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Abstract
Background Heart failure (HF) is a chronic condition in which the heart does not pump enough blood to
meet the body’s demands. Diffusing capacity of the lung for nitric oxide (DLNO) and carbon monoxide
(DLCO) may be used to classify patients with HF, as DLNO and DLCO are lung function measurements that
reflect pulmonary gas exchange. Our objectives were to determine 1) if DLNO added to DLCO testing
predicts HF better than DLCO alone and 2) whether the binary classification of HF is better when DLNO

z-scores are combined with DLCO z-scores than using DLCO z-scores alone.
Methods This was a retrospective secondary data analysis in 140 New York Heart Association Class II HF
patients (ejection fraction <40%) and 50 patients without HF. z-scores for DLNO, DLCO and DLNO+DLCO

were created from reference equations from three articles. The model with the lowest Bayesian Information
Criterion was the best predictive model. Binary HF classification was evaluated with the Matthews
Correlation Coefficient (MCC).
Results The top two of 12 models were combined z-score models. The highest MCC (0.51) was from
combined z-score models. At most, only 32% of the variance in the odds of having HF was explained by
combined z-scores.
Conclusions Combined z-scores explained 32% of the variation in the likelihood of an individual having
HF, which was higher than models using DLNO or DLCO z-scores alone. Combined z-score models had a
moderate ability to classify patients with HF. We recommend using the NO–CO double diffusion
technique to assess gas exchange impairment in those suspected of HF.

Introduction
In patients with heart failure (HF), there is significant pulmonary gas exchange impairment even at rest, as
the alveolar–arterial oxygen tension difference (PA–aO2

) is excessive (∼28 mmHg) and the arterial oxygen
tension (PaO2

) is low (mild hypoxaemia, ∼72 mmHg) [1]. Diffusing capacity of the lung for carbon
monoxide (DLCO) and nitric oxide (DLNO) can identify gas exchange issues in HF patients. DLNO z-scores
share 48–56% variance with PA–aO2

, while DLCO z-scores share 38–49% with PaO2
[2, 3], aiding gas

exchange assessment.

Combined DLNO and DLCO measurements together provide a detailed understanding of lung gas exchange
issues. While DLCO reflects mostly pulmonary vascular/blood volume problems, accounting for ∼70–80%
of the red blood cell barrier, DLNO predominantly captures the diffusion between the alveolar–capillary
membrane and red blood cell membrane (∼60%) (figure 1) [4]. Together, they provide a comprehensive
view of different diffusion pathways: what DLCO misses, DLNO captures. Despite its potential, the NO–CO
double diffusion technique remains underutilised. There are companies that manufacture the device [5], but
clinicians do not know about it, and if they do not know about it, they cannot request it. Furthermore, no
devices that measure DLNO are yet US Food and Drug Administration approved, and despite several
conversations with manufacturers, they have been reluctant to spend the time and effort to make them so.

Copyright ©The authors 2024

This version is distributed under
the terms of the Creative
Commons Attribution Non-
Commercial Licence 4.0. For
commercial reproduction rights
and permissions contact
permissions@ersnet.org

Received: 1 Sept 2023
Accepted: 15 Nov 2023

https://doi.org/10.1183/23120541.00644-2023 ERJ Open Res 2024; 10: 00644-2023

ERJ OPEN RESEARCH
ORIGINAL RESEARCH ARTICLE

G.S. ZAVORSKY AND P. AGOSTONI

https://orcid.org/0000-0002-4473-1601
https://orcid.org/0000-0002-8345-6382
mailto:gszavorsky@ucdavis.edu
https://crossmark.crossref.org/dialog/?doi=10.1183/23120541.00644-2023&domain=pdf&date_stamp=
https://bit.ly/3upnR46
https://bit.ly/3upnR46
https://doi.org/10.1183/23120541.00644-2023
mailto:permissions@ersnet.org


Thus, the NO–CO double diffusion technique has only been used for research purposes by a select few
scientists. Recently, the European Respiratory Society (ERS) 2017 Technical Standards for DLNO [4]
highlighted its use, increasing exposure to clinicians of DLNO’s technical advantages over DLCO, and
favour its routine use in pulmonary function testing [6]. Thus, hopefully, companies will move towards
obtaining the required governmental approvals so that DLNO becomes as ubiquitous as DLCO in routine
pulmonary function testing.

