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Abstract
The human microbiota, a complex community of microorganisms residing in and on the human body, plays a 
crucial role in maintaining health and preventing disease. Bifidobacterium species have shown remarkable 
therapeutic potential across a range of health conditions, thus being considered optimal probiotic bacteria. This 
review provides insights into the concept of probiotics and explores the impact of bifidobacteria on human health, 
focusing on the gastrointestinal, respiratory, skeletal, muscular, and nervous systems. It also integrates information 
on the available genetic bases underlying the beneficial effects of each bifidobacterial probiotic species on different 
aspects of human physiology. Notably, Bifidobacterium-based probiotics have proven effective in managing 
gastrointestinal conditions such as constipation, antibiotic-associated diarrhea, irritable bowel syndrome (IBS), 
inflammatory bowel disease (IBD), and Helicobacter pylori infections. These benefits are achieved by modulating the 
intestinal microbiota, boosting immune responses, and strengthening the gut barrier. Moreover, Bifidobacterium 
species have been reported to reduce respiratory infections and asthma severity. Additionally, these probiotic 
bacteria offer benefits for skeletal and muscular health, as evidenced by Bifidobacterium adolescentis and 
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Bifidobacterium breve, which have shown anti-inflammatory effects and symptom relief in arthritis models, 
suggesting potential in treating conditions like rheumatoid arthritis. Furthermore, probiotic therapies based on 
bifidobacterial species have shown promising effects in alleviating anxiety and depression, reducing stress, and 
enhancing cognitive function. Overall, this review integrates the extensive scientific literature now available that 
supports the health-promoting applications of probiotic Bifidobacterium species and underscores the need for 
further research to confirm their clinical efficacy across different body systems.
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INTRODUCTION
Multicellular organisms, including humans, inhabit in association with a vast number of microorganisms, 
including bacteria, archaea, viruses, and unicellular eukaryotes. This complex microbial community, 
collectively known as the microbiota, is involved in a symbiotic relationship with its host. Within the 
human body, the microbiota exerts critical roles across a variety of physiological processes, including 
nutrient metabolism and immune system modulation[1,2]. These interactions are supposed to be vital for 
maintaining health and preventing disease, demonstrating the key role exploited by the microbiota in host 
well-being[3-5].

The human body harbors distinctive microbial communities across its various anatomical sites, which are 
adapted to the unique environmental conditions of the specific body site[6]. Distinct microbiotas are found, 
for example, on the skin or internal body sites such as the mouth, the respiratory tract, the gastrointestinal 
tract, and the female reproductive tract, each fulfilling specialized functions[7,8].

Due to its complexity and diversity, the intestinal microbiota represents a target of marked scientific interest 
among these diverse microbial habitats. This dense microbial community is considered to play a critical role 
in the host’s well-being, performing several beneficial functions. The intestinal microbiota is supposed to be 
involved in crucial metabolic processes, including carbohydrate digestion and vitamin synthesis[1]. 
Furthermore, it is supposed to play an important role in the development of immune responses and in 
safeguarding the host against colonization by pathogenic bacteria[9,10].

The composition of the intestinal microbiota is influenced by a series of endogenous features closely related 
to the host and environmental factors, such as age, sex, diet, antibiotic treatment, and lifestyle[11-14].

Maintaining the balance of the intestinal microbiota is crucial for health, as this symbiotic relationship can 
be disrupted by events that change the composition of the microbiota, leading to dysbiosis. Dysbiosis is 
characterized by an imbalance in the gut's microbial ecosystem[15]. Numerous studies have highlighted a 
correlation between intestinal dysbiosis and several human diseases/disorders, such as inflammatory bowel 
disease (IBD), irritable bowel syndrome (IBS), type 2 diabetes (T2D), celiac disease, and obesity[10,16,17]. In this 
context, preserving and restoring the intestinal microbiota balance is crucial for maintaining overall human 
health[18].

Currently, this modulation can occur through various methods and interventions, each capable of 
influencing the composition and activity of the microbes within our bodies [Figure 1A]. Among these, diet 
plays an important role in modulating the intestinal microbiota. In fact, changes in dietary habits can 
profoundly impact the types of microbes residing in the gut. Thus, certain foods can promote the growth of 
beneficial bacteria, while others may promote the proliferation of harmful microorganisms[19]. In addition, 
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Figure 1. Illustration of potential modulators and general mechanisms influencing gut microbiota composition and host health. Panel (A) 
illustrates the potential modulators of the human microbiota. Specifically, modulators that promote eubiosis are highlighted in green, 
while modulators that contribute to dysbiosis are highlighted in red; Panel (B) shows several mechanisms through which bifidobacteria 
exert beneficial effects on the host. Specifically, bifidobacteria strengthen the intestinal barrier by increasing mucus production and 
preventing the colonization of opportunistic pathogens, thereby protecting against infections (a). Additionally, bifidobacteria interact 
with the host’s immune system, stimulating the production of anti-inflammatory cytokines that regulate immune responses and reduce 
inflammation (b). Bifidobacteria also produce neuroactive molecules, such as GABA, which may influence the nervous system, 
alleviating stress and supporting mental well-being (c). Furthermore, bifidobacteria generate metabolites like lactate and acetate, which 
can be utilized by other gut bacteria, such as SCFA-producing bacteria, to synthesize beneficial compounds like butyrate and 
propionate, contributing to gut health and metabolic regulation (d). GABA: Gamma-aminobutyric acid; SCFA: short-chain fatty acid.



Page 4 of 23 Bocchio et al. Microbiome Res Rep 2025;4:2  https://dx.doi.org/10.20517/mrr.2024.52

probiotics and prebiotics, i.e., compounds that stimulate the growth of beneficial bacteria, are considered to 
play a crucial role in shaping the microbiota composition and promoting gut health[20,21].

