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Immunology, already a discipline in its own right, has become a major part of many

different medical fields. However, its relationship to orthopedics and trauma surgery

has unfortunately, and perhaps unjustly, been developing rather slowly. Discoveries in

recent years have emphasized the immense breadth of communication and connection

between both systems and, importantly, the highly promising therapeutic opportunities.

Recent discoveries of factors originally assigned to the immune system have now

also been shown to have a significant impact on bone health and disease, which

has greatly changed how we approach treatment of bone pathologies. In case of

bone fracture, immune cells, especially macrophages, are present throughout the whole

healing process, assure defense against pathogens and discharge a complex variety

of effectors to regulate bone modeling. In rheumatoid arthritis and osteoporosis, the

immune system contributes to the formation of the pathological and chronic conditions.

Fascinatingly, prosthesis failure is not at all solely a mechanical problem of improper strain

but works in conjunction with an active contribution of the immune system as a reaction

to irritant debris frommaterial wear. Unraveling conjoinedmechanisms of the immune and

osseous systems heralds therapeutic possibilities for ailments of both. Contemplation of

the bone as merely an unchanging support pillar is outdated and obsolete. Instead it is

mandatory that this highly diverse network be incorporated in our understanding of the

immune system and hematopoiesis.

Keywords: osteoimmunology, bone, immune cells, orthopedics and trauma surgery, bone fracture, rheumatoid

arthritis, osteoporosis, prosthesis failure

INTRODUCTION

In 1972, pioneering studies were able to show the close relationship between the immune system
and the bone, by identifying osteoclast-activating substances in immune cells (1, 2). Almost 30 years
later, Arron and Choi coined the term “osteoimmunology” in a letter toNature, recapping an article
Takayanagi et al. wrote earlier that very year, about the importance of RANKL and IFN-γ secretion
of activated T cells (3, 4).

Now, in 2019, the field of osteoimmunology is as important and thriving as ever, allowing
for the unparalleled opportunity of understanding processes like arthritis and rheumatic diseases.
Its conclusions have made it possible to treat AIDS patients with higher accuracy and improve
osteoporotic patients’ activities of daily living. To understand osteoimmunology one must identify
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the lowest common denominator of the immune system and
bone, their conjoint heritage in stem cells, and the consequences
in their shared signaling pathways. Today it is evident that both
systems influence each other greatly and that the impact to
human physiology and pathology is extensive.

This article aims to present an overview of the topic,
illuminate possibilities of treating patients with certain
diseases and pinpoint the fascinating future potential
of osteoimmunology.

BONE AND BONE CELLS

Osseous tissue roughly consists of two compartments: compacta
and spongiosa. The compacta functions as mostly structural
support for bodily stability and movement and as a pool for
calcium if needed. It comprises the outermost layer of every bone
and itself is composed out of osteons (5). The spongiosa is a
trabecular, highly porous network of bone, housing red and white
bone marrow, berth of hematopoiesis. It is highly vasculated,
albeit not innervated like compacta (5). Both regions of osseous
tissue rely on the activity ofmainly three types of cells: Osteoclasts
(OC), osteoblasts (OB), and osteocytes, with the latter making up
about 95% of the total cell population (6).

Osteoblasts
The osteoblast (OB) can be considered the anabolic part of
the cell triad. OBs deposit recently synthesized extracellular
matrix, called osteoid, consisting mainly of collagen type 1,
proteoglycans, and water. Only after the osteoid is mineralized
with hydroxyapatite crystals does it obtain the stability needed
for normal workload (7). Detailed mechanisms of bone healing
and remodeling will be discussed later in conjunction with
osteoclast activity.

OBs derive from skeletal stem cells (SSC), a subtype of
the mesenchymal stem cell (MSC) line, situated in the bone
marrow. SSCs can mature into different types of cells of the
skeletal system, namely chondrocytes, adipocytes and OBs (8).
To ensure commitment to the correct cell line, OB precursors
are exposed to a highly specific cocktail of differentiation factors,
partly portrayed in Figure 1 (9–18). The exact composition of
factors is yet to be unraveled and understood (8). It is clear,
however, that certain cells of the immune system contribute to
the differentiation of OBs: It has been shown, that γδ T cells,
a not antigen (AG)-specific subgroup of T cells, secrete IL-17A,
formerly mainly associated with OC activation, to quicken OB
proliferation and differentiation (19). Macrophages have massive
influence on OB activity by emitting TNFα, being one of the
most potent OB differentiation inhibitors (20). OBs are sensitive
to PTH (parathyroid hormone), an anabolic hormone secreted
by the parathyroid gland, which stimulates bone formation and
triggers OB’s secretion of pro-hematopoietic factors like IL-6,
IL-6R, and MCP-1 (21).

The most important player in the development from SSC to
osteoblast is theWnt Pathway. The termWnt comprises of a large
group of signaling molecules that promote osteoblastogenesis
and inhibit adipogenesis. Loss of function mutations within
this pathway result in an osteoporotic phenotype, while gain of

FIGURE 1 | Selected important players of osteoblast differentiation. Promoting

factors (green square) include: BMP: bone morphogenic proteins of the TGF-β

superfamily, a large (>20) group of anabolic proteins secreted by different cells

to ensure development of bone, cartilage and tendons mainly via the Runx2

axis. TGF-β: transforming growth factor β1−3, contained in bone cartilage

tissue in large amounts. Regulates osteoblast differentiation and development

similar to BMPs, with additional anti-inflammatory properties. IGF: insulin like

growth factor, mainly promotes osteoblast activity, but also has positive effect

on differentiation. FGF: fibroblast growth factor, stimulates OB differentiation in

a manner similar to BMP signaling (Runx2 pathway). IL-11: is directly induced

by mechanical strain in bone and PTH signaling and downregulates effects of

Wnt inhibitors like Dkk-1/2. IL-17A: effects depend on targeted cell type. MSC

differentiation is supported, but calvarial preosteoblasts receive negative

effects. PTH: parathyroid hormone, only stimulates OB differentiation through

Runx2 if elevation of PTH is intermittent, continuously elevated levels result in

bone resorption. Vitamin D: complexes Runx2 and other cofactors to

upregulate osteoblast specific genes. Mechanical stimulation promotes bone

growth and OB activity according to Wolff’s law: bone structure forms

according to applied force. Inhibiting factors (orange square): TNFα:

supposedly hampers with differentiation through inhibition of IGF-1, BMP-2/6

and possibly guiding SSCs to lineages other than osteoblasts. Dkk: the

Dickkopf ligand family are potent inhibitors of the Wnt pathway, thus inhibiting

development. HDCAs: histone deacetylases, prominently HDCA3-7 inhibit

Runx2-DNA interaction, interfere in gene translation. CCL-3: also known as

macrophage inflammatory protein 1-α (MIP-1-α) promotes inflammation and

osteoclast activation. Additionally, it blocks the Runx2 pathway in OBs. Notch:

effects of Notch on OBs are not fully clarified, although findings constitute a

hampering function by Runx2 inhibition. Immobilization: absence of

mechanical strain results in OB inhibition by non-triggering of Wolff’s law.

function mutations support (pathological) high bone mass (22).
To support bone formation Wnt molecules activate G-protein
coupled receptors (Fzd) and coreceptors of the Lrp family.
Activation results in a signaling cascade, typically containing β-
catenin, effectively upregulating aerobic glycolysis, β-oxidation
and other anabolic mechanisms (23, 24) through activation of the
Runx2 gene (25).