HF leads to a decline in the alveolar membrane diffusing capacity (Dm), especially as HF worsens [7].
Even though some HF research employs the single-breath NO–CO method [8–12], combining DLCO and
DLNO in HF evaluation remains under-researched. Considering ∼35% of HF patients also have COPD [13],
which affects both pulmonary capillary blood volume and Dm [3], the NO–CO double diffusion method,
capturing both these issues, may offer a more accurate HF assessment than just DLCO, which primarily
detects Vc and/or haemoglobin concerns.

The ERS/American Thoracic Society 2022 Technical Standard on lung function interpretation encourages
the classification of the severity of lung function impairment based on z-scores [14]. A z-score is a
standardised score that indicates how many standard deviations a value is from the mean of a reference
population. The z-score, compared with the percentage predicted, is a better way to classify pulmonary
diffusion impairment since the percentage predicted at the lower limit of normal (LLN) changes with
age [15].

As such, this study aimed to 1) assess DLNO z-scores’ impact on DLCO z-scores and their HF correlation
and 2) classify HF using the Matthews Correlation Coefficient (MCC) [16]. We hypothesised that
DLNO z-scores added to DLCO z-scores improves HF association and classification compared with DLCO

z-scores alone.
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FIGURE 1 An illustration of how inhaled nitric oxide (NO) and carbon monoxide (CO) travel from the lungs’ air sacs (alveoli) to combine with
haemoglobin within red blood cells. The process can be described using the Roughton–Forster equation, which breaks down the total resistance to
NO or CO uptake into two components: 1) membrane resistance (1/Dm, where Dm is the membrane diffusing capacity), which represents the
resistance encountered as the gases move from the alveolar–capillary membrane to the red blood cell membrane, and 2) red blood cell resistance
(1/(θ·Vc), where Vc is the capillary blood volume), which encompasses both the diffusion resistance and the resistance due to the chemical
combination within the red blood cell. The key takeaways are: 1) for CO uptake, most resistance (∼70–80%) is inside the red blood cell, with the
remaining ∼25% occurring in the alveolar–capillary membrane, 2) in contrast, for NO uptake, most of the resistance (∼60%) lies between the
alveolar–capillary membrane and the red blood cell membrane, with the red blood cell resistance accounting for the remaining 40% of the
resistance to NO diffusion [39], and 3) notably, the red blood cell’s interior is crucial to determining the membrane resistance to NO.
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Methods
This was a retrospective secondary data analysis that utilised four prior studies involving White HF
patients and the single-breath NO–CO double diffusion technique [9–11, 17]. At Centro Cardiologico
Monzino (Milan, Italy), all patients provided consent, allowing their data to be used for retrospective
research in a completely anonymous manner. As the data were previously published by the same research
group [9–11, 17], the transferred data were fully anonymised so that a data transfer agreement was not
necessary. These four studies were a combination of cross-sectional or case–control research designs.

This article’s analyses focus on classifying those with New York Heart Association (NYHA) Class II HF
from controls using DLNO, DLCO or their combined z-scores, distinguishing it from the goals of previous
studies [9–11, 17]. Throughout these studies, we maintained consistency regarding breath-hold time (BHT)
(∼5.5 s), testing apparatus and the research team involved. Since all four studies’ data were gathered at the
same research centre, employing fixed statistical models was deemed suitable. We opted for a BHT of
∼5.5 s because the NO electrochemical sensor used for DLNO assessments functions within the ppm
spectrum. A 10 s breath-hold could reduce the exhaled NO concentration to below the ppb spectrum,
which surpasses the sensor’s detection limits. As the established reference equations are grounded on a
BHT of 6.2±1.3 s [4, 15, 18], the potential influence of a slightly shorter BHT on gas diffusion in the lung
is offset by comparing the HF patients to reference equations that employ similar BHTs.

