Woburn, MA, USA, bs-2527R). The
band intensity was quantified by using GeneTools software (Syngene, Cambridge, UK)
and the level of GAPDH was performed as internal control [44]. All experiments were
performed in biological triplicate to confirm the reproducibility.

4.9. Statistical Analysis

The statistical analysis was executed with Prism software (v5.0, Prism GraphPad,
San Diego, CA, USA). The students’ t test was applied for comparison between 2 groups
and one-way analysis of variance (ANOVA) was used for multiple groups (≥3 groups)
comparison. All data in this study were obtained from at least 3 individual experiments
and presented as mean ± standard deviation (SD). The p-value <0.05 was considered to be
statistically different.
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