Other than Wnt, the BMP pathway (bone morphogenic
protein) is able to upregulate OB activity and differentiation by
activating Runx2 (25). After binding to the BMP receptor (BMP-
R) the molecules cause dimerization of BMP-R and following
phosphorylation of Smad proteins (26). After phosphorylation,
those molecules then activate Runx2 (25). Despite its name,
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the BMP molecule family also plays important roles outside
bone formation. BMP molecules influence embryogenesis and
promote muscle and neuronal growth (27, 28), and are key
players in the development and regulation of the immune
system. T cell differentiation and activation is dependent
on BMP signaling as well as Runx2 regulation (29). In B
cells, BMP-6 inhibits lymphopoiesis (30) and general growth
(31). In macrophages, too, proliferation is inhibited and pro-
inflammatory pathways hampered (32, 33).

Downregulation of the Wnt pathway is controlled by
antagonists, e.g., Dickkopf1/2 and Sclerostin, blocking the
interaction between Lrp and Fzd (34). Sclerostin is a marker
for mature osteocytes, since OBs themselves have not been
observed to secrete sclerostin (35, 36), and capacity of production
seems to increase with age (37). Sclerostin knockout mice
(SOST−/−) show immensely increased osteoblastic activity
resulting in smaller bone marrow cavities and subsequently
impaired hematopoiesis, especially regarding B cells (38). These
findings highlight the importance of regulated bone mass for
hematopoiesis and, secondly, indirect influence of an osseous
glycoprotein for cells of the lymphatic lineage. While mentioned
findings emphasize the importance of conjoined signaling on
a molecular level, these statements can be transferred to
cell activity.

Studies have promoted relevance of OBs for the hematopoietic
system. In 2003, it was pointed out that the OB number
strongly associates to the number of hematopoietic stem cells
(HSC), and furthermore ablation of OBs directly results in
decrease of HSC number (39). OBs and members of the
OB cell line secrete factors like N-cadherin, angiopoetin-1,
thrombopoietin and osteopontin to regulate the size of the
HSC pool and are able to control when HSCs migrate in and
out of the bone marrow (40). Osteopontin, a member of the
SIBLING glycoprotein group, is of particular interest for modern
medicine, because it is overexpressed in patients suffering from
certain types of cancer and correlates to metastasis and general
aggressiveness (41). Additionally, OBs play an important role
in lung adenocarcinomas. These tumors have been shown to
have a positive effect on OB growth rate; conversely, OBs endow
tumors with specific, SiglecFhigh neutrophils, which promote
tumor growth (42). Moreover, it has been shown that defects
in hematopoietic niches can contribute to the development of
leukemia (43), while activation of osteoblasts increased mouse
survival and lowered symptoms of leukemia. Inversely, acute
myeloid leukemia diminishes osteoblasts in humans (44).

While these findings present the importance of OB activity
on HSC regulation, other studies deemphasize OB contribution.
Biglycan-deficient mice show an osteoporotic phenotype and
significant reduction in OB numbers, but no differences in
hematopoiesis (45). In 2007, Lymperi et al. found that treating
OBs with strontium, an anabolic, bone-stimulating factor,
resulted in increased OB number and general bone volume, but
not in increased HSC count (46). Further investigation on OB’s
influence on the HSC is obligatory to work out the role of OBs in
leukemia and other related illnesses.

Terashima and Takayanagi have recently published a paper
discussing the role of OBs in sepsis, i.e., systemic symptoms

attributable to infection. While the early stages of sepsis
are accompanied by an extreme inflammatory response, later
stages are marked by immunosuppression. Both states result in
high mortality rates; the latter is beneficiary to secondary- or
superinfections. The main factor of immunosuppression is the
depression of immune cells, primary B and T cells, and their
progenitors for up to 28 days (47–49). The group makes the
assumption, that the remarkable duration of immunosuppression
stems from OB depletion, hindering HSC tending by OBs.
OB depletion is in part caused by a significant increase of
inflammatory factors like IL-1β, TNFα, and G-CSF during the
inflammatory phase of sepsis (50), making OBs a possible target
for sepsis treatment (51).

Osteocytes
Osteocytes are not an independent type of cell line, but rather
the last stage in OB development. The transformation begins
passively by its “entrapment” in synthesized matrix, situating
itself in so-called lacunae (52). The secluded position of the
osteocytes makes it hard to signal for other cells and lengthens
diffusion distances tremendously, thus dendrites are needed.
Information on the transition remains scarce, although major
factors have been identified. Aside from mechanical components
(pressure, tension, low oxygen stress, matrix mineralization),
FGF-2, oncostatin, and retinoic acid contribute to osteocyte
differentiation (53).

Preosteocyte cell bodies undergo drastic changes as they
develop dendrites to form contact with other osteogenic cells,
via gap junctions (52). Although osteocytes have relatively slow
metabolism, no ability for mitotic division and are anchored
to their surroundings, they have great influence on bone
metabolism. Not unlike the nervous system, they form contact
points with each other, OBs and OCs, spanning a network
over the entire bone. This way osteocytes are able to conduct
bone turnover (53). To do so they recognize fluid shear
stress, the movement of fluid in the duct system of the bone.
Through mechanotransduction, these stimuli are translated into
secretion of factors (54). Lack of mechanical strain will result
in paracrine secretion of FGF-23, RANKL, and sclerostin. All
of the aforementioned are inhibitors of bone growth. FGF-23
inhibits bone mineralization (55). RANKL is the most potent
activator of OC differentiation and activation. To stimulate
growth and mineralization, recognized mechanical strain will
result in osteocytic secretion of OPG, a decoy receptor of
RANKL, preventing its interaction with RANK (56).

Microgravity causes an impaired osteocyte network formation
in mice, which subsequently reduces lymphocyte number in
involved bone marrow, but not systematically. To prove this
result was due to osteocyte impairment in microgravity and
no other factors, osteocyte ablation (OL) was induced in
“osteocyte-less (OL) mice.” Compared to wild type litter mates,
OL mice exhibited a reduced osteocyte network and severe
B and T cell lymphopenia (57). By depletion of GSα, a
crucial osteocyte receptor, Fulzele et al. presented mice with
dramatically increased myeloid stem cells in the bone marrow
and overall system, indicating the importance of G-CSF secreted
by osteocytes (58). Nonetheless, OL mice exhibit no change
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in myelopoiesis, hinting toward interchangeability of osteocytes
regarding G-CSF production.

Impressively, atrophy of lymphatic organs (esp. spleen and
thymus) can be observed in OL mice (57), raising the question
whether osteocytes are important for the structural integrity of
these organs and/or cultivation of relevant effector cells.

Osteoclasts
Osteoclast function is the destruction and clearance of osseous
tissue. This is not solely a catabolic task, since recently
disintegrated matrix can only then be rebuilt by OBs. The
assurance of resilient bone mass is therefore dependent on OBs
as well as OCs (6).

