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The central role played by the ERK/MAPK pathway downstream of RAS in human

neoplasias is best exemplified in the context of melanoma skin cancer. Signaling through

theMAPK pathway is crucial for the proliferation of melanocytes, the healthy pigment cells

that give rise to melanoma. However, hyper-activation of the MAPK-pathway is found in

over 90% of melanomas with approximately 50% of all patients displaying mutations

in the kinase BRAF, and approximately 28% of all patients harboring mutations in the

MAPK-pathway up-stream regulator NRAS. This finding has led to the development

of BRAF and MEK inhibitors whose application in the clinic has shown unprecedented

survival responses. Unfortunately the responses toMAPK pathway inhibitors are transient

with most patients progressing within a year and a median progression free survival of

7–10 months. The disease progression is due to the development of drug-resistance

based on various mechanisms, many of them involving a rewiring of the MAPK pathway.

In this article we will review the complexity of MAPK signaling in melanocytic cells as well

as the mechanisms of action of different MAPK-pathway inhibitors and their correlation

with clinical response. We will reflect on mechanisms of innate and acquired resistance

that limit patient’s response, with a focus on the MAPK signaling network. Because of

the resurgence of antibody-based immune-therapies there is a growing feeling of failure

in the targeted therapy camp. However, recent studies have revealed new windows of

therapeutic opportunity for melanoma sufferers treated with drugs targeting the MAPK

pathway, and these opportunities will be discussed.
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THE ERK/MAP-KINASE PATHWAY IS A CRUCIAL REGULATOR OF
MELANOCYTE PROLIFERATION AND DIFFERENTIATION

Cutaneous melanoma originates from melanocytes, neural-crest derived pigment-producing cells
located in the epidermis, where their major function is to protect keratinocytes from UV-induced
DNA damage (Abdel-Malek et al., 2010). Under basal conditions and in response to UV the
physiology of a melanocyte is modulated by keratinocytes, which secret specific paracrine acting
factors (Hirobe, 2011). These secreted factors stimulate a broad spectrum of intracellular signaling.
However, a crucial downstream event triggered by almost all of the extracellular factors is the
activation of the ERK/MAP-kinase (MAPK)-pathway, which plays a major role in coordinating
the balance between melanocyte differentiation and proliferation (see Figure 1A).
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Up-regulation of intracellular cAMP levels, which induces the
differentiation process (Busca and Ballotti, 2000), triggers a very
transient (≤ 60min) and weak activation of ERK (Wellbrock
et al., 2002b). On the other hand, activation of the MAPK-
pathway by the synergistic action of factors like SCF, FGF, or
HGF stimulates strong sustained ERK activation, which triggers
melanocyte proliferation (Bohm et al., 1995).

At the center of this transient vs. sustained ERK activation
is MITF (Figure 1A), a tissue specific bHLH-Zip transcription
factor and fate regulator of the melanocyte lineage, which
is a target of ERK phosphorylation (Hemesath et al., 1998;
Figure 1A). MITF regulates the expression of genes controlling
differentiation (e.g., TYR) proliferation (e.g., CDK2) and survival
(e.g., BCL2, BCL2A1) (Wellbrock and Arozarena, 2015). As ERK
phosphorylation can increase MITF’s transcriptional activity
toward TYR (Hemesath et al., 1998), transient ERK activation can
favor differentiation, and in the context of cAMP signaling this is
paralleled by a strong transcriptional up-regulation of the MITF
transcript (Price et al., 1998). However, ERK phosphorylation can
also trigger ubiquitin-mediated degradation (Wu et al., 2000),
and as a result of sustained ERK activation MITF protein levels
are reduced, a situation that is compatible with proliferation
(Wellbrock and Marais, 2005). Nevertheless, because MITF is
crucial for cell survival, its expression in proliferative cells is
ensured through the ERK induced transcription factor BRN2
(Wellbrock et al., 2008). In summary, the MAPK-pathway has
stringent control over the melanocyte/melanoma fate-decision
regulator MITF, which might explain why this pathway is so
particularly critical in the biology of a melanocytic cell and hence
in melanoma.