Moreover, in recent years, an innovative approach known as fecal microbiota transplantation (FMT) has 
emerged as a promising intervention for restoring healthy microbiota in individuals with gut disorders or 
conditions related to microbial imbalance[22-28]. In detail, FMT involves introducing processed fecal material 
from a healthy donor to the recipient to reintroduce a diverse array of beneficial microbes, thereby 
promoting gut health and overall well-being. Numerous studies have highlighted the efficacy of this 
treatment and its therapeutic potential across various pathologies, with the main target being the treatment 
for recurrent Clostridioides difficile infection[29]. Nonetheless, concerns about disease transmission, recipient 
immune response, potential adverse effects, lack of standardization, absence of unified legislation, high 
costs, and invasiveness emphasize the importance of further refining FMT as a therapeutic approach, 
making it still largely experimental in most cases[30].

Among the various approaches modulating the intestinal microbiota, probiotic microorganisms are the 
most utilized due to their applicability and less invasive nature while still being effective. Probiotics aim to 
restore intestinal homeostasis by promoting the colonization of beneficial bacteria and restricting the 
expansion of pathogenic bacteria, thereby preventing dysbiosis conditions[31]. Lactobacilli and bifidobacteria 
are the most prevalent and widely used among all probiotic organisms[32,33]. Bifidobacteria are well-
documented for their health benefits and have co-evolved with humans, playing a fundamental role in the 
early gut microbiota[34,35]. In fact, bifidobacteria are considered essential for “educating” the immune system 
stimulating and supporting gut physiology, such as mucin production[36-38]. Likewise, these microorganisms 
could inhabit the human gut due to the host’s production of prebiotic molecules like mucin, which supports 
their survival and colonization[37,39]. This relationship and the demonstrated transmission of these 
microorganisms from mother to child through vertical transmission mechanisms[40] underscore the co-
evolution of bifidobacteria with their human host. The decrease in this bacterial population within both 
children’s and adult’s gut microbiota has been negatively correlated with numerous diseases, including 
autoimmune diseases, IBD, and potentially cancer[41-44]. Thus, these microorganisms are considered crucial 
for maintaining gut health and overall homeostasis throughout adulthood[45]. The beneficial effects of 
bifidobacteria on human gut health and their role in maintaining a balanced microbiota make them a 
primary focus in probiotic research. Their ability to modulate the gut microbiota, improve intestinal barrier 
function, and exert anti-inflammatory effects further underscores their importance as a key component in 
probiotic formulations. Numerous studies have demonstrated the efficacy of bifidobacteria in enhancing gut 
health, supporting immune function, and preventing gastrointestinal disorders[45-52].

In this review, we will delve into the specific roles and benefits of bifidobacteria as probiotic bacteria, 
exploring their mechanisms of action, clinical applications, and potential to promote gut health and overall 
well-being.

THE PROBIOTICS
The current definition, formulated in 2002 by the expert group of the Food and Agriculture Organization of 
the United Nations (FAO) and by World Health Organization (WHO), describes probiotics as “live 
microorganisms that, when administered in sufficient amounts, confer a health benefit on the host”[53]. This 
definition remains widely accepted within the scientific community. The International Scientific 
Association for Probiotics and Prebiotics (ISAPP) has endorsed this definition, emphasizing its flexibility in 
encompassing a broad range of products while maintaining key requirements such as viability and sufficient 
dosage. ISAPP also acknowledges the need for robust scientific evidence for strain-specific benefits, aligning 
with probiotic research’s evolving nature[54].
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Probiotic microorganisms can be consumed naturally through foods, particularly fermented ones, but are 
also available as supplements or pharmaceutical products. Their integration into our diet can bring a series 
of benefits to our health. In fact, these beneficial microorganisms exert numerous beneficial effects on the 
human body, both at systemic and local levels, inhibiting the colonization of pathogenic bacteria[55], 
reducing intestinal inflammation[56], modulating the host’s immune response[57,58], and promoting intestinal 
eubiosis[59,60]. Additionally, probiotics exhibit a range of other health-promoting effects, including anti-
diabetic, antioxidant, anti-aging, antimicrobial, and anti-biofilm properties[61-63]. The growing evidence of 
their health-promoting roles has prompted further investigations into their effects on specific pathologies, 
including gastrointestinal disorders/diseases, such as IBS, IBD, and antibiotic-associated diarrhea[64-67], 
suggesting the primary role of probiotic bacteria in the mechanisms involved in restoring the balance of the 
intestinal microbiota and reducing inflammation[68-71].

Despite the multiple health benefits, research on probiotics has highlighted some limitations, including the 
poorly understood molecular mechanisms, strain-specific behaviors, short-term effects, niche-specificity 
(both allochthonous and autochthonous), and the potential transfer of antibiotic resistance genes carried by 
probiotic bacteria to other members of the human microbiota[72,73]. Legislative regulations for the use of 
probiotics have been introduced to ensure consumer safety. For example, in the United States, 
microorganisms intended for probiotic products must obtain Generally Recognized As Safe (GRAS) status, 
regulated by the Food and Drug Administration (FDA). Similarly, in Europe, the European Food Safety 
Authority (EFSA) has established the concept of Qualified Presumption of Safety (QPS). QPS is a safety 
assessment approach that adds specific criteria to evaluate bacterial supplements. These criteria include 
verifying a history of safe use and confirming the absence of traits that could pose safety concerns, such as 
the potential for transferring antibiotic resistance genes[74-76]. However, the current regulation of probiotic 
bacteria varies significantly from country to country, and no common worldwide regulation exists.