OCs are large (50–100 nm), multinucleated cells originating
from HSCs rather than mesenchymal stem/stromal cells (MSC)
(59), constituting the proximity to macrophages. The lytically
active, ruffled border on the bone matrix-facing side is heavily
creased to increase the surface area. This membrane contains a
high number of H+-ATPases, lowering the pH to around 4.5 to
dissolve chemical bonds of calcium in the matrix. Around this
active border OCs are affixed to the osseous tissue by integrins,
to ensure a tight seal around the area of low pH. To disintegrate
proteins, mainly collagen type I, OCs primarily secrete Cathepsin
K amongst other Cathepsins and matrix metallopeptidases (60,
61). After lysis of organic and inorganic material OCs assimilate
fragments via endocytosis (62).

As mentioned before, OCs underlie strict control by, mainly,
osteocytes. Activation is primarily steered by adjusting rates with
which OCs develop from precursors (OCP). To do so, osteocytes
distribute mesenchymal colony stimulating factor (M-CSF) to
MSCs, which causes commitment to theOC cell line thus creating
said precursors (59). OC development is pictured in Figure 2.
Note that RANK positivity develops in the last stages of OCP
development, shortly before multiple OCPs fuse into immature
osteoclasts, which mature into full osteoclasts (63, 64). Most
important factor for OCP fusion and maturation is Receptor
Activator of NF-κB Ligand (RANKL) secreted by osteocytes (65).

Other than osteocytes, different cells of the mesenchymal
cell line have been shown to secrete RANKL and other
OC-stimulating factors. Especially synovial fibroblasts produce
RANKL when triggered by IL-17, produced by T helper cells,
and TNFα, originating from macrophages. B cells of the immune
system directly stimulate OC precursors through the production
of IgG antibodies and RANKL (40, 66). In patients suffering from
rheumatoid arthritis or enthesitis-related arthritis, the synovia
and surrounding tissue has been shown to contain a significantly
higher amount of RANKL (67) and other pro-inflammatory
cytokines (IL-17, IL-23, TNFα) (68). RANKL activates NFATc1
in a TRAF6-dependent pathway, which ultimately promotes
OC-specific protein transcription and OC maturation. NFATc1
is a protein first discovered in T cells, subsequently named
nuclear factor of activated T cells, cytoplasmatic 1. While NFATc1
gene and protein regulate maturation in OCs, in CD8+ T cells
it controls the strength of cytotoxic reaction against targeted
cells by IL-2 and IFN-γ (69). The influence of T cells on
osteoclastogenesis is summarized in Figure 3 (40, 70). Th17 cells,
Th9 cells, NKT cells, and follicular helper T (TFH) cells are

FIGURE 2 | Osteoclast development. Simplified presentation of OC

development. Other than OBs, OCs develop from hematopoietic stem cells.

Stem cells lose self-renewing potential during development. Other blood cells

branch off from multipotent progenitor cells. OC progenitor cells iterate to

become RANK+, then fuse into OCs with multiple nuclei.

promoting the process of osteoclastogenesis and thereby induce
bone loss. Contrarily, Th1, Th2, Treg, and CD8+ T cells inhibit
the generation of osteoclasts and therefore reduce bone loss
(40, 70).

Whether RANKL is indispensable for OC development is
subject to controversy. Multiple substances have been found to
trigger osteoclastogenesis in absence of RANKL, like TNFα (71–
73), APRIL (A proliferation-inducing ligand), IGF I+II (74), and
TGF-β (75), to name a few. However, methods of OC extraction
for most of these studies has been heavily criticized, because
of their inability to select OC progenitors exclusively. Extracted
cells include MSCs, which themselves are capable of RANKL
production (64). New methods of highly specific OC progenitor
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FIGURE 3 | Secreted T cell factors modulating osteoclastogenesis. Naïve T cells undergo differentiation in dependency of exposed factors. A mix of pro-inflammatory

and anti-inflammatory conditions leads to the development of differentiated T cell subtypes. These specialized cells then produce a characteristic fingerprint of soluble

molecules, which induce or hamper OC development and activity.

extraction are needed to definitively prove or disprove RANKL
independent osteoclastogenesis.

Similar to OBs, OCs have influence on hematopoiesis. A
somewhat average bone density with cavities for hematopoiesis
is required for a functioning immune system and regular
erythrocyte numbers, proven by the fact that osteopetrosis, due
to OC defects, can lead to anemia and infections (76, 77).

Studies found that introducing stress to mice, in form of
bleeding or bacterial infection-mimicking lipopolysaccharide
(LPS), triggersmultiplication of endosteal OCs. Furthermore, OC
enzymes like MMP-9 and cathepsin K were present in increased
quantities in the endosteal niche, loosening HSC anchorage. This
released them into blood vessels (78), thus opposing blood loss
and ensuring O2 supply. Contrary to these findings, studies have
shown that OC inhibition did not influence HSC mobilization
by G-CSF in mice (79), suggesting that OC influence on HSC
mobilization is dependent on multiple factors. OCs may instead
regulate HSC development indirectly by releasing Ca2+ and
cytokines (TGF-β) into HSC cavities while resorbing bone mass
(80, 81).

Recent studies from Grüneboom et al. have revealed an
abundance of microscopic canals spanning from the bone
marrow to the endosteal face of mice femurs, coining them
transcortical vessels (TCV). These TCVs, aside from contributing
immensely to general blood flow of the bone, were shown to be
utilized by (neutrophil) granulocytes to emigrate from the bone
marrow to extraosseal blood vessels when the host was injected
with G-CSF—even against the direction of blood flow. TCV
formation is dependent on OC activation, as blockade of OCs
(with zoledronate) resulted in highly decreased TCV number
within 4 weeks. Furthermore, Grüneboom et al. portrayed a
significant increase of TCVs in chronic, but not acute, arthritis.
Interestingly, these findings do not transfer to non-bone-related

inflammation (82). New extraction methods have made it
easier to gain OCs from peripheral blood with minimal effort
and strain (83), making research on these cells significantly
less elaborate.

MAIN COMPONENTS OF THE IMMUNE
SYSTEM VIEWED IN RELATION TO
OSSEOUS DEVELOPMENT

The immune system is an extremely diverse and powerful
defensive tool of higher organisms. Development of the innate
immune system began in unicellular, amoebic organisms. In
fact, these amoebic life forms closely resemble macrophages
as our immune system contains them today (84). Takayanagi
et al. posit multiple reasons why the immune system is mainly
housed inside the skeletal system. First, bone tissue shields stem
and progenitor cells from harmful UV light, possibly damaging
precious DNA and causing catastrophic replication errors.
Secondly, the transition from aquatic to terrene environments
brought along significantly higher concentration of oxygen,
another possible danger to DNA. Ultimately, decreasing levels of
external calcium (sea water contains about 400 mg/l of calcium)
might have driven immunopoiesis to the bone marrow, where
large quantities of calcium could be released quickly if needed,
preceding the assumption, that calcium plays a crucial role for
hematopoiesis (80, 85).

The innate branch of the immune system covers components,
which are able to repel intruders on contact without earlier
programming or further modification. It is extremely fast,
identifying and attacking parasites within seconds of invasion,
and due to its non-specific nature highly versatile (6).
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In contrast to the innate immune system, the adaptive
immune system requires multiple contacts with an antigen
in order to develop the full strength of its response. First
contact with an antigen is followed by programming to react
specifically to this specific antigen. This makes the adaptive
immune system slower to react than the innate immune system,
but it compensates by its exquisite precision and, brilliantly, gives
the ability to form an “immunological memory,” storing prior
antigens for any number of years. Only this memory made it
possible for modern medicine, starting with Edward Jenner, to
actively immunize the public.