THE DISCOVERY OF THE RELEVANCE OF
ERK/MAP-KINASE SIGNALING FOR
MELANOMA

Melanoma is not one of the cancers with the highest incidences
when compared to breast, lung or colon cancer and therefore
historically not much attention was given to the research directed
toward a better understanding of this skin cancer. However,
this changed dramatically in 2002, when the Cancer Genome
Project/Sanger Institute identified oncogenic mutations in the
MEK-upstream kinase BRAF in over 50% of melanoma (Davies
et al., 2002). This discovery led to an explosion in published
work on the relevance of the MAPK-pathway in melanoma; as
such research into melanoma can be divided in the pre- and
post-2002 era.

The development of theMEK inhibitors PD908059 andU0126
in the pre-2002 era resulted in the first studies demonstrating
a role for MEK in human melanoma cell proliferation,
survival and invasion (Kortylewski et al., 2001; Li et al.,
2001). The first indication for an in vivo relevance of MAPK
signaling in this disease came however from Xiphophorus,
a genetically controlled vertebrate model for melanoma first
described in 1928 (Wellbrock et al., 2002a). In these animals
strong constitutive MAPK activation occurs already in benign
nevus-like lesions (Wellbrock and Schartl, 1999), suggesting an

involvement of MAPK-signaling in the early steps of pigment-
cell transformation (Figure 1B). In 2002, Cohen et al. reported
constitutive ERK-phosphorylation in >20% of benign nevi
and>80% of primarymelanoma, and hence confirmed activation
of MAPK-signaling as an early event in human melanoma
development (Cohen et al., 2002).

Since the first description of BRAF mutations in melanoma
(Davies et al., 2002) BRAFV600E, the most predominant mutant,
has been shown to constitutively activate ERK in melanocytes,
and to transform p16/INK4A deficient melanocytes (Wellbrock
et al., 2004). BRAFV600E induces melanoma in mice, where this
can be accelerated by the absence of p16/INK4A or the PI3K-
antagonist PTEN, or by UV exposure (Dankort et al., 2009;
Dhomen et al., 2009; Viros et al., 2014). In line with what has
been observed in humans, in zebrafish BRAFV600E only triggers
the formation of benign nevi (Patton et al., 2005). However,
in zebrafish mutants where a temperature shift lowers levels
of functional MITF (possibly compatible with proliferation),
BRAFV600E efficiently induces melanoma (Lister et al., 2014;
Zeng et al., 2015). This further emphasizes the relevance of the
BRAF/MITF connection for melanoma development.

In humans, BRAFV600E mutations are found in benign
nevi (Pollock et al., 2003), clonal populations of senescent
melanocytes (Gray-Schopfer et al., 2006). BRAFV600E

can stimulate senescence in human melanocytes in vitro
(Michaloglou et al., 2005). Hence, nevi might represent the result
of oncogene-induced senescence. Nevertheless, formation of a
nevus requires an initial pulse of melanocyte proliferation, and
MAPK signaling appears to be essential for this step. This has
been very elegantly shown in zebrafish that develop invasive
melanoma induced by mutant RAS, which is however completely
abolished when RAS is rendered incapable of activating MAPK
signaling (Michailidou et al., 2009). Importantly, these fish do
not even develop nevi, clearly demonstrating that no melanocyte
proliferation had occurred in the absence of constitutive
MAPK signaling, and tumor initiation was completely blocked
(Michailidou et al., 2009).

During the last 14 years numerous studies have established
the relevance of BRAFV600E-induced MAPK signaling for most
aspects of human melanoma development and progression;
this includes proliferation, survival, hypoxia, invasion, and
angiogenesis (Huntington et al., 2004; Karasarides et al., 2004;
Gaggioli et al., 2007; Kumar et al., 2007; Klein et al., 2008;
Johansson et al., 2009).