The main probiotic microorganisms known and utilized in supplement products are mainly represented by 
species belonging to the Bifidobacterium and Lactobacillus genera, as well as other lactic acid bacteria, such 
as species belonging to Lactococcus and Streptococcus genera, but also Escherichia coli (E. coli) Nissle 1917, 
Enterococcus faecium, Bacillus coagulans, and the yeast Saccharomyces boulardii[77-79].

Interestingly, a new frontier of novel-generation probiotics has emerged to obtain the benefits of probiotic 
organisms without relying on their live forms. The term postbiotics has been broadly defined as 
preparations containing inanimate microbial cells and/or their metabolites that confer a health benefit on 
the host[80]. This definition includes both inactivated cells and the bioactive molecules they produce, such as 
enzymes, secreted proteins, short-chain fatty acids (SCFAs), vitamins, biosurfactants, amino acids, and 
peptides. However, in the very recent scientific literature, a distinction has begun to emerge between 
postbiotics and parabiotics[63,81,82], with the latter term being used to specifically refer to inactivated microbial 
cells or their crude extracts, while postbiotics now commonly refers to metabolic products or cell 
components. Although the term parabiotics is not yet fully recognized across the scientific community, it 
reflects an evolving understanding of these innovative approaches and their potential health benefits, 
complementing traditional probiotic use. Nevertheless, probiotics remain the most widely used 
supplements, particularly due to the strong evidence supporting their beneficial effects.

This review article provides readers with a detailed understanding of bifidobacteria and their potential to 
improve human health[83]. Bifidobacteria, including Bifidobacterium bifidum (B. bifidum), Bifidobacterium 
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longum (B. longum), Bifidobacterium lactis (B. lactis) [formerly known as Bifidobacterium animalis 
(B. animalis) subsp. lactis], and Bifidobacterium breve (B. breve), are among the first microbes to colonize 
the human gastrointestinal tract[84]. Their importance is essential from the early days of life. For example, 
some species present in the intestine from birth can metabolize human milk oligosaccharides (HMOs) 
present in breast milk, which would otherwise be indigestible by humans[85-88]. Overall, the benefits of these 
probiotic microorganisms are numerous and include modulating the immune response, maintaining the 
integrity of the intestinal barrier, and competing with pathogenic bacteria for adhesion to host tissue 
[Figure 1B]. Additionally, bifidobacteria produce various metabolites, such as vitamins, acetate, and 
lactate[89-91], which can contribute to the production of SCFAs, such as butyrate, through cross-feeding 
interactions with other gut microbes that metabolize acetate, thereby promoting health benefits[92,93] 
[Figure 1B]. Furthermore, certain Bifidobacterium species have been associated with the production of 
molecules that act as neurotransmitters, such as gamma-aminobutyric acid (GABA), which may play a role 
in modulating mental health and stress responses in the host[94] [Figure 1B]. These benefits have triggered 
significant interest in researching bifidobacteria as potential therapeutic agents in various human health 
conditions. Therefore, manipulating the intestinal microbiota with bifidobacteria has been proposed as a 
promising dietary strategy, emphasizing the importance of further research to understand the underlying 
mechanisms and evaluate the efficacy of such treatments through human clinical studies[95].

THERAPEUTIC POTENTIAL OF BIFIDOBACTERIAL SPECIES
Based on current scientific literature, which includes well-designed clinical studies and systematic reviews, it 
is clear that probiotics offer benefits to many different human body sites. The studies discussed in this 
section were selected through a detailed search of the currently existing scientific literature by using specific 
keywords such as the names of individual Bifidobacterium species, “probiotics”, and specific diseases or 
conditions. This approach ensured a comprehensive selection of relevant scientific literature on this topic. 
The team’s domain knowledge and expertise were also crucial in interpreting the findings and finalizing the 
inclusion of the most scientifically robust studies. The following section will examine studies on various 
species of the Bifidobacterium genus and their roles in specific diseases affecting major human body 
compartments, such as the gastrointestinal tract, respiratory tract, skeletal and muscular system, and 
nervous system [Table 1].

GASTROINTESTINAL TRACT
The gastrointestinal tract plays a key role in critical bodily functions, including nutrient absorption, 
digestion, and immune system regulation. Moreover, it is often affected by a range of diseases and disorders 
due to a combination of genetic predispositions and environmental factors. These altered conditions 
include, for example, constipation, antibiotic-associated diarrhea, gastroenteritis, IBS, IBD, Helicobacter 
pylori (H. pylori) infections, celiac disease, obesity, and diabetes. Extensive research efforts have 
demonstrated that Bifidobacterium-based probiotics can provide significant benefits in managing and 
alleviating symptoms associated with these gastrointestinal conditions.

Constipation
Constipation is a common and significant health concern, commonly described as reduced and/or difficult 
bowel movements[96].

Numerous studies have emphasized the potential of bifidobacteria as an effective treatment for constipation 
due to their beneficial impact on regulating intestinal microbiota, improving intestinal motility, and 
modulating inflammatory responses.
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Table 1. Bifidobacterial species discussed in this review with reported beneficial effects on specific diseases or disorders