HF prediction
We derived the DLCO and DLNO z-scores from three primary sources: ERS Technical Standards [4],
MUNKHOLM et al. [18] and ZAVORSKY and CAO [15]. Subsequently, we combined the individual z-scores
(DLCO z-score+DLNO z-score) for each method. As a result, both the ERS Technical Standards [4] and
MUNKHOLM et al. [18] yielded three outcomes per patient: one DLCO z-score, one DLNO z-score and one
combined z-score. On the other hand, ZAVORSKY and CAO [15] presented prediction formulas using
segmented linear regression and generalised additive models for location, scale and shape (GAMLSS).
Consequently, this approach produced two sets of scores: two DLCO z-scores, two DLNO z-scores and two
combined z-scores for each patient. It is worth noting that the ERS Technical Standards’ reference
equations [4] drew from aggregated adult data [19–21], while ZAVORSKY and CAO’s [15] were based on a
combined dataset of children and adults [18–22].

These 12 normalised z-scores, considering age, sex, height, altitude and lung function device, acted as
independent variables in binary logistic regression for HF prediction. (For both linear and segmented linear
regression, the z-score is determined by the formula: (measured value–predicted value)/residual standard
error. For the z-score computation via the GAMLSS model from ZAVORSKY and CAO [15], please consult the
footnote in table 3 of their publication.) The model with the lowest Bayesian Information Criterion (BIC), a
typical selection method for lung function reference equations, was chosen for the best overall fit [23, 24].

Between-model differences in BIC were interpreted as follows: BIC difference 0–2: weak evidence
(50–75% probability that the lower BIC model is better); BIC difference 2–6: positive evidence (75–95%
probability that the lower BIC model is better); BIC difference 6–10: strong evidence (95–99% probability
that the lower BIC model is better); and BIC difference >10: very strong evidence (>99% probability that
the lower BIC model is better) [25].

To predict HF through pulmonary diffusion anomalies, we utilised the z-score threshold derived from the
optimal combination of sensitivity and specificity from the receiver operating characteristic (ROC) curve
analysis for all combined models. Additionally, we employed a z-score threshold of −1.645 (corresponding
to the 5th percentile, or LLN) for the standalone DLCO and DLNO z-score models. We applied two-sided
independent t-tests to contrast absolute DLCO with DLCO z-scores, absolute DLNO with DLNO z-scores and
the DLNO/DLCO ratio between different groups. We used the Benjamini–Hochberg procedure to control the
false discovery rate among MCCs and set it at 0.05 [26].

Classification of HF versus controls
Model efficacy was further gauged using the area under the ROC curve (AUC) and the MCC. Notably,
the MCC is an especially reliable metric when evaluating binary categories in datasets where the number
of disease cases does not match non-disease cases, as in our pooled dataset [16, 27, 28]. The MCC
considers true positives, true negatives, false positives and false negatives to provide a comprehensive
score for model classification. High MCC scores are only achieved when predictions accurately classify a
significant proportion of diseased and non-diseased patients, regardless of any class imbalance. We also
derived the 95% confidence interval for the MCC from 1000 bootstrap samples and evaluated each MCC
accordingly [29, 30].
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The prevalence of HF in Italians aged between 60 and 85 years is ∼4% [31]. This starkly contrasts with
the prevalence in our four-study cohort (∼74%). Due to this disparity, we have chosen not to report the
positive and negative predictive values, along with the false positive and false negative rates. Nevertheless,
we did calculate parameters such as the true positive rate (sensitivity, probability of detection), true
negative rate (specificity), false omission rate, false detection rate, and both positive and negative
likelihood ratios since they are unaffected by disease prevalence.

SPSS Statistics version 29 (IBM, Armonk, NY, USA) and R version 4.2.2 (www.r-project.org) were used
for statistical analyses (specifically, R packages AICcmodeavg version 2.3.1 and glmnet version 4.1.6). A
p-value <0.05 signified statistical significance.

Results
General findings
140 patients with NYHA Class II HF (113 males, 27 females) and 50 control subjects (26 males, 24
females) were included in this analysis (table 1). The same researchers tested all subjects in the same
hospital centre [9–11, 17]. Only baseline values were used when patients were tested multiple times or
where they were in different experimental conditions. These were a cohort of ambulatory low ejection
fraction (<40%) HF patients that were regularly followed. The subjects without HF, on average, were 4 years
younger and had a mean body mass index 2.5 kg·m−2 less than those with HF (p<0.05). Approximately
50% of those with HF had an obstructive or restrictive spirometric pattern compared with 20% without HF
(p<0.001). The mean BHT for the diffusing capacity testing was 5.5±0.5 s (range 4.2–7.4 s).