THE COMPLEXITY OF ERK/MAP-KINASE
SIGNALING IN MELANOMA

The relevance of the MAPK-pathway for melanoma is reflected
in the overall rate of mutations leading to deregulation of
the pathway. These include not only the ∼50% of BRAF
mutations, but also >25% NRAS mutations and ∼14% of
melanomas with mutations in the RAS suppressor NF1
(CancerGenomeAtlasNetwork 2015).

In contrast to BRAF, mutations in the other isoforms, CRAF
and ARAF are rare. This is thought to be due to the more
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FIGURE 1 | MAPK pathway signaling: transient, sustained, and constitutive. (A) In normal melanocytes the ERK/MAPK pathway is governed by G-protein

couple receptor (GPCR) induced cAMP signaling (i.e., MC1R) and receptor tyrosine kinase (RTK) signaling. MC1R signals mainly through BRAF, while CRAF is

inhibited (Busca et al., 2000; Dumaz et al., 2006). All receptors lead to ERK activation, but through the differential induction of the ERK phosphatase DUSP1 (MKP1)

this results in either transient or sustained ERK activation (Wellbrock et al., 2002b). The melanocyte fate regulator MITF is an ERK target and sustained ERK

phosphorylation stimulates its degradation (Wu et al., 2000), which keeps MITF levels low- a state competitive with proliferation. However, cAMP signaling induces

MITF expression and in the absence of active ERK this leads to MITF up-regulation, which triggers differentiation. (B) In Xiphophorus hybrids harboring the

macromelanophore locus Tu-Sd (Tumor-spotted dorsal pattern) in which melanoma development is driven by the melanocyte specific overexpression of the EGFR

homolog Xmrk, ERK is constitutively activated in early benign “nevus”-like lesions and its activation is maintained in malignant melanomas. A phospho-ERK Western

blot of lysates (100 µg total protein) from individual fish carrying either nevi (n = 4) or malignant melanomas (n = 7) is shown. Lysates from A431 cancer cells and from

muscle tissue served as positive and negative control respectively (adapted from Wellbrock and Schartl, 1999).

complex mechanisms underlying activation of these isoforms
(Emuss et al., 2005). As a consequence activation of ARAF
or CRAF would require at least two mutation events, while
the BRAF kinase can be rendered active by one mutation

event. The majority of these mutations affect the phosphate-
binding loop (P-loop) or the activation loop (A-loop) in the
kinase domain (Davies et al., 2002). The most common V600E
substitution mimics phosphorylation of the A-loop, inducing an
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active conformation of the kinase (Wan et al., 2004; Garnett et al.,
2005).

Surprisingly, other mutations were found to render BRAF
inactive (Davies et al., 2002). The biochemical analysis of these
“kinase-impaired” mutations revealed that although they reduce
BRAF’s enzymatic activity, BRAF still activates MEK through
dimerization with CRAF in a RAS dependentmanner (Wan et al.,
2004; Garnett et al., 2005). Confirming earlier studies (Weber
et al., 2001), it is now well established that RAF kinases homo and
hetero-dimerize partly in a RAS dependent manner. Importantly,
these interactions can impact on the response to inhibitors
of BRAF. Thereby, inhibitor-binding triggers dimerization and
in the presence of (hyper)-active RAS, instead of pathway-
inhibition, this leads to the so called “paradoxical” pathway-
activation through CRAF (Wan et al., 2004; Garnett et al.,
2005; Hatzivassiliou et al., 2010; Heidorn et al., 2010; Poulikakos
et al., 2011). Elucidation of this complex mechanism has proven
valuable in the understanding of some of the side effects that
BRAF inhibitors produce in patients (see below).

The MAPK-pathway is not linear but part of a complex
network containing scaffold proteins and feedback loops. The
scaffold protein KSR competes with CRAF for inhibitor-induced
BRAF-binding and can counteract the “paradoxical activation”
of ERK (McKay et al., 2011), but another scaffold protein,
IQGAP promotes ERK activation and the targeted interruption
of its interaction with ERK1/2 can contribute to MAPK-pathway
inhibition (Jameson et al., 2013). Furthermore, complex feedback
loops are induced through the expression of phosphatases (e.g.,
DUSP6) or adaptor proteins (e.g., SPROUTY) (Hanafusa et al.,
2002; Owens and Keyse, 2007). This is also crucial in the context
of BRAF inhibition in patients, where these negative feedback
mechanisms are relieved with the subsequent up-regulation
of other MEK up-stream regulators allowing MAPK pathway
activation without BRAF involvement (Lito et al., 2013).