The immune system’s aforementioned diversity stems from
it being comprised of various cells, all different in form and
function. Despite its diversity, all cells of the immune system
descend from the HSC niches in the bone marrow, which
are tended to all cells of the osseous line, mesenchymal cells
and endosteal cells (86). Depending on developmental factors
secreted from these local cells, the stem and progenitor cells
commit to different lines of evolution (Table 1) (85).

Granulocytes
Granulocytes are divided into three groups according to their
responses to different dyes.

Neutrophil Granulocytes
Neutrophil granulocytes (NG) are one of the fastest cell types to
respond to invading bacteria, have a short lifespan of about 3 days
and mostly reside in the interstitium of organs. The mechanisms
of defense include secretion of multiple factors upon contact,
such as myeloperoxidase (part of the oxidative burst, to destroy
bacterial membranes) and lysosomal enzymes. In addition to
these properties, NGs break down, and phagocyte remains of
dead cells (87).

NGs are present in great numbers in early fracture and
hematoma. When treated with anti-NG antibody 24 h
before artificially inflicted fractures, mice have shown
elevated concentrations of IL-10 and IL-6, as well as other

TABLE 1 | Important factors for hematopoiesis/immunopoiesis.

Cytokine Function/Target

M-CSF Macrophage development

G-CSF Granulocyte development

GM-CSF Macrophages, granulocytes

IL-2 T cell proliferation

IL-3 Possibly stimulation of the complete range of blood cells

IL-4 Cofactor

IL-5 Differentiation of b cells, eosinophil regulation

IL-6 B cell Differentiation

IL-7 T Lymphocyte formation

IL-11 Megakaryocytopoiesis

LIF Leukemia inhibiting factor

SCF Stem cell factor, proliferation of stem cells

FLT3 Proliferation of stem cells

TPO Thrombopoietin, Platelet production

pro- and anti-inflammatory cytokines and chemokines.
Additionally, the fracture site contained significantly more
monocytes/macrophages and presented an overall impaired
healing process (88), suggesting that NGs play an important role
in conducting chemo- and cytokines in inflammatory response.

Furthermore, when injected with G-CSF, a key regulator of
NGs, pre- and postoperatively, rats profited from increased femur
stiffness 5 weeks after mid-femur osteotomy in comparison to a
placebo-control group, indicating a positive effect of G-CSF on
early fracture healing (89).

Eosinophil and Basophil Granulocytes
Both of these types of granulocytes have not yet been correlated
to the topic of osteoimmunology. Although their contributions
to the immune system are indispensable, they are, as of now,
negligible in this topic. It is, however, to be pointed out that mast
cells play a fundamental role in fracture healing and osteoclast
activation through the production of histamine, a trait shared
with basophil granulocytes (90). These findings suggest, that
basophil granulocytes may also play a role in these matters.

Monocytes/Macrophages
Monocytes (MC) are the progenitor cells of macrophages
(MP) and dendritic cells. After circulating for about 1 d,
monocytes leave the bloodstream to mature into macrophages in
extravascular tissue (6). Both, monocytes and macrophages, are
competent in phagocytosis and do so either with or without the
help of antibodies. MCs produce IL-12, TNFα, and iNOS after
contact with microbial antigens (91).

MPs are smaller thanMCs and patrol the tissue of every organ
of the human body. As their main function is phagocytosis, they
react to wreckage of dead cells as well as to exogenous pathogens.
Upon contact with pathogens, MPs release chemokines to attract
other cells of the immune system, and after phagocytosis will
present structures from devoured cells to lymphocytes amongst
others (antigen presentation).

Due to their shared heritage and structural similarities,
osteoclasts have often been described as the osseous
representation of macrophages. While this is certainly correct,
there are in fact other macrophages, which are characteristic
for osseous tissue: namely bone marrow macrophages and
osteal macrophages (osteomacs). Of course, their purpose is
also defense against invading pathogens, but both subtypes of
macrophages fulfill specific functions regarding bone turnover
and stem cell keeping (92).

Osteomacs closely cooperate with megakaryocytes, progenitor
cells of later blood platelets, and osteoblasts to maintain
HSC niches. Osteoblasts work most effectively, regarding HSC
keeping, when supported bymegakaryocytes and osteomacs (93).
In vitro it has been shown, that osteomacs can be triggered
into becoming osteoclasts by stimulation with RANKL and M-
CSF; in vivo this effect plays a relatively small role in osteoclast
synthesis, suggesting that this process is based almost exclusively
on development from HSCs (93, 94). As bone marrow and active
bone formation sites are right next to each other and share
multiple cytokines, osteomacs need to form a phagocytic barrier
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between the two, to stop signaling molecules from unintentional
“roaming” (95).

Bone marrow macrophages can be further categorized
into erythroblastic island macrophages (EIM) and HSC niche
macrophages (HNM) (95). EIMs, as their name suggests, are
closely linked to erythropoiesis. In vivo depletion of EIMs
resulted in loss of all erythroblasts and reticulocytes in BM,
while erythroblast precursors remain unaffected. The absence of
anemia in EIM-depleted mice suggests shift of erythropoiesis
to extramedullar tissue and modification of erythrocyte-sorting
(96). HNMs serve a broader spectrum of HSCs, while controlling
self-renewal and decommission of HSC. Recent studies by Vinchi
et al. have pointed out the potential of HNM manipulation for
bone marrow transplantation (97).

Evidence emerges that a subpopulation of MPs does not
descend from blood-circulating MCs but instead occupy organs
as early as embryonic development and self-sustain independent
of MCs (98, 99). Nature recently published an article detailing
the origin and function of MPs in organs and particularly in
joints. CX3CR1+ positive, tissue resident MPs form a layer at
the synovial coating, not unlike an epithelial layer, providing
an immunological barrier. These MPs are locally renewing,
independent of circulating recruitment and differ from illuviated
MPs by restricting inflammation through tight junctions (100),
instead of fostering it. Oppression of non CX3CR1+ positiveMPs
while simultaneously sustaining CX3CR1+ positive MPs might
be beneficial for inflammative joint diseases.

Lymphocytes
Lymphocytes are the main representatives of the adaptive
Immune system and comprise of B and T cells. Both these
subsets derive from the same lymphatic progenitor cell during
hematopoiesis, and while B cells mature in the bone marrow,
T cells complete their maturation process in the thymus. B
cells as well as T cells need to fulfill certain conditions to be
deemed immune competent: (1) Recognition and ability to bind
to extraneous antigens with their respective membranous AG
receptors, while non-binding to endogenous AG (self-tolerance);
(2) Working sets of CD4/CD8 co-receptors; (3) Ability to bind to
presented AG by different cells. All cells not capable of achieving
any of these conditions are sorted out and phagocytized by local
macrophages (6).