There were significantly different diffusing capacities between groups (z-scores in non-HF: DLCO=−1.03
±0.84, DLNO=−1.30±0.91, combined z-scores=−2.33±1.45; z-scores in HF: DLCO=−2.18±1.32, DLNO=
−2.35±1.19, combined z-scores=−4.53±2.34) (p<0.001 between groups for all, z-scores created from
segmented regression [15]).

About 24% of the subjects without HF showed mild DLCO impairment (per the diffusion impairment
classification scheme of ZAVORSKY and CAO [15]). Conversely, 65% of the HF patients displayed mild,
moderate or severe DLCO impairment. About 36% of the non-HF subjects showed mild DLNO impairment.
Conversely, 69% of the HF patients displayed mild, moderate or severe DLNO impairment.

The absolute values for DLCO and DLNO for those with HF were 17.0±5.7 and 69±23 mL·min−1·mmHg−1,
respectively. The absolute values for DLCO and DLNO for those without HF were 21.8±4.9 and
88±21 mL·min−1·mmHg−1, respectively. The 95% CI of the difference was 3.3–6.4 and
13–26 mL·min−1·mmHg−1 for DLCO and DLNO, respectively (two-sided p-value <0.001). The DLNO/DLCO

TABLE 1 Subject characteristics

Patients without HF
(n=50)

Patients with HF
(n=140)

Sex
Female 24 27
Male 26 113

Age (years) 62±8 (36 to 75) 66±11 (29 to 86)
Height (cm) 169±8 (150 to 187) 170±8 (150 to 197)
Weight (kg) 69±12 (43 to 99) 77±15 (48 to 131)
BMI (kg·m−2) 24.1±3.1 (16.8 to 32.3) 26.6±4.2 (18.4 to 40.4)
FEV1 (L) 2.75±0.54 (1.52 to 4.28) 2.23±0.67 (0.87 to 3.87)
FVC (L) 3.62±0.76 (1.91 to 5.49) 3.05±0.85 (1.52 to 5.62)
FEV1/FVC 0.77±0.07 (0.53 to 0.88) 0.73±0.09 (0.42 to 0.92)
FEV1 z-scores −0.29±1.25 (−2.41 to 2.71) −1.51±1.18 (−4.50 to 1.74)
FVC z-scores −0.12±1.11 (−2.43 to 2.26) −1.38±1.23 (−4.07 to 1.92)
FEV1/FVC z-scores −0.35±0.97 (−3.44 to 1.43) −0.44±1.16 (−4.11 to 2.10)
Individuals with obstruction (FEV1/FVC <LLN) 4 (8) 20 (14)
Individuals with a restrictive spirometry pattern
(FEV1/FVC >LLN and FVC <LLN)

6 (12) 49 (35)

Subjects with either obstruction or restriction 10 (20) 69 (49)

Data are presented as n, mean±SD (range) or n (%). HF: heart failure; BMI: body mass index; FEV1: forced
expiratory volume in 1 s; FVC: forced vital capacity; LLN: lower limit of normal.
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ratio was 4.09±0.67 for those with no disease and 4.20±0.92 for those with heart disease (95% CI of the
difference −0.36–0.12) (two-sided p-value 0.36), indicating that the ratio cannot be used to distinguish those
with and those without HF. The correlation between DLCO and DLNO in mL·min−1·mmHg−1 was 0.79 (95%
CI 0.73–0.85) and the correlation between DLCO and DLNO z-scores was 0.73 (95% CI 0.64–0.79) when the
z-scores were created from segmented regression [15].

Prediction results
Table 2 presents the summary results of the 12 models. The “ΔBIC” column indicates the change in BIC
compared with the first model. In this case, there is positive evidence that Model 1 is a better fit than
Models 2 and 3, strong evidence that Model 1 is better than Models 4–7, and very strong evidence that
Model 1 is better than Models 8–12. Thus, models that used ERS reference equations [4] or GAMLSS
reference equations [15] were the best fit among the 12 models. Approximately 32% of the variability in
the odds of having HF can be explained by combined z-scores when the z-scores were generated from the
ERS equations. In other words, the combined z-scores from Model 1 provide information that helps
explain 32% of the variance in the likelihood of an individual having HF. Four of the six highest-ranked
models were those involving models with combined z-scores.