THE DEVELOPMENT OF BRAF, MEK, AND
ERK INHIBITORS

First attempts to inhibit BRAFV600E in patients using sorafenib
(BAY 43-9006), a broadband kinase inhibitor originally designed
to inhibit CRAF, were rather disappointing (Eisen et al., 2006).
However, between 2011 and 2014 the FDA and the EMA have
approved the use of vemurafenib (PLX4032) and dabrafenib
(GSK2118436) for the treatment of BRAF mutant melanoma
patients. Both, vemurafenib and dabrafenib bind to the active
site in the kinase domain in its “DGF-in” (active) conformation,
thereby blocking the access to ATP, and both inhibitors display
similar potency for BRAFV600E and CRAF and selectivity against
many other kinases (Bollag et al., 2010; Waizenegger et al.,
2016). Phase I to III trials using these drugs showed impressive,
unprecedented clinical responses in the field of targeted therapies
with overall responses of 80%, median progression free survival
between 6 and 9 months and median overall survival rates
between 13 and 19 months (Flaherty et al., 2010; Chapman
et al., 2011; Hauschild et al., 2012; Long et al., 2012; Sosman
et al., 2012). Of note, up to 30% of patients treated with BRAF

inhibitors develop RAS driven cancers such as squamous cell
carcinomas, colon cancer or leukemia (Flaherty et al., 2010;
Chapman et al., 2011; Callahan et al., 2012). These “side-effects”
are most likely due to the “paradoxical” activation of CRAF
in RAF dimers upon inhibitor-binding to wild-type BRAF. As
mentioned before, paradoxical activation of CRAF depends on
active RAS and is thus favored in cells that signal through RAS
(Hatzivassiliou et al., 2010; Heidorn et al., 2010; Poulikakos et al.,
2011).

In parallel, inhibitors targeting MEK (e.g., selumetinib,
trametinib, cobimetinib) have been developed. BRAF’s unique
effector is MEK, and pre-clinical studies have shown that BRAF
mutant cells are significantly more sensitive to MEK inhibition
inhibitors than RAS mutant cells (Solit et al., 2006), probably due
to RAS activating other pathways such as the PI3K-cascade to
promote cell survival (Haass et al., 2008). Despite drug related
toxicities limiting the use of MEK inhibitors, recently developed
highly potent inhibitors show efficacy in patients (Flaherty et al.,
2012; Kirkwood et al., 2012; Ascierto et al., 2013).

Recently, the attention has also moved to ERK and the first
ERK inhibitors that are effective in both, BRAF and NRAS
mutant as well as cells that have developed resistance to MEK
inhibitors have been described (Hatzivassiliou et al., 2012; Morris
et al., 2013). Trials testing SCH772984 and GDC-0994 are
currently ongoing.

MECHANISMS OF RESISTANCE TO BRAF
AND MEK INHIBITORS

Despite the outstanding responses obtained with BRAF
inhibitors, in the majority of patients clinical responses are
transient. The analysis of melanomas from patients relapsed
on BRAF inhibitor treatment revealed the vast complexity of
the MAPK signaling network and over the last years a plethora
of mechanisms have been identified that allow cells to bypass
BRAF inhibition by activating other signaling nodes eventually
re-establishing MEK activity and hence reactivation of ERK [for
a detailed review see Lito et al. (2013)], which is thought to occur
in >70% of patients (Shi et al., 2014; Van Allen et al., 2014).