B Cells
B cells are responsible for incorporating the humoral component
of immune response by turning into plasma cells when
triggered and producing specific antibodies. B cell development
is dependent on RANKL, CXCL12, and IL-7 exposition in the
HSC (101), with studies proving the dependence on RANKL by
raising RANK−/− mice, which showed normal MALT (mucosa-
associated lymphatic) tissue development, but suffered from
a complete absence of peripheral lymph nodes (102). B cells
themselves produce RANKL to stimulate B cell predecessor
maturation in an autocrine fashion (99), but supposedly are not
in need of RANK as receptor for RANKL to do so (103).

The aforementioned IL-7 stems from OBs of the HSC niche
and is dependent of mTORC1 messaging. By deactivation of the

mTOR complex in OBs, B cells were significantly reduced in
the bone marrow, highlighting the importance of OBs for B cell
maturation (104).

Interestingly, very early B cell progenitors, when treated with
ODF/RANKL and M-CSF in vitro, could potentially turn into
fully functioning osteoclasts, questioning whether the lymphoid
development might be reversable (105). These findings, however,
cannot as yet be reproduced in vivo (106). Memory B cells
have an immense capacity in production of RANKL and actively
stimulate OC maturation. Especially in RA patients, memory
B cells are overly active with RANKL production and likely
contribute to joint destruction (66). B cells also contribute to
osteoporosis in splenectomised rats with higher B cell count in
the bonemarrow (107). B cells inhibit osteoblastogenesis through
notch signaling, a pathway that modifies OBs and OCs positively
or negatively depending on context (108). Taken together, these
studies emphasize a rather catabolic function of B cells regarding
bone homeostasis.

T Cells
T cells are categorized by distinction of their cell surface
molecules (CD = Cluster of Differentiation). CD4+ T cells
are called T helper cells, further divided into Th1, Th2, Th17,
and regulatory T cells (Treg). These subsets differ in produced
cytokines and therefore function (109).

Especially Th17 cells have great influence on bone metabolism
by releasing IL-17A, IL-17F, IL-22, and IL-26 when activated
in conjunction with TGF-β and other inflammatory factors.
IL-17A results in activation of NFκB, increasing quantity and
productivity of osteoclasts (110, 111). Th17 cells are also capable
of RANKL production independently, but not as much as to
directly promote osteoclastogenesis (112) and,most interestingly,
upregulate RANK exhibition on osteoclast precursors (113).

In the event of bacterial infection of bone tissue, Th17
and Th1 cooperate to limit spread of infection and do so by
supporting bone resorption (RANKL↑) (114). Contradictory
to these findings, it has been shown, however, that both
Th1 and Th2 inhibit osteoclast formation by secreting IFN-γ
and IL-4 (115). These studies make it obvious that T helper
function greatly depends on context, namely physiological or
pathological conditions.

Treg cells, on the other hand, have a relatively strict anti-
osteoclastogenesis function. In rheumatic patients the number
of Foxp3+ Treg cells is inversely related to osteoclastogenic
markers. These results accompany findings of the same group,
in which Treg-deficient mice were prone to arthritis, but
reintroduction of Treg into these mice via bone marrow transfer
significantly reduced symptoms such as decreased paw grip
strength, weight loss and paw swelling. When compared to wild
type mice, Foxp3+ Treg-deficient mice show greater histological
TNFα-induced joint destruction and generalized bone loss with
higher number of osteoclasts in joints (116).

CD8+ T cells, or cytotoxic T cells, induce apoptosis in targeted
cells by releasing perforin and granzymes and activation of FAS
receptors (117). In 2017, Savola et al. examined patients with
newly diagnosed RA and found somatic mutations of CD8+ T
cells in 20% of patients while a healthy control group showed
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only 5% with said mutation. Some of these genes were linked
to autoimmunity beforehand and are believed to have effects on
protein production, indicating possible involvement of CD8+

cytotoxic T cells in RA (118). Other studies have pointed out
the involvement of CD8+ T cells in signal transduction of PTH,
increasing pro-osteoblastic, pro-bone growth cytokines of the
Wnt10 class when triggered by PTH (119).

Information on the involvement of cytotoxic T cells in bone
degeneration is sparse and contradictory and should be further
suspect of investigation. Characterizing factors of T cells are
summarized in Table 2 (70, 120).

Bone Turnover
Physiological bone turnover is a lifelong process and includes
both bone resorption and bone synthetization. Structural changes
in aging individuals, such as decrease of bone mass, osteophytes
and joint alterations, are somewhat physiological processes (121)
constituting the shift or reduction of cellular activity. Only when
these changes precede the actual age of any individual is it to be
considered pathological.

Generally speaking, it is crucial to differentiate between bone
modeling and bone remodeling. Bone modeling is characterized
by gain of mass. Although both, OCs and OBs, are active in
this process, synthesis of new matrix outweighs osteolysis. It
can be observed either in adulting (growing) individuals or after
bone fractures (122). Fracture healing is of particularly high
interest in the field of osteoimmunology because it involves large
contributions of the immune system.

Fracture Healing
Shortly after, or in the process of fracture, blood vessels
surrounding the bone rupture und release blood into the
injury site. This forms the hematoma and allows immune
cells, neutrophils, macrophages and lymphocytes to infiltrate the
tissue and release a multitude of growth factors and cytokines
(123, 124).

Macrophages are among the quickest cells to respond and
contribute to healing throughout the whole process of modeling.
Macrophages’ main task in the inflammatory phase of fracture
healing is clearance of debris and defense against possible
pathogens (125, 126). Two different types of macrophages have

TABLE 2 | T cell subsets, differentiating factors and function.

Cell Development

factors

Exhibited factors Function/target

Th1 IL-12 IFN-γ, IL-2, LTα, IL-10 Intracell pathogens

Th2 IL-2 + IL-4 IL-4, IL-5, IL-10, IL-13, IL-25 Parasites, allergy

Th17 IL-6, IL-21, IL-23 IL-10, IL-17A, IL-17F, IL-21,

IL-22

Bacteria, fungi

Treg IL-2 IL-10, IL-35, TGF-β Immune tolerance,

regulation of

immune response

Development factors describe agents needed for T cell differentiation and are provided

by local cells or systemically.

been identified, M1 macrophages, which primarily react to
infection with various organisms, and M2 macrophages, which
are preferentially involved in tissue regeneration. Both types play
a role in bone fracture healing, being attracted by the expression
of CXCL12 of damaged tissue, a process that is enhanced by
TNFα (126). In fracture healing, TNFα from macrophages also
sensitizes OB progenitors to growth factors and enhances OB
differentiation (in combination with IL-6) (19). Toward the end
of the inflammatory phase, activated immune cells secrete factors
to attract and stimulate mesenchymal progenitor cells (127),
which in turn limit inflammatory activity (128).

During the phase of cartilage formation, mesenchymal
progenitor cells evolve into chondroblasts, rather than OBs,
triggered by mechanical instability and chemical attractants
(123). These cells undergo apoptosis under the influence of TNFα
(129); this happens once the amount of synthesized cartilage
is sufficient for stabilization and then vascularization ensues.
This still comparatively soft tissue is then mineralized and used
by osteoprogenitor cells as a framework for the deployment of
rigid, osseous tissue (122, 123, 129) and is eventually removed
(124, 130).

The last phase of fracture healing is marked by transformation
(meaning resorption and synthetization) of the woven bone
into laminar bone, finally reconstituting the former matrix
constellation (123).