PMID Study type Population characteristics Bifidobacterial species

35079761 Human Adults B. bifidum

33996367 Human Adults B. bifidum

33750988 Animal Murine B. bifidum

36382178 Human Adults B. longum

Constipation

28884754 Animal Murine B. longum

36558391 Animal Murine B. bifidum

31544979 Animal Murine B. bifidum

35031969 Human Adults B. lactis

Antibiotic-associated diarrhea

34444974 Human Adults B. lactis

26801008 In vitro - B. adolescentis

27375585 In vitro - B. adolescentis

Acute gastroenteritis-induced diarrhea

28432676 In vitro - B. adolescentis

23200466 Animal Murine B. bifidumStress-induced diarrhea

25918671 Human Adults B. bifidum

35935215 Animal Murine B. bifidum

21418261 Human Adults B. bifidum

37240476 Human Adults B. bifidum

32277872 Human Adults B. bifidum

37702965 Human Adults B. longum

IBS/IBD

21525768 Human Adults B. breve

Helicobacter pylori infection 29573807 Human Adults B. bifidum

21651295 In vitro - B. longum

18980693 Human Children B. longum

26134988 Human Children B. breve

Celiac disease

27782071 Human Children and Adults B. breve

24985000 Human Children B. bifidum

23872958 Animal Murine B. bifidum

25863679 Animal and in vitro Murine B. bifidum

34365978 Human Adults B. adolescentis

35745208 Animal Murine B. adolescentis

21914236 Animal Murine B. adolescentis

26090097 Human Adults B. breve

Obesity, hypercholesterolemia, diabetes

30094122 Human Adults B. breve

26372517 Human Children B.lactis

36004715 Human Children B.lactis

26840903 Human Adults B. adolescentis

Respiratory infections and asthma

29633635 Animal Murine B. adolescentis

31168650 Animal Murine B. bifidum, B. longum and B. breve

32383727 Animal Murine B. adolescentis

18848647 Human Adults B. adolescentis

17953607 Human Adults B. adolescentis

Arthritis

36377740 Animal Murine B.breve

27801892 Human Adults B.longum

32300799 Human Adults B.longum

37513541 Human Adults B.longum

21988661 Animal and in vitro Murine B.longum

32485204 Animal Murine B.longum

Anxiety and depression

32839473 Animal and in vitro Murine B. adolescentis

B. bifidum: Bifidobacterium bifidum; B. longum: Bifidobacterium longum; B. lactis: Bifidobacterium lactis; B. adolescentis: Bifidobacterium adolescentis; IBS: 
irritable bowel syndrome; IBD: inflammatory bowel disease; B. breve: Bifidobacterium breve.
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In this context, a human study demonstrated that the intake of B. bifidum leads to significant improvements 
in stool consistency and increased frequency of spontaneous bowel movements in individuals suffering 
from chronic constipation[97]. These effects are associated with the enhancement of the Firmicutes/
Bacteroidetes ratio in the intestinal microbiota and increased concentrations of acetic and butyric acid[97]. 
These combined effects seem to lead to a notable improvement in clinical symptoms associated with 
functional constipation. Furthermore, the consumption of species belonging to the Bifidobacterium genus 
has been shown to significantly alter gut microbial metabolism, particularly influencing carbohydrate 
metabolism pathways such as propanoate and butanoate through interactions with other gut microbes. 
While Bifidobacterium species themselves do not produce these metabolites, they may facilitate their 
production by other members of the gut microbiota[98]. However, further metagenomic research is needed to 
identify the metabolic pathways involved precisely[98]. Moreover, studies conducted on murine models have 
further confirmed the effectiveness of B. bifidum in treating constipation, improving several physiological 
parameters and, consequentially, intestinal health. Specifically, B. bifidum has been reported to promote gut 
microbiota homeostasis by influencing butyrate production through cross-feeding interactions with other 
butyrate-producing bacteria. Butyric acid, a metabolite produced by the gut microbiota, has been shown to 
promote serotonin (5-HT) production by increasing the expression of the serotonin-producing enzyme 
tryptophan hydroxylase-1 (TPH1) in the host. Additionally, B. bifidum has been shown to regulate 
neurotransmitter levels, such as dopamine and acetylcholine, by suppressing dopamine increases and 
preventing acetylcholine decreases. These results suggest that B. bifidum may contribute to alleviating 
dysbiosis, enhancing organic acid levels, and improving neurotransmission[99].

Similarly, B. longum has been studied for its ability to improve bowel movement frequency, highlighting the 
importance of a personalized treatment approach based on individual microbial profiles[100]. In a human 
study, the intake of B. longum was associated with an increase in bacterial genera belonging to the Clostridia 
class, which are crucial for producing butyrate and other SCFAs, contributing to increased bowel movement 
frequency[100]. Moreover, murine model studies have further demonstrated the effectiveness of B. longum in 
alleviating constipation through mechanisms such as the modulation of intestinal function and reduction of 
inflammation[101,102].

Antibiotic-associated diarrhea
Numerous recent studies have documented the impact of antibiotics on the composition and functionality 
of the microbiota[103-105]. Antibiotics, especially those with a broad spectrum, act on a wide range of 
microorganisms, including the normal microbiota of an individual, altering intestinal microbiota 
composition and particularly reducing its diversity. Consequently, antibiotics might disrupt host-microbe 
interactions, compromising immune system homeostasis and reducing resistance to colonization by 
pathogenic strains. Intestinal dysbiosis, defined as the disruption of the symbiotic balance between the 
microbiota and the host that antibiotics may induce, can, in turn, lead to diarrhea and recurrent infections 
caused by opportunistic pathogens such as Clostridioides difficile[106-109].

In murine models, it has been shown that probiotic therapy based on B. bifidum alleviates diarrhea 
symptoms, restores the structure of intestinal villi, and improves microbiota health. Additionally, it has been 
demonstrated that B. bifidum alleviates inflammation and tissue damage in sodium dextran sulfate-induced 
colitis in murine models[110]. Similarly, a specific murine model with diarrhea caused by E. coli overgrowth, 
simulating antibiotic-induced dysbiosis, demonstrated that the supplementation of B. bifidum improved 
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dysbiosis and suppressed diarrhea symptoms by reducing the excessive growth of E. coli in the intestine[111]. 
These beneficial effects are probably also related to the increased production of IgA induced by B. bifidum, 
which easily binds to E. coli, reducing its growth and resolving diarrhea. Furthermore, the analysis of the 
microbiota composition has shown a trend toward an increase in butyrate-producing bacteria associated 
with the treatment involving B. bifidum. In fact, butyric acid, a SCFA, is used as an energy source by 
intestinal epithelial cells, contributing to regulating the intestinal epithelium and improving intestinal 
activity[111-113].