The “BIC weight” column in table 2 is used to see how much more likely one model is the correct model
compared with the other models that have been fitted. In this case, Model 1 is 4.1 times more likely to be
a better fit than Model 2 (0.69/0.17=4.1). So, for example, Model 1 has a BIC weight of 0.69, which
suggests that there is a 69% chance that Model 1 is the best model compared with the 11 other models
tested. In the second row, Model 2 has a BIC weight of 0.17, which suggests that there is a 17% chance
that Model 2 is the best model compared with the other 11 models tested. The “Cumulative weight”
column in table 2 shows the percentage chance that a particular group of models is the best in the table.
For example, Model 2 has a cumulative weight of 0.86, suggesting that there is an 86% chance that either
Model 1 or Model 2 is the best model of all the models tested in table 2.

While table 2 summarises the comparative results of different reference equations from three distinct
studies [4, 15, 18], a detailed examination of each reference equation reveals a consistent trend. The BIC

TABLE 2 Comparing the Bayesian Information Criterion (BIC) using diffusing capacity of the lung for carbon monoxide (DLCO), diffusing capacity of
the lung for nitric oxide (DLNO) or the composite (DLCO+DLNO) z-scores as the independent predictors of heart failure

Model number BIC ΔBIC BIC weight Cumulative weight Log-likelihood Nagelkerke R2

Model 1. Combined z-scores obtained from ERS Task
Force reference equations [4]

183.2 0.0 0.69 0.69 −86.4 0.32

Model 2. Combined z-scores obtained from GAMLSS
reference equations of ZAVORSKY and CAO [15]

186.0 2.78 0.17 0.86 −87.8 0.30

Model 3. DLCO z-scores obtained from ERS Task Force
reference equations [4]

187.6 4.42 0.08 0.94 −88.6 0.29

Model 4. DLNO z-scores obtained from GAMLSS reference
equations of ZAVORSKY and CAO [15]

190.3 7.11 0.02 0.96 −89.9 0.27

Model 5. Combined z-scores obtained from segmented
regression reference equations of ZAVORSKY and CAO [15]

190.6 7.41 0.02 0.98 −90.1 0.27

Model 6. Combined z-scores obtained from reference
equations of MUNKHOLM et al. [18]

191.5 8.24 0.01 0.99 −90.5 0.27

Model 7. DLNO z-scores obtained from ERS Task Force
reference equations [4]

191.8 8.54 0.01 1.00 −90.6 0.26

Model 8. DLCO z-scores obtained from reference
equations of MUNKHOLM et al. [18]

196.1 12.93 0.00 1.00 −92.8 0.24

Model 9. DLCO z-scores obtained from segmented
regression reference equations of ZAVORSKY and CAO [15]

197.2 13.94 0.00 1.00 −93.3 0.23

Model 10. DLNO z-scores obtained from segmented
regression reference equations of ZAVORSKY and CAO [15]

198.1 14.91 0.00 1.00 −93.8 0.22

Model 11. DLCO z-scores obtained from GAMLSS reference
equations of ZAVORSKY and CAO [15]

200.0 16.82 0.00 1.00 −94.8 0.21

Model 12. DLNO z-scores obtained from reference
equations of MUNKHOLM et al. [18]

200.2 17.0 0.00 1.00 −94.9 0.21

Pooled data from Italy [9–11, 17]. ERS: European Respiratory Society; GAMLSS: generalised additive models for location, scale and shape.
K (estimated parameters for each model)=2.
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for combined z-scores was always superior to the BIC for standalone DLNO or DLCO z-scores within the
same reference equation set, with a minimum BIC difference of 4 units. This pattern emerged across
various models. Specifically, using the combined z-scores from the ERS reference equations [4] resulted in
a lower BIC than using individual DLCO or DLNO z-scores from that set. A similar trend was observed in
the reference equations from MUNKHOLM et al. [18], where combined z-scores led to a lower BIC than
standalone DLCO or DLNO scores. In the segmented linear regression or GAMLSS reference equation
models by ZAVORSKY and CAO [15], the combined z-scores again demonstrated a lower BIC than the
individual DLCO or DLNO z-scores. Therefore, while Models 1 and 2 stood out as the best overall models
among the other 10 presented, combined z-scores consistently offered better BIC results when partitioning
the three studies separately [4, 15, 18].