To clarify the importance of immune cells for bone fracture
healing, Vi and Baht demonstrated that macrophage depletion
in adult mice delays bone fracture healing, while macrophage
depletion in developingmice resulted in osteoporosis and growth
retardation, which points out macrophages’ importance in bone
modeling as well as remodeling (131). However, in contrast
to these findings, Ono and Takayanagi have shown that TNFα
also inhibits bone mineralization (19). Further investigation is
necessary to clarify the explicit effects of TNFα onto the osseous
cells. The dichotomy of these findings makes it seem possible
that TNFα promotes quick bone turnover, albeit at the expense
of matrix quality.

T helper (Th) cells of the lymphoid lineage, specifically Th17,
promote osteoblast maturation with the secretion of IL-17F
(132), while B cells are capable of OPG production to ensure
OC supervision (133). Table 3 summarizes contributions of the
immune system to bone fracture healing.

Due to the inflammatory nature of bone fractures, it has long
been obvious that components of the immune system play a vital
role in the healing process. Recent studies have enabled a glimpse
of the extent of intracellular cooperation necessary, constantly
identifying new actors, yet still large portions remain to be
uncovered. Fracture healing with a special focus on the influence
of the immune system bears immense therapeutic possibilities
and needs to be investigated further.

Bone Remodeling
Bone remodeling contributes to material exchange of
osseous matrix and ideally results in an equilibrium of
bone synthetization and adsorption. OBs and OCs work in
a coordinated manner in both location and time as basic
multicellular units (134). First OCs “drill” a channel into the
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TABLE 3 | Secreted factors and relevant immune cells in bone fracture healing.

Inflammation Cartilage formation Bone formation Remodeling

Neutrophils IL-1, IL-6, IL-10, TNFα, MCP-1, CXCL-1α

M1 IL-1, IL-6, TNFα, MCP-1

M2 IL-10, TGFβ, BMP2, VEGF

Lymphocytes TNFα, IFNγ, RANKL, IL-17 OPG

Macrophages (M1 and M2) are active throughout the complete healing process, with M1 stimulating osteoclasts and M2 stimulating bone formation from OBs. Lymphocytes shift from

inflammatory modus to secretion of OPGs when bone formation is required.

compacta (a future osteon), or a lacuna into the cancellous bone
(Howship-Lacuna) (135). On their way, previous osteon borders
are disregarded and a new osteon forms, cutting into already
existing ones (6). Following the OCs, OBs fill in the damage from
the outside with new lamellae of matrix. While OBs and OCs
handle the physical part of bone remodeling, osteocytes are the
initiators, conducting both cell types from within their lacunae
(not to be confused with Howship–Lacunae) using their arboreal
network of dendrites (6).

The following stimuli are triggers for osteocytes to start
the manipulation of osseous cells: (1) Shear force applied to
the bone matrix is probably the most common signal—bone
that is subjected to load will need remodeling to countervail
material fatigue. Osteocytes will recognize movement of matrix
fluids to measure the amount of strain (54). (2) PTH signals
calcium need in the blood circulation, and result in a quick
(∼1 h) release of RANKL by osteocytes (136). In addition,
osteocytes themselves have the ability to release calcium
by dissolving their surrounding matrix through cathepsin K
secretion (137). To keep the osteolytic process of OC activation
in limits, PTH inhibits the synthesis of sclerostin, which,
in turn, accelerates the Wnt pathway (see above), so PTH
not only promotes osteolysis but also bone development. (3)
Microdamage through excessive point loads requires rebuilding
to ensure structural integrity of the matrix. Local damage leads
to apoptosis of nearby osteocytes and subsequent upregulation
of OC activity (138). To study the effects of osteocyte apoptosis
on bone remodeling He and colleagues treated osteocytes
with potentially destructive irradiation. Upon apoptosis, a
significant increase of RANKL, decrease of OPG and thus a
shift in RANKL/OPG axis was observed. Intracellular high
mobility group box 1 (HMGB1), a pro-inflammatory and
osteoclastogenetic protein, was increased, which contributes to
osteolysis (139).

OSTEOIMMUNOLOGY IN TOTAL HIP
REPLACEMENT

Hip implant loosening afflicts 3–10% of all patients within
10 years (140), posing an catastrophic event for patients with
total hip arthroplasty (THA). Problematically, periprosthetic
osteolysis, resulting in aseptic hip implant loosening, is
asymptomatic for a long time, while the THA works as intended
(141). Chronic inflammation resulting from microscopic
abrasion from components has proven to be the most
important factor, followed by initial, perisurgical instability

(142, 143). The immune system plays a critical role in
chronic inflammation (144) and additionally in formation
and function of a synovial-like, periprosthetic membrane
(Figure 4) (145).

Abrasions phagocytosed by macrophages result in the release
of a cocktail of anti- and predominantly pro-inflammatory
factors (146), and since component wear is continuous,
chronic inflammation ensues. Pearle et al. confronted peripheral
blood mononuclear cells and MCs with polymethylmethacrylate
(PMMA) and measured released mediators and gene expression.
The result was an up to 12-fold increase of pro-inflammatory
cytokines (TNFα, IL-1α, IL-1β, IL-6, IL-8) and up to 30-fold
increase of PTGS2 (COX2). OCs themselves reacted to
confrontation with PMMA particles with upregulation and
activation of NF-κB (147). Confrontation with titanium particles
provoked pro-inflammatory response from T helper cells, with
participation of IL-2, IL-9, IL-13, IL-22, and INF-γ (148).
As previously discussed, multiplication of pro-inflammatory
factors directly results in increase of RANKL expression and
subsequent OC activation. Additionally, Atkins et al. found that
OBs, when triggered by polyethylene particles, downregulate
their production of OPGs, again resulting in a shift in the
RANKL/OPG axis toward osteolysis (149). Wear particle size
plays a strikingly significant role in inflammatory reaction. Debris
with a size allowing phagocytosis might stimulate pro-osteolytic
processes even before endocytosis, while larger fragments cause a
similar, yet minor, reaction (150).

Regardless of stability of the prosthesis, a periprosthetic
membrane forms shortly after the operation, with the membrane
being thicker in cases of unstable mounting (151) and longer
implant duration (140). The longer the prosthesis remains
in the human body, the more inorganic debris from the
prosthesis and the more active, local macrophages (histiocytes)
can be found within the granulomatous membrane (151). The
membrane promotes distribution of pro-inflammatory factors to
surrounding tissue, and especially periarticular bone, through
synthetization of moving synovial liquid (152). The synovial
fluid of patients with loosened total hip arthroplasty contained
significantly higher amounts of pro-osteolytic cytokines, like
RANKL, IL-6, IL-8, and monocyte chemoattractant protein 1
(MCP1) than the synovia of unproblematic prosthesis (153).