A recent study regarding B. lactis has demonstrated its effectiveness in preventing diarrhea and alleviating 
gastrointestinal symptoms in hospitalized patients undergoing antibiotic treatment, significantly reducing 
symptoms[114]. Moreover, it has been observed that consuming yogurt containing this species during 
antibiotic treatment mitigates the negative impact of antibiotics on fecal microbiota. This beneficial effect 
may be attributed to yogurt containing B. lactis, which attenuated the decrease in acetate levels following 
antibiotic treatment and facilitated a quicker return to baseline SCFA levels[115]. Furthermore, it has been 
shown in a murine model that supplementation of B. lactis during antibiotic-associated diarrhea led to 
significant improvement in symptoms, contributing to restoring intestinal microbiota and reducing 
inflammation[116].

Acute diarrhea caused by gastroenteritis
Acute gastroenteritis represents one of the major global health issues, particularly in children[117]. The 
primary etiological agents of gastroenteritis in children are Rotaviruses and Noroviruses[118-120], and the main 
symptoms include abdominal pain, profuse diarrhea, and vomiting. Although the primary treatment 
focuses on electrolyte replenishment and rehydration[121-123], the use of selected probiotic microorganisms 
may also be beneficial in alleviating the symptoms of the infection.

Bifidobacterium adolescentis (B. adolescentis), for example, exhibits potential antiviral effects against 
rotavirus and noroviruses. In fact, B. adolescentis metabolites could alter the replication of viral particles, 
specifically by reducing the intracellular amount of NSP4 and Ca2+ release, thereby decreasing the virus’s 
ability to enter cells and replicate[124-126]. Furthermore, protein metabolites obtained from B. adolescentis cells 
could prevent the entry of rotavirus by directly affecting the viral particle. The hypothesized mechanism 
involves the adhesion process to cellular receptors not being efficiently executed due to alterations in the 
viral outer proteins, such as VP7 or VP4. However, further studies are needed to elucidate this antiviral 
activity’s mechanisms, including direct interactions with cellular receptors or intracellular regulatory 
processes[127]. This probiotic microorganism has also exhibited antiviral effects against Coxsackievirus B3, 
reducing the number of viral sequence copies. The mechanism of action related to antiviral effects requires 
further study. Additionally, B. adolescentis has been shown to provide protection against intestinal bacterial 
infections by Yersinia enterocolitica in murine models, suggesting that the presence of B. adolescentis might 
offer protection against yersiniosis by enhancing epithelial barrier function through direct interactions with 
intestinal epithelial cells and by altering the composition of the microbiota[128,129].

In addition to antibiotic-associated diarrhea and diarrhea related to viral infections, several other forms of 
diarrhea are influenced by other various factors[130].

Among these forms, one of particular interest is stress-induced diarrhea. The brain-gut-enteric microbiota 
axis may modulate this effect, and it is bidirectional[131-133]. Moreover, several studies have demonstrated that 
B. bifidum effectively alleviates gastrointestinal disorders and reduces stress in university students, 
indicating its positive impact on both psychological and physical well-being[131]. Specifically, oral intake of 
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B. bifidum has been shown to reduce the incidence of diarrhea. The reduction in self-reported stress 
through probiotics may result from various mechanisms involving both the immune and endocrine 
systems, although these mechanisms are yet to be fully elucidated[131,134-136].

IBD
Numerous studies have examined the effectiveness of B. bifidum, B. breve, and B. longum in treating 
symptoms associated with IBD, such as bloating, gas, abdominal pain, cramps, and other digestive 
disorders[137-140]. IBD, which includes both Crohn’s disease (CD) and ulcerative colitis (UC), is of particular 
interest. IBD should be regarded as a systemic condition, not confined to the gastrointestinal tract alone, as 
many patients exhibit symptoms outside the intestine. While CD and UC share common pathological and 
clinical characteristics, each also presents specific distinctive differences[141]. These studies provide an 
overview of the intestinal health benefits these probiotics offer and the mechanisms of action involved.

Regarding B. bifidum, several studies have highlighted its role in improving quality of life and alleviating 
gastrointestinal symptoms in subjects with IBD. A recent murine clinical demonstrated that early treatment 
with B. bifidum can reduce inflammation and promote intestinal mucosal integrity, suggesting a potential 
protective effect against long-term colitis. The molecular mechanisms involved are not yet fully understood, 
but the production of specific metabolites, such as acetic and butyric SCFA, can promote the healthy 
development of the intestine, supporting the growth and health of the intestinal mucosa[142].

As for B. breve, several studies have highlighted its efficacy in improving clinical conditions in patients with 
UC. In detail, B. breve intake, either alone or in combination with galacto-oligosaccharides (GOS), led to 
significant improvements in clinical parameters and a rebalancing of the intestinal microbiota. Moreover, 
B. breve contained in fermented milk with bifidobacteria significantly improved disease conditions in 
patients with UC, as assessed by colonoscopic index and myeloperoxidase levels. The observed benefits of 
this strain were at least partly attributed to the modulation of luminal parameters, such as intestinal 
microbiota and pH[143].