Odds ratios from the prediction models
Table 3 displays the odds ratio of heart disease for every 1 unit increase in z-scores. For example, when
using the calculated DLCO z-scores from the ERS Task Force equations [4], it can be shown that for every
1 unit increase in DLCO z-scores, the odds of having HF are reduced by 45% to 74%.

The odds that DLCO, DLNO or combined (DLCO+DLNO) models are below the LLN when a patient has HF are
presented in table 4. For example, someone with HF has a ∼6–34 times increase in odds that the combined
z-scores are below the LLN when a patient has HF (when using the ERS prediction equations [4]).

Classification results
Table 5 shows that Model 1 (row 1) had a higher MCC than models presented in rows 6–12. The positive
and negative likelihood ratios describe the probability of disease shifts when the finding is present and
absent, respectively [32]. While the AUC for Model 1 is 0.79, demonstrating good discriminatory ability
between positive and negative cases, this can be misleading as the MCC was only 0.51 (table 5). So, the
power of Model 1 in determining true positives and true negatives while minimising false positives and
false negatives was only “moderate”. (An MCC of +1 represents a perfect classification, a MCC of 0
indicates random classification and an MCC of –1 indicates total disagreement between observation and
classification. Since the MCC of 0.51 is above the random classification level and indicates a correlation
that is more than half-way towards perfect classification, in that sense one may describe an MCC of 0.51
as moderate, as it is past the half-way point but not near perfect.)

Discussion
This study evaluated the combined effectiveness of DLNO and DLCO z-scores in predicting and classifying
NYHA Class II HF patients from controls. Class II HF patients, given their mild exercise limitations and
relatively few symptoms, are often less inclined to adopt the recommended comprehensive therapy regimen for
HF. Our analysis revealed that the combined z-scores significantly outperformed individual z-scores, with an
86% probability that one of the first two combined z-score models was the best predictor of HF among the 12
we assessed. Interestingly, the first combined model alone had a 69% likelihood of being the top performer.

The most informative metric we used was the MCC, which captures the true balance between positive and
negative classifications, minimising errors. Four out of the top six MCC values came from models utilising
combined z-scores. While the AUC is often used as a performance metric, it can be misleading, especially

TABLE 3 A comparison of the odds ratios (95% CI) from different reference equations using the diffusing
capacity of the lung for carbon monoxide (DLCO)-only, diffusing capacity of the lung for nitric oxide (DLNO)-only
or combined (DLCO+DLNO) z-score value as the independent predictor of heart failure (HF)

Reference equation used DLCO-only z-score model DLNO-only z-score model Combined z-score
model (DLCO+DLNO)

ERS [4] 0.37 (0.26 to 0.54) 0.38 (0.26 to 0.55) 0.56 (0.45 to 0.69)
MUNKHOLM et al. [18] 0.47 (0.35 to 0.64) 0.46 (0.33 to 0.63) 0.62 (0.52 to 0.74)
GAMLSS [15] 0.49 (0.36 to 0.66) 0.55 (0.44 to 0.69) 0.65 (0.56 to 0.76)
Segmented regression [15] 0.42 (0.30 to 0.60) 0.40 (0.28 to 0.58) 0.57 (0.46 to 0.71)

ERS: European Respiratory Society; GAMLSS: generalised additive models for location, scale and shape. For
example, for every 1 unit increase in the DLNO z-score obtained from the ERS Task Force reference equations,
the odds of having HF decrease by 45% to 74%. The independent variables were the actual z-scores from
various prediction equations. All p<0.001.
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in datasets with high disease prevalence [33]. For instance, an 80% accuracy in a population with 74%
prevalence is not a notable achievement [27]. The MCC, which aggregates true positives, true negatives,
false positives and true negatives, offers a more truthful representation, especially when both true positives
and true negatives are equally significant.