From a cost perspective regarding joint revisions, total knee
arthroplasty revisions alone posed a cost factor of $1.27 billion
in the United States in 2005 (154), showing the relevance
of minimizing negative osteoimmunological effects on total
endoprosthesis. Both new prosthesis materials, as well as
downregulation of overly active pro-inflammatory cells, need
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FIGURE 4 | The critical role of the immune system in formation and function of a synovial-like periprosthetic membrane. (A) Adhesion of local proteins to prosthesis

surface within minutes of surgery. (B) Attraction of blood cells: macrophages, monocytes and thrombocytes. (C) Secretion of mesenchymal (stem/stromal) cell

attractants. (D) Homing of mesenchymal stem/stromal cells and fibroblast. (E) Production of collagen and granulomas to form a synovial-like capsule. This marks the

last step in “physiological” prosthesis acceptance. (F) Mechanical instability and wear debris lead to chronic inflammation of the pseudo membrane. Inflammation

markers are mainly exhibited by local fibroblasts and macrophages.

to be subject of further investigation. It should be kept in
mind, that long-term immunosuppression cannot be considered
a solution, because, as mentioned, material wear is constant and
so the immune response would need to be suppressed from the
moment of operation until removal of the prosthesis or death of
the patient.

OSTEOIMMUNOLOGY IN RHEUMATOID
ARTHRITIS

A physiological, but not yet fully understood, process is
the citrullination of proteins. Citrullination being the
deamination of arginine to citrulline has not yet been
proven to be reversible (155) and is carried out by enzymes
of the peptidylarginine deiminase (PAD) group (156).
Citrullination has been discussed as an early sign of
cell damage as it occurs in many inflamed tissues, and,
interestingly, even precedes detectable inflammation or disease
(157, 158).

In patients suffering from rheumatoid arthritis (RA), the
synovial fluid exhibits a unique pattern of citrullinated proteins,
the RA citrullinome (159, 160), suggesting a dysregulation
on genetic levels. Whether the dysregulation creates an
abundance of previously tolerated, citrullinated proteins
which then trigger an immune response due to mere mass,
or results in proteins citrullinated in abnormal ways is
still unclear (161). Either way, B cells produce antibodies
against these citrullinated proteins, called anti-citrullinated
peptide antibodies (ACPA) triggering a distinct immune
reaction and successive inflammation and tissue destruction,

marking one of the typical pathomechanisms of RA. These
ACPAa are present in RA patients for many years before
first symptoms (162, 163) and are strongly correlated with
severity of some symptoms and are a useful prognostic
assessment (164, 165).

Recent studies discuss the capability of ACPAs to bind
directly to OC precursors, promoting osteoclastogenesis. A
2012 study has visualized binding of ACPAs to OCs in vitro
and demonstrated bone loss in lymphocyte-deficient Rag1−/−

when injected with ACPAs against a control group (166).
Other papers regarding this topic have been retracted or
corrected (167–169) due to errors in methodology and further
information remains sparse. Research regarding ACPA-specific
implications on OCs seems worthwhile to the advancement
of RA treatment. Nevertheless, IL-6, a cytokine otherwise
associated with activation of granulocytes and pro-angiogenetic
effects (170), has been related to ACPA-induced bone loss
and its inhibition has shown great potential for RA treatment
(Figure 5) (171).

Recently Chen et al. published an article characterizing
anti-inflammatory and de-escalating cytokines. While it is
true, that cytokines play an integral role in the onset and
development of RA, they also have the ability to moderate
and dampen inflammatory processes. Production of IL-
4 and IL-13 by Th2 cells triggers macrophage transition
from type M1 to M2, which in turn release IL-10 and
TGF-β, effectively preventing macrophage and neutrophil
infiltration into joints and reducing pro-inflammatory
cytokine production (172). IL-9, too, is competent in reducing
negative effects of RA by forcing differentiation of Treg

cells (173).
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FIGURE 5 | Pathogenic role of immune cells in rheumatoid arthritis and the connection to osteoclastogenesis. Antigen-presenting cells (APC) induce T cell

differentiation to Th17 subgroup. Th17 cells, when triggered, emit IL-17, compelling fibroblasts to produce RANKL and indirectly stimulate increased IL-17 production.

ACPAs (anti-citrullinated peptide antibodies) synthesized by B cells might be (dotted line) capable of enhancing OC differentiation and entice other pro-inflammatory

immune cells to cytokine production. These immune cells in turn prompt fibroblasts to secrete even more RANKL.

Still, definitive statements about cytokine functions are to be
viewed cautiously, since many (if not all) cytokines have context-
dependent tasks. IL-33, for example, is generally considered
a pro-inflammatory cytokine, capable of provoking immune
cell migration and mast cell activation (174). However, in the
later stages of inflammation, IL-33 serves limiting purposes
(175, 176). Examples like these highlight the importance of
further investigation on the topic of cytokines, investigating
context dependent functions and contemplating possible
treatment options.

OSTEOIMMUNOLOGY IN OSTEOPOROSIS

Simply put, osteoporosis is an imbalance between bone
destruction and development, with OC surpassing OB in activity
(177). The result is loss of absolute bone mass and fragility
of remaining osseous tissue (178), which is most common in
postmenopausal women (179). This fact leads to the assumption
and subsequent conclusion that estrogen plays a key role in the
pathology of osteoporosis (180).

While estrogen has great influence on cells of the osseous
lineage, e.g., assuring osteocyte survival (181–183), preventing
OB apoptosis and increasing their lifespan by triggering Sema3A
secretion in osteocytes (184, 185), downregulating OC activity
and lifespan (186, 187) and inhibiting RANKL effects on OC
(inter alia by upregulating OPG production in OBs) (188–192),
estrogen also affects bone metabolism indirectly by stimulating
immune cells. Estrogen has been shown to downregulate RANKL
production in lymphocytes (177) and modulate production of
inflammatory cytokines which eventually cause bone resorption
in osteoporosis as well as RA (193). IL-6 production is inhibited
on a transcriptional level by binding to a cellular receptor on

producing cells (194). IL-6, in fact, enhances both OB and OC
activity (bone turnover ↑), but OC activity surpasses, causing
bone loss over time (195).

Furthermore, blocking of IL-1 and TNFα receptors
simultaneously completely negates bone loss after ovariectomy,
indicating that both factors are highly relevant for estrogen-
related bone loss (196–198). Effects of estrogen on TNFα levels
is indirectly meditated by T cells (199), demonstrating the
importance of T cells for estrogen-mediated bone preservation.
Even further, Cenci et al. found that T cell-deficient mice, when
ovariectomized, show no signs of increased osteoclast formation,
while WT mice exhibit twice as many osteoclasts (200). These
results have been questioned by findings of two individual
groups, which demonstrated that mice which lost T cell function
by different methods, still show the same amount of cancellous
bone loss after ovariectomy (201, 202).

To summarize, estrogen clearly has a significant effect on bone
turnover and does so by the extensive help of the immune system
(Figure 6) (203). Regulating key effectors of the immune system,
like IL-1, IL-6, TNFα and prostaglandins may be beneficiary for
osteoporosis therapy. Contributions of the immune system to
osteoporosis are so distinct that Srivastava et al. introduced the
term immunoporosis in 2018 (70).

OSTEOIMMUNOLOGY IN HETEROTOPIC
OSSIFICATION

Heterotopic ossification (HO) depicts the phenomenon of
pathological osseous growth in consequence of trauma, large
surface area burns, surgery, spinal cord injury and traumatic
brain injury. In HO, physiological constitution of functional or
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FIGURE 6 | Effects of estrogen on cells of osseous heritage. The simplified presentation highlights inhibitory (red) effects on osteoclasts and promoting (green) effects

on osteoblast and osteocytes. Estrogen effects are in part executed by T cells, especially on OC metabolism. Results of estrogen interference are enhanced bone

formation with decreased turnover and resorption.

scar tissue fails and instead is replaced by the formation of ectopic
osseous tissue (204).