IBS
Several studies have examined the effectiveness of Bifidobacterium-based probiotics in treating symptoms 
associated with IBS, highlighting their role in improving quality of life and alleviating gastrointestinal 
symptoms in affected individuals. Specifically, recent studies on B. bifidum have demonstrated that a four-
week intake significantly reduces the severity index of IBS and improves symptoms such as abdominal pain 
and dyspepsia. Therefore, B. bifidum treatment has significantly alleviated these symptoms, although the 
underlying mechanisms remain largely unclear[144-146]. Moreover, the efficacy of B. longum in reducing IBS 
symptoms has been investigated, focusing primarily on bloating, abdominal pain, and constipation. The 
results highlighted that an eight-week intake of B. longum significantly reduces IBS symptoms[147]. An 
additional clinical trial confirmed that B. longum could improve the quality of life and reduce the severity of 
IBS in affected patients. However, further research still needs to clarify various mechanisms through which 
B. longum exerts these benefits[148].

Mitigation of the effects of H. pylori infection
H. pylori is a Gram-negative, opportunistic pathogen that colonizes the human stomach and is implicated in 
various gastrointestinal diseases. In fact, H. pylori infection can lead to gastric and duodenal ulcers, gastritis, 
and gastric carcinoma. Eradication of the bacterium through antibiotic therapy causes an alteration of the 
intestinal microbiota, which can be mitigated with the use of probiotics. Furthermore, probiotics offer 
additional benefits in this clinical context, extending beyond merely mitigating effects on the microbiota[149].



Bocchio et al. Microbiome Res Rep 2025;4:2  https://dx.doi.org/10.20517/mrr.2024.52 Page 11 of 23

Supplementation with B. bifidum has been shown to alleviate infection symptoms in healthy adults 
effectively. Significant relief from postprandial discomfort and epigastric pain has been reported after 
consuming fermented milk encompassing B. bifidum cells for four weeks[150]. B. bifidum has been found to 
enhance the physical gastric barrier and regulate NF-kB signaling in conditions such as H. pylori-associated 
gastritis, providing new insights into the treatment of gastroesophageal reflux disease and related 
disorders[151]. Additionally, consuming fermented milk containing B. bifidum has been reported to improve 
gastrointestinal symptoms and reduce stress markers in subjects with functional gastrointestinal 
disorders[136].

Moreover, it has been highlighted that B. lactis aids in suppressing H. pylori, decreasing bacterial load and 
gastric mucosal damage in infected gerbils, and lowering inflammatory cytokine levels. These findings 
suggest that B. lactis could be a complementary approach in H. pylori infection management[152]. Moreover, 
a significant improvement in symptoms has been observed in women with digestive symptoms such as 
abdominal pain or discomfort, bloating, flatulence, and stomach rumbling after the intake for two weeks of 
a fermented milk product containing B. lactis [153].

Celiac disease
Celiac disease is an autoimmune disease affecting the small intestine. Since gluten is the triggering factor, 
the only current treatment is a strict gluten-free diet. In recent years, a correlation between intestinal 
dysbiosis and celiac disease has been observed, leading to the exploration of complementary therapeutic 
strategies. Among these, modulation of the intestinal microbiota has emerged as a promising area of 
research[154].

B. breve has been investigated for its role in the treatment of celiac disease and food intolerances, and it has 
been reported that this probiotic bacterium can improve the symptoms of celiac disease by modulating the 
immune response and altering the fecal microbiota[155]. Moreover, several studies demonstrate that B. breve 
strains, in combination with a gluten-free diet (GFD), temporarily reduce TNF-α production in children 
with celiac disease, thereby counteracting the pro-inflammatory environment. Reducing TNF-α could 
decrease the intestinal and systemic complications of celiac disease. Further studies are needed to confirm 
the benefit of this probiotic as a complementary therapy to a GFD[156,157].

Similarly, B. longum has shown potential benefits in the treatment of celiac disease. In this context, it has 
been observed that B. longum can reduce gliadin toxicity and modify the response of intestinal cells, 
suggesting a possible protective role against celiac disease[158]. Further studies have confirmed the efficacy of 
B. longum in modulating the immune response, reducing pro-inflammatory cytokines, and improving 
gluten tolerance in celiac disease models[159,160].

Obesity, hypercholesterolemia and diabetes
The gastrointestinal tract plays a crucial role in overall metabolic health, influencing conditions such as 
obesity, hypercholesterolemia, and diabetes. These metabolic disorders are interconnected with gut 
microbiota composition, where probiotics, particularly those based on Bifidobacterium species, have shown 
promising therapeutic potential.

In this context, it has been demonstrated that administering B. bifidum to children with primary 
dyslipidemia significantly improved total cholesterol and low-density lipoprotein cholesterol (LDL-C) 
levels[161]. Another study investigated 34 human strains of the Bifidobacterium genus, which were assessed 
for their cholesterol adsorption capacity and bile salt hydrolase activity, which represent two strain-specific 
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characteristics. It was found that two strains of the species B. bifidum exhibited a significant ability to adsorb 
cholesterol. The administration of a probiotic formulation containing these strains led to a significant 
reduction in total cholesterol and LDL-C levels. However, no effects were observed on high-density 
lipoprotein cholesterol (HDL-C) levels or the HDL-C/LDL-C ratio[162]. Similarly, another study revealed the 
high capacity of B. bifidum to assimilate cholesterol, contributing to the reduction of total cholesterol and 
LDL-C in murine models, and indicated the capability of a specific strain, i.e., B. bifidum PRL2010, to 
reduce cholesterol by converting it into coprostanol, with possible beneficial effects on cardiovascular 
health[163].

Regarding B. breve, significant fat mass reductions and blood parameters improvements related to liver 
function and inflammation were observed in adults prone to obesity. In detail, several studies suggest that 
B. breve may provide benefits in improving metabolic disorders associated with obesity. B. breve can 
synthesize SCFAs, including acetic acid and lactic acid, and produce other bioactive components, such as 
conjugated linoleic acid and various fatty acid metabolites. These factors may play a key role in influencing 
the effects associated with metabolic syndrome[164,165]. Additionally, it has been shown that the intake of 
probiotic microorganisms, including B. breve, improves various metabolic risk factors in subjects with 
metabolic diseases[166].