TABLE 5 Binary classification comparisons of heart failure (HF) versus no HF ranked from the highest Matthews Correlation Coefficient (MCC) to the
lowest MCC

Row Model number z-score
cut-off

MCC AUC TPR
(%)

TNR
(%)

FOR
(%)

FDR
(%)

+LR −LR

1 Model 1. Combined z-scores obtained from
ERS Task Force reference equations [4]

−3.76 0.51
(0.40 to 0.62)

0.79
(0.73 to 0.85)

74 84 47 7 4.6 0.31

2 Model 3. DLCO z-scores obtained from ERS
Task Force reference equations [4]

−1.65 0.47
(0.34 to 0.58)

0.76
(0.69 to 0.84)

69 84 51 8 4.3 0.37

3 Model 6. Combined z-scores obtained from
reference equations of MUNKHOLM et al. [18]

−4.86 0.44
(0.35 to 0.52)

0.74
(0.67 to 0.81)

53 96 58 3 13.2 0.49

4 Model 5. Combined z-scores obtained from
segmented regression reference equations
of ZAVORSKY and CAO [15]

−4.38 0.42
(0.31 to 0.51)

0.73
(0.66 to 0.81)

53 94 58 4 8.8 0.50

5 Model 2. Combined z-scores obtained from
GAMLSS reference equations of ZAVORSKY
and CAO [15]

−5.92 0.42
(0.31 to 0.52)

0.74#

(0.66 to 0.81)
55 92 58 5 6.9 0.49

6 Model 9. DLCO z-scores obtained from
segmented regression reference equations
of ZAVORSKY and CAO [15]

−1.65 0.36#

(0.23 to 0.48)
0.71#

(0.62 to 0.79)
67 72 56 13 2.7 0.46

7 Model 8. DLCO z-scores obtained from
reference equations of MUNKHOLM et al. [18]

−1.65 0.35#

(0.21 to 0.47)
0.70#

(0.61 to 0.78)
67 72 56 13 2.4 0.46

8 Model 11. DLCO z-scores obtained from
GAMLSS reference equations of ZAVORSKY
and CAO [15]

−1.65 0.35#

(0.21 to 0.48)
0.69#

(0.61 to 0.78)
69 70 56 14 2.3 0.45

9 Model 4. DLNO z-scores obtained from
GAMLSS reference equations of ZAVORSKY
and CAO [15]

−1.65 0.34#

(0.18 to 0.50)
0.65#

(0.56 to 0.75)
89 42 43 19 1.5 0.27

10 Model 10. DLNO z-scores obtained from
segmented regression reference equations
of ZAVORSKY and CAO [15]

−1.65 0.30#

(0.16 to 0.43)
0.67#

(0.58 to 0.76)
69 64 57 16 1.9 0.48

11 Model 12. DLNO z-scores obtained from
reference equations of MUNKHOLM et al. [18]

−1.65 0.30#

(0.15 to 0.44)
0.66#

(0.56 to 0.75)
77 54 54 18 1.7 0.42

12 Model 7. DLNO z-scores obtained from ERS
Task Force reference equations [4]

−1.65 0.26#

(0.11 to 0.41)
0.62#

(0.53 to 0.72)
84 40 52 20 1.4 0.39

Brackets represent the 95% CI (bootstrapped and bias-corrected). AUC: area under the receiver operating characteristic curve; TPR: true positive rate
(sensitivity); TNR: true negative rate (specificity); FOR: false omission rate; FDR: false discovery rate; +LR: positive likelihood ratio; –LR: negative
likelihood ratio. #: the MCC in that row significantly differs from Model 1 (first row), controlling for the FDR.