Origin of HO is still largely unknown, although severe
inflammatory responses (both locally and systemically) and
wound infections have been found to aggravate the condition
(205). In case of HO caused by military blast wounds,
research has detected a high concentration of inter alia
TGF-β, platelet, epidermal and fibroblast growth factors, IGF-
II, prostaglandins, TNFα (206) and, most notably, BMP-4 (207,
208). This inflammatory compound exerts osseous formation
from circulating and local osteogenic precursor cells (208,
209) supported by the hyperactive immune system and other
surrounding tissue.

HO forms and solidifies within ∼6 months to 1.5 years
after initiation and is accompanied with all effects of tumorous
growth: Pain, restricted range of motion, pressure ulcers and
complications due to compression of adjacent structures like
vessels, nerves, and muscle (210, 211). Surgical excision is
the ultimate treatment of HO, but not always possible due
to proximity to sensitive structures or patient’s status, and
bears the risk of recurrence if not removed completely (212).
If possible, e.g., for operations with high chance of HO
formation, prophylactic measures can be taken and currently
comprise of radiation therapy (213), NSAIDs (most prominently
indomethacin) (214) and, rarely, corticosteroids (215).

Since more and more immunological players and messenger
substances have been identified to contribute to HO, the focus
of research has shifted toward osteoimmunology. A 2014 study
has utilized transgenic mouse models of HO with overexpression
of BMP4 to prove that depletion of macrophages reduces HO.
Introducing tissue injury to a mouse with BMP4 overexpression
resulted in HO development within 4 weeks. When depleted of
macrophages, however, these mice were less likely to develop
HO, showing the importance of macrophages for HO formation.
Furthermore, this study suggested, that spreading of HO outside
of initial injury was mediated by the adaptive immune system
(216). As representatives of the adaptive immune system,
lymphocytes show close proximity to herds of HO (217) in
cardinal valve ossification. Other than macrophages, mast cells

of the innate immune system have been linked to the initiation
of HO. Mouse models with attenuated activity of mast cells are
less prone to HO (218, 219) due to changes in concentration of
inflammatory peptides like CGRP and substance P.

Fibrodysplasia ossificans progressiva (FOP), a rare genetic
disease, causing formation of bone in soft tissue, shows very
close resemblance to HO and some treatment options for both
conditions have been proven to be interchangeable. In 2015,
Hatsell et al. and Hino et al. demonstrated that the mutation
of the ACVR1 gene caused aberrant activation of the Activin
A Typ 1 Receptor by activin A ligand resulting in upregulation
of the pSMAD1/5/8 pathway and thus formation of osseous
tissue (220, 221). Further testing of these finding in vivo yielded
creation of an anti-activin A antibody (REGN2477) which is
currently examined in a phase 2 study (registry NCT03188666
on Clinicaltrials.gov).

In summary, the involvement of immune cells and substances
of the immune system make heterotopic ossification an obvious
target for therapeutic intervention. As stated before, common
therapy includes NSAIDs as classical immunosuppresiva,
implying all risks and side effects. Biologicals, targeting specific
mediators of HO locally should prove to be a far less invasive
treatment option.

FUTURE PROSPECTS OF APPLIED
OSTEOIMMUNOLOGY

Immunology has become a major part of many different
medical fields; unfortunately, the connection of immunology
to orthopedics and trauma surgery has been developing
rather slowly. Discoveries in recent years have emphasized
the immense interplay between both systems and the arising
therapeutic opportunities.

For cancer treatment, monoclonal antibody therapy has
marked a milestone, significantly improving survival rates and
recidivism-free years. This strategy has been integrated into
the treatment of rheumatoid arthritis with high success as
well: notably Tocilizumab (Target: IL-6R), Adalimumab (Target:
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FIGURE 7 | Flowchart of noxae promoting aseptic hip implant loosening and subsequent surgical revision. Wear debris and mechanical instability are major agents for

inflammatory immune reaction, not limited to lymphocytes.

TNFα) and Goliumab (Target: TNFα) are approved and highly
successful therapeutics as mono- or combination therapy with
DMARDs (222–227). Further investigation for possible targets of
monoclonal antibodies is mandatory. As mentioned, ACPAs play
an important role in development and upkeep of ACPA+-RA but
are yet to become more than a prognostic marker. An ACPA
antibody (antibody-antibodies) could limit the vicious circle of
antibody generation and inflammatory reaction even before the
onset of clinical symptoms.

For aseptic (hip) implant loosening, several targets for
conservative therapeutic actions are possible (Figure 7). As
previously stated, there is a definitive immune reaction to
wear particles with phagocytosis and/or direct inflammatory
response. Recent efforts have been made to not only create
non-immunogenic materials, but also to give immune-
modifying properties to employed materials. While no material
can be guaranteed to never trigger an immune response, it
is possible to fabricate biomaterials with beneficial effects
on the immune system. By modifying the surface qualities
of biomaterials, it is possible to provoke a favorable, non-
degenerative, reaction of macrophages (228). This marks
a crucial step up from efforts to exclude the immune
system from implantation to actively incorporating and
benefiting from it. Researching these materials, giving them
supportive immune-modulating effects while maintaining
stability and longevity is crucial for future orthopedics and
trauma surgery.

It might be beneficial to include general standardized allergy
testing regarding metals and inorganic materials as a pre-op
measure. Although the inflammatory reaction to wear debris
and prosthetic surfaces are most likely caused by constant
triggering of the immune system over long periods of time, rather
than conventional allergic reactions, some patients do react to
the materials in a type 4 allergic reaction. For these patients,
careful selection of materials used is vital to prevent unnecessary
revision procedures. A retrospective study by Zondervan et al.
in 2019 presented patients with all-around improved testing
scores (pain, walking quality, Range of motion) when revised to a
hypoallergic component in total knee arthroplasty (229). Some of

these patients may have avoided a secondary operation if tested
beforehand and treated accordingly.

Regarding osteoporosis in postmenopausal women,
osteoimmunology might be able to convey the key to slowing
and/or stopping progression of osteolysis. Considering that the
effect of estrogen-deficiency is partly T cell and MC-dependent
(230), it might be possible to modify immune activity in a
beneficial matter. To do so, the dichotomous effects of estrogen
on estrogen receptors (ERα and ERβ) of immune cells need to
be unraveled, so that absence of estrogen stimulation can be
compensated. Again, long-term immunosuppression or intensive
hormone therapy is not a preferable therapy for its excessive
and unfathomable consequences for human physiology. Instead
a very specific stimulation of immune-related ERα/β could be
a solution.

These considerations are exemplary for the developing field
of osteoimmunology. Moving away from systemic application
(=immunosuppression), toward highly specific and acute
modulation of the immune system. Unraveling conjoined
mechanisms of the immune system and bone offers therapeutic
possibilities for ailments of both systems. Contemplation of the
bone as merely an unchanging support pillar is outdated and
obsolete. Instead, it is mandatory that this extremely varying
network is incorporated in our view on the immune system
and hematopoiesis.
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