Furthermore, the beneficial effect of the combination of berberine and B. adolescentis has been highlighted 
in a recent study, which demonstrated a significant reduction in fasting blood glucose levels and glycated 
hemoglobin, along with an improvement in the composition of the intestinal microbiota in subjects with 
hyperglycemia[167]. Moreover, Bifidobacterium strains seemed to alleviate type 2 diabetes symptoms in mice, 
reducing inflammation and increasing acetic acid and butyric acid levels. These SCFAs enhance energy 
homeostasis and may mitigate metabolic disorders. Supplementation with B. adolescentis or B. bifidum 
significantly increased SCFA levels and reduced blood glucose levels. Furthermore, SCFAs were negatively 
correlated with glucose, insulin resistance, and inflammatory markers, suggesting that the beneficial effects 
of these strains are linked to their impact on SCFAs[168]. Further research has observed a reduction in visceral 
fat accumulation and inflammation in murine models, suggesting a potential benefit of B. adolescentis in the 
management of obesity and diabetes[169,170].

RESPIRATORY TRACT
Historically, the respiratory tract was considered a sterile environment. However, recent studies have 
revealed a diverse microbial community residing in the respiratory tract, which appears to play a significant 
role in maintaining human health. Growing scientific evidence suggests a relationship between respiratory 
microbiota composition and overall respiratory health. Additionally, the gut-lung axis is a concept that 
describes the bidirectional interaction between the gut and respiratory microbiota. This interaction suggests 
that probiotics positively affect gut microbiota and may also influence respiratory health by modulating 
immune responses and microbial communities across these two systems.

Respiratory tract infections and asthma
Respiratory tract infections and asthma are common conditions that significantly impact global health. 
Emerging research has shown that probiotics, particularly species from the genus Bifidobacterium, may play 
a beneficial role in managing these conditions.

In this context, a recent study regarding children with respiratory tract infections demonstrated that 
administering probiotic products containing B. lactis twice daily could reduce respiratory infection 
incidence[171]. Moreover, another study explored the effect of controlled administration of B. lactis on an 
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infant cohort, observing a decrease in respiratory tract infections during the first eight months of life in 
those treated with the probiotic compared to the control group[172]. Additionally, a randomized, double-
blind, placebo-controlled trial assessed the benefits of probiotics in infant formula on upper respiratory tract 
infections (URTIs) in infants aged six to 15 months. The study examined the effect of the probiotic B. lactis 
on reducing URTIs. The results showed that no infants who received the probiotic developed URTIs or 
required antibiotic or antiviral treatments, unlike the control group, which experienced significant infection 
rates, demonstrating a significant reduction in URTIs in the probiotic-treated group[173]. Furthermore, 
B. adolescentis has also been associated with a reduction in allergic inflammation and improvements in 
asthma models. Lower levels of bifidobacteria, including the species B. adolescentis, have been identified in 
adult subjects with allergic asthma, suggesting a potential protective role of bifidobacteria in respiratory 
diseases[174]. Additionally, it has been demonstrated that treatment with B. adolescentis reduces allergic 
inflammation in the airways of murine models, indicating a potential therapeutic effect for allergic 
asthma[175]. However, the mechanisms by which these probiotic microorganisms exert these benefits are not 
fully understood.

SKELETAL AND MUSCULAR SYSTEM
The skeletal and muscular systems are fundamental to human movement and structural integrity. They are 
often affected by several conditions, such as arthritis, significantly impacting quality of life. Recent studies 
have explored the potential benefits of probiotics, particularly Bifidobacterium species, in managing these 
conditions by modulating the gut microbiota and immune response.

Arthritis
Arthritis, a chronic inflammatory condition affecting the joints, can severely impact mobility and quality of 
life. Increasing scientific interest has focused on the potential therapeutic benefits of probiotics, particularly 
Bifidobacterium strains, in managing arthritis. These probiotic bacteria may modulate the immune response 
and intestinal microbiota, offering new perspectives in the treatment of rheumatoid arthritis (RA) and other 
forms of arthritis. In particular, the treatment of arthritis through the use of probiotic strains such as 
B. adolescentis and B. breve has garnered increasing interest in the scientific community, highlighting 
potential benefits in animal models and opening new therapeutic perspectives for this chronic inflammatory 
condition. Notably, the early administration of these probiotics demonstrated better results in promoting 
the production of SCFAs. Moreover, the early-treated group exhibited a significantly higher frequency of 
regulatory T cells (Tregs) and lower TNF levels than the group that received B. adolescentis at a later stage. 
Additionally, in the early-treated subjects, SCFAs were positively correlated with Treg levels and negatively 
correlated with pro-inflammatory cytokines[176,177]. Furthermore, recent research has also emphasized that 
administering B. adolescentis can mitigate arthritis development in murine models by modulating the 
immune response and promoting an increased population of regulatory T cells[178]. Moreover, B. adolescentis 
seemed crucial in modulating the immune response and countering specific pathogenic factors associated 
with RA.