Some of these mechanisms (Figure 2) involve activating
NRAS mutations or loss of the RAS suppressor NF1 (Whittaker
et al., 2013), BRAF amplification or alternative splicing leading
to BRAF truncations (Poulikakos et al., 2011; Shi et al.,
2012) and overexpression or mutation of the MEK activators
CRAF, COT/TPL2/MAP3K8 or MLKs (Montagut et al., 2008;
Johannessen et al., 2010; Marusiak et al., 2014). BRAF inhibitor
action can also be overcome by mutations in MEK itself, and
while some of these mutations increase the basal kinase activity
of MEK, others render the kinase insensitive to MEK inhibitors
(Emery et al., 2009; Wagle et al., 2011).

Intriguingly, increased receptor tyrosine kinase (RTK)
signaling through for instance IGF-1R, PDGFR, or EGFR is also
frequently found in relapsed melanomas (Nazarian et al., 2010;
Villanueva et al., 2010; Girotti et al., 2013; Sun et al., 2014), and
this can lead to ERK activation via classical pathway activation
through RAS and CRAF (Figure 2). Moreover, RTK signaling
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FIGURE 2 | Resistance mechanisms in MAPK-inhibitor treated melanoma. Resistance to BRAF inhibitors can occur through activating NRAS mutations (*),

loss of the RAS suppressor NF1, BRAF amplification or alternative splicing leading to BRAF truncations (semicircles B*), overexpression or mutation of the MEK

activators CRAF, COT/TPL2/MAP3K8 or MLKs as well as MEK mutations (*). Addition of a MEK inhibitor can buffer some of these resistance mechanisms, but

eventually enhanced resistance signaling will overcome its effects. While ERK is inhibited -particularly in the initial phases of treatment- MITF expression is

up-regulated and contributes to drug-tolerance. Solid arrows indicate signaling induced by mutant BRAF, dashed arrows indicate signaling brought about by the

various resistance mechanisms.

has been linked to an intrinsically BRAF inhibitor resistant
phenotype (Konieczkowski et al., 2014; Muller et al., 2014),
which was unexpected, as RTK signaling was not perceived as
being a major driver of human melanoma. Indeed, it appears
that in heterogeneous tumors RTK-signaling melanoma cells are
present with lower frequency. However, this balance changes
in the presence of a BRAF inhibitor, when RTK-signaling
becomes advantageous (Sun et al., 2014). That RTKs in fact
can be very potent drivers of melanoma development is seen
in Xiphophorus hybrids, where overexpression of an EGFR
homolog stimulates proliferation (Wellbrock et al., 1998) and
is sufficient to initiate and progress melanoma development
(see Figure 1B).

Another BRAF/MEK inhibitor resistance mechanism is based
on overexpression of pro-survival factors that allow melanoma
cells to evade apoptosis even under complete/efficient ERK
inhibition. Around 30% of melanomas display amplifications
in the BLC2A1 gene (Haq et al., 2013). Over-expression of the
anti-apoptotic BLC2A1 protein blocks BRAF and MEK inhibitor
induced apoptosis, and intriguingly, BCL2A1 expression is
regulated by MITF (Haq et al., 2013; Figure 2). This together
with other target genes might underlie the fact that MITF
itself can confer resistance to BRAF and MEK inhibitors even
when ERK is not re-activated (Smith et al., 2013; Muller
et al., 2014). This becomes relevant on the initial phase of

treatment, where (in line with low ERK activity being correlated
with increased MITF levels; see Figure 1A) the majority of
patients show significant up-regulation ofMITF as early response
(Figure 2). Importantly, this increased MITF expression can
contribute to drug-tolerance in the initial phases of treatment
(Smith et al., 2016).

Apart from cell-autonomous resistance, the tumor-stroma
can also confer resistance to BRAF inhibitors (Figure 2).
HGF secreted by stromal fibroblasts can circumvent BRAF
inhibition by re-activating ERK through cMET/RAS/CRAF-
signaling (Straussman et al., 2012) and stromal fibroblasts can
alter the ECM and produce resistance by engaging integrin/FAK
signaling (Hirata et al., 2015). Furthermore, tumor associated
macrophages can induce resistance via the secretion of VEGF
or TNFα (Smith et al., 2014; Wang et al., 2015). Secreted factors
can also support the outgrowth of innate resistant cells that are
otherwise slow cycling (Obenauf et al., 2015).