TABLE 4 The odd ratios (95% CI) that diffusing capacity of the lung for carbon monoxide (DLCO), diffusing
capacity of the lung for nitric oxide (DLNO) or combined (DLCO+DLNO) are below the lower limit of normal (LLN)
when a patient has heart failure

Reference equation used DLCO-only z-score model
(z-score <−1.645)

DLNO-only z-score model
(z-score <−1.645)

Combined z-score
model (DLCO+DLNO)

ERS [4] 11.5 (5.0 to 26.4) 3.6 (1.7 to 7.4) 14.6 (6.2 to 34.0)
MUNKHOLM et al. [18] 5.3 (2.6 to 10.7) 4.0 (2.0 to 7.8) 26.9 (6.3 to 115.0)
GAMLSS [15] 5.1 (2.5 to 10.3) 5.6 (2.6 to 12.1) 14.1 (4.8 to 41.2)
Segmented regression [15] 5.9 (2.8 to 12.3) 4.0 (2.0 to 7.9) 17.6 (5.2 to 59.1)

ERS: European Respiratory Society; GAMLSS: generalised additive models for location, scale and shape. For the
ERS combined z-score model, the LLN was defined as a combined z-score of < –3.76. For the MUNKHOLM et al.
combined z-score model, the LLN was defined as a combined z-score of < –4.87. For the segmented combined
z-score model, the LLN was defined as a combined z-score of < –4.38. For the GAMLSS combined z-score model,
the LLN was defined as a combined z-score of < –5.92. All p<0.001.
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In this pooled dataset, the DLCO z-scores and DLNO z-scores shared 53% (95% CI 41–64%) of their variance.
This implies that for HF patients, approximately half of the variability in one z-score can be predicted from
the other. Since there is not complete overlap between the DLNO and DLCO z-scores (i.e. they do not share
100% of their variance), it is advisable to measure both DLNO and DLCO to capture the entirety of the
variance present. This accentuates the advantages of employing the NO–CO double diffusion technique in
pulmonary function tests over traditional DLCO tests alone. The combined use of DLNO and DLCO z-scores
provides a broader perspective, capturing variances that either score might miss individually. There are
certain standalone conditions, like anaemia [34], polycythaemia, CO poisoning [35] or pulmonary capillary
haemorrhage, where DLNO is much less sensitive than DLCO in detecting microvascular changes in the
haemoglobin sink for oxygen transfer, but generally the combination proves more robust in classifying HF.

Although DLNO is technically superior to DLCO [6], it does not render DLCO obsolete. The combined
approach offers the most reliable identification of HF. While DLNO can replace DLCO in some
cardiopulmonary diseases [6], the synergy of using both for impairment of pulmonary diffusing capacity is
crucial for HF.

Our analysis also highlighted that only about a third of the variance in combined z-scores directly correlates
with HF identification. The factors causing the remaining two-thirds of the variance remain an enigma.
Despite the strength of combined z-scores with HF, established screening tools (e.g. brain natriuretic peptide
(BNP), N-terminal pro-BNP and echocardiography) are still better [36, 37]. Our intent was not to substitute
these tools but to showcase how DLNO z-scores could complement DLCO z-scores under specific
circumstances. Indeed, combining DLNO and DLCO offers a more comprehensive insight into the specific
location of resistance in the oxygen diffusion pathway, from the alveoli to the interior of the red blood cell.

Limitations
Several challenges were present in this study. First, the limited application of the NO–CO double diffusion
method constrained the amount of available data. Second, the dataset mainly represents an adult White
population, excluding children and diverse ethnic groups. The equations in Model 1 do not account for
child-related data or specific device adjustments. Third, even though Model 1 performed the best among
the 12 models examined, it might not be the most suitable in specific conditions like anaemia [34],
polycythaemia or elevated carboxyhaemoglobin levels [35], such as in cases of CO poisoning. Under these
conditions, only DLCO is only influenced. Fourth, we chose not to adjust for haemoglobin in DLCO due to
feasibility and model fit concerns. Notably, ∼20% of NYHA Class II HF patients display signs of anaemia
(11.7±1.1 g·dL−1) [38]. At this concentration and prevalence, DLCO results likely remain stable. Lastly, the
participants labelled as “non-HF” were not perfect controls. Approximately 20% of these control
participants displayed restrictive or obstructive patterns despite normal heart function. The MCC would
likely be higher if these controls had no lung obstruction or restriction.

Conclusions
In conclusion, combined DLNO+DLCO z-score models outperform single z-score models for HF fit and the
binary HF classification benefits from combined z-scores over individual DLCO or DLNO LLN cut-offs.
However, only ∼32% of HF variance predicting HF is explained by combined z-scores, discouraging HF
screening use. Instead, the NO–CO technique is recommended for gas exchange assessment and improved
binary classification in HF patients.
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