Furthermore, increasing evidence suggests a significant correlation between the development of RA and the 
periodontal disease, characterized by the presence of Porphyromonas gingivalis (P. gingivalis). The higher 
frequency of antibodies against P. gingivalis in patients with RA indicates a potential involvement of this 
bacterium in the disease’s pathogenesis. In this context, the administration of B. adolescentis may be 
beneficial, as it reduces the concentration of vitamin K, a nutrient essential for the survival and virulence of 
P. gingivalis, thereby potentially mitigating its impact on both oral and intestinal microbiota and 
contributing to the management of RA[179-182].
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Similarly, B. breve has shown efficacy in repairing the intestinal barrier and reducing systemic inflammation 
in collagen-induced arthritis murine models[183]. This probiotic positively influenced intestinal microbiota 
composition, increased SCFA levels, and inhibited inflammatory pathways, thereby improving conditions 
such as arthritis. In a study of arthritic rats, evaluation of serum markers of arthritis, such as C-reactive 
protein (CRP) and rheumatoid factor (RF), showed that the group treated with B. breve had significantly 
reduced levels of these markers compared to the untreated control rats. Moreover, the administration of 
B. breve, B. longum, and B. bifidum appeared to significantly reduce serum levels of inflammatory markers 
and pro-inflammatory cytokines compared to the arthritic control group. Additionally, rats treated with 
bifidobacteria exhibited lower levels of lipid peroxides, nitric oxides, and protein carbonyls, indicating 
reduced oxidative stress[184]. In conclusion, bifidobacteria were found to reduce the severity and progression 
of arthritis, with effects varying depending on the strain. Specifically, B. breve demonstrated the most 
pronounced anti-arthritic effects compared to B. bifidum and B. longum, though all strains provided 
benefits in treating arthritis in animal models. These studies underscore the importance of further 
elucidating the underlying mechanisms and assessing the efficacy of such treatments in human clinical trials 
to validate the potential benefits observed in animal models[184].

NERVOUS SYSTEM
The nervous system, encompassing the brain and spinal cord, regulates and coordinates body activities. 
Emerging research has proposed the existence of a gut-brain axis, a bidirectional communication pathway 
between the gut microbiota and the brain, suggesting that gut health can significantly impact mental health. 
This concept underpins the potential of probiotics to influence neurological conditions.

Anxiety and depression
Anxiety and depression are increasingly common mental health disorders that can significantly impair daily 
functioning and quality of life[185]. These conditions are often associated with gastrointestinal issues, 
highlighting a potential link between gut health and mental well-being[186,187]. In this context, the new 
concept of the gut-brain axis suggests that gut microbiota can influence brain function and mental health, 
providing a rationale for exploring the therapeutic potential of probiotics in managing anxiety and 
depression[186,188].

Recent studies have revealed that the gut microbiota can synthesize GABA, i.e., γ-Aminobutyric acid, a key 
inhibitory neurotransmitter in the regulation of the gut-brain axis[189,190]. Alterations in GABA metabolism 
have been associated with disorders such as anxiety and depression[190-192]. A recent genomic analysis 
conducted on over 1,000 bifidobacteria strains identified B. adolescentis as a promising producer of GABA 
in the human gastrointestinal tract[94]. Furthermore, in silico analysis of metagenomic data from human and 
animal studies showed a possible correlation between the presence of B. adolescentis and mental disorders, 
such as depression and anxiety. Moreover, in vivo experiments using the murine model further supported 
these findings. In fact, specific strains of B. adolescentis, administered to rats, demonstrated the ability to 
increase GABA production. These results suggest that B. adolescentis could play a significant role in gut-
brain axis interactions and contribute to developing new therapeutic strategies for mental disorders by 
modulating the gut microbiota[94].

Recent research on the efficacy of B. longum in the treatment of anxiety and depression has yielded 
promising results, highlighting the potential of these probiotics to modulate key aspects of mental health. In 
detail, B. longum has been demonstrated to possess the ability to mitigate stress response and promote 
cognitive improvements, reducing cortisol production and enhancing visuospatial memory[193]. Similarly, it 
has been shown that B. longum improved mental flexibility and reduced stress in the elderly, suggesting a 
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positive impact on their mental well-being[194]. Furthermore, another study described that supplementation 
with B. longum significantly reduces perceived stress and improves sleep quality, highlighting the role of this 
probiotic bacteria in enhancing stress management and overall mental health[195]. Additional research efforts 
have been made to explore the physiological and behavioral effects of B. longum, revealing that this 
probiotic microorganism modifies neural oscillations in response to social stress, suggesting an impact on 
brain functions associated with stress management[196]. Moreover, further studies have elucidated the 
mechanism through which B. longum influences anxious behavior and the functioning of the hypothalamic-
pituitary-adrenal axis, providing a basis for understanding how probiotics can directly influence stress-
related behavior and physiology[197,198].

CONCLUSION
Bifidobacteria, as probiotics, offer substantial therapeutic benefits across various health conditions by 
modulating the intestinal microbiota and immune responses[58,199]. A significant proportion of clinical 
studies on probiotics focus on bifidobacteria, highlighting their essential role in human health[200,201].

Bifidobacteria have co-evolved with humans and are among the first microorganisms colonizing the infant’s 
gut and playing a crucial role in the early development of the intestinal microbiota[11]. They are essential for 
educating the immune system and supporting gut physiology, such as stimulating mucin production[92,202]. 
Additionally, bifidobacteria are maintained in the human gut due to the production of prebiotic molecules 
like mucin[36,38], which support their survival. Moreover, recent studies have reported the transmission of 
these bacteria from mother to child through vertical transmission mechanisms[40], again underscoring their 
co-evolution with the human host. The loss of bifidobacteria in both children and adults has been negatively 
correlated with numerous human diseases and disorders[51,138,200], further emphasizing their critical role in 
maintaining gut health. In this context, the beneficial effects of bifidobacteria in the gastrointestinal tract are 
well documented.

In summary, bifidobacteria are fundamental to human health, having co-evolved with their host and 
playing a critical role from early life. Their ability to modulate the gut microbiota, support immune 
function, and maintain intestinal barrier integrity makes them indispensable in promoting health and 
preventing disease. This review underscores the significant therapeutic potential of Bifidobacterium species 
across various body compartments and highlights the necessity for further research to understand the 
underlying mechanisms and validate clinical efficacy. Additionally, more studies are necessary to identify 
the genetic bases underlying these beneficial effects and to better understand the interactions with the host.
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