The above-described examples reflect the complexity of
inhibiting the MAPK-pathway as therapy strategy, because
interfering with this central pathway in vivo will inevitably
have also an effect on non-cancer cells. As a consequence,
it can be expected that the entire tumor microenvironment
will readjust to the condition of reduced MAPK signaling and
establish a new balance that eventually can “buffer” the drug
effect.
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THE FUTURE OF MAPK-PATHWAY
TARGETING DRUGS IN MELANOMA

Resistance through BRAF-inhibitor bypass and the development
of RAS-driven secondary cancers in responses to BRAF
inhibition have prompted the development of combination
therapies with BRAF and MEK inhibitors. These combinations
prolong responses and significantly reduce the appearance
of RAS-driven secondary malignancies, but unfortunately
patients still develop resistance (Larkin et al., 2014; Long
et al., 2015). Nevertheless, BRAF/MEK inhibitor combinations
are now accepted as the standard of care for BRAF-mutant
advanced melanoma and the trametinib/dabrafenib and
cobimetinib/vemurafenib combinations received FDA
approval in 2014 and 2015, respectively. In addition,
drugs targeting both BRAF and CRAF and interfering
with dimerization have been described (Girotti et al.,
2015; Yao et al., 2015), but whether the use of such
inhibitors might increase systemic toxicity will have to be
assessed.

Currently, great effort is put into developing novel
combination strategies to conquer resistance and prolong
responses, and one of the main combination targets for
such an approach is the PI3-kinase pathway (PI3-kinase,
mTOR, AKT). The reason for this is its central role in
melanoma, which is reflected in its frequent deregulation
through mutations (CancerGenomeAtlasNetwork 2015),
and these are found even more frequently in BRAF/MEK
inhibitor resistant tumors (Shi et al., 2014; Van Allen et al.,
2014). Furthermore, PI3-kinase signaling is also activated
downstream of mutant NRAS suggesting possible MEK/PI3-
kinase inhibitor combinations. While pre-clinical studies
provide strong evidence for the rationale of these combinations,
the latest clinical trials show that these combinations are
poorly tolerated and toxicity limits efficacy (Bedard et al., 2015;
Tolcher et al., 2015). Nevertheless, as the PI3-kinase pathway
is central to many cancers the aim is to identify the crucial
-and possibly cancer-specific- nodes within the pathway and
design more specific and potent inhibitors (Kwong and Davies,
2013).

Other combinations (e.g., with RTK-inhibitors) are currently
trialed, and of course it is considered to combineMAPK-pathway
inhibitors with immunotherapies. However, the toxicities
observed in the first attempts demonstrate that we require a
much better understanding of the role of MAPK-signaling in the
context of immunity.

CONCLUSIONS

Over the last 5 years the use of MAPK inhibitors in melanoma
patients and the development of resistance to these drugs has
revealed the vast complexity of MAPK signaling that occurs in a
multicellular organism. However, while the ability of the MAPK
pathway to rewire has so far played against its inhibition, there
might be an opportunity to take advantage of this and target
the rewiring. As such, pre-clinical studies support the concept of

a drug-holiday, where drugs are administered intermittently to
break the rewiring (Das Thakur et al., 2013). Another possibility
is to directly target the “rewired phase.” In this phase, in which
cells display an almost uniform rewiring response and >80% of
tumors react with MITF up-regulation, targeting the rewiring-
mechanism produces impressive responses in pre-clinical studies
(Smith et al., 2016) Thus, with all the excitement about the
latest immunotherapy successes, it should not be forgotten that
BRAF and MEK inhibitors produce immediate and impressive
results and long-lasting (>4 years) responses are also observed
in a number of melanoma patients (Puzanov et al., 2015). This
clearly demonstrates that there is room for further improvement
that will allow building on the remarkable achievements of these
targeted therapies.
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