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Abstract

Background: Localising regulatory variants that control gene expression is a challenge for genome research. Several studies
have recently identified non-coding polymorphisms associated with inter-individual differences in gene expression. These
approaches rely on the identification of signals of association against a background of variation due to other genetic and
environmental factors. A complementary approach is to use an Allele-Specific Expression (ASE) assay, which is more robust
to the effects of environmental variation and trans-acting genetic factors.

Methodology/Principal Findings: Here we apply an ASE method which utilises heterozygosity within an individual to compare
expression of the two alleles of a gene in a single cell. We used individuals from three HapMap population groups and analysed
the allelic expression of genes with cis-regulatory regions previously identified using total gene expression studies. We were
able to replicate the results in five of the six genes tested, and refined the cis- associated regions to a small number of variants.
We also showed that by using multi-populations it is possible to refine the associated cis-effect DNA regions.

Conclusions/Significance: We discuss the efficacy and drawbacks of both total gene expression and ASE approaches in the
discovery of cis-acting variants. We show that the ASE approach has significant advantages as it is a cleaner representation
of cis-acting effects. We also discuss the implication of using different populations to map cis-acting regions and the
importance of finding regulatory variants which contribute to human phenotypic variation.
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Introduction

Understanding the cellular mechanisms that modulate gene

expression is fundamental to defining the genetic contribution to

human phenotypic variation and disease susceptibility. Identifying

non-coding regions that alter gene expression by affecting

transcriptional efficiency or by modulating mRNA splicing is

difficult. Cis-regulatory elements reside on the same chromosome

as the gene they regulate, and act only on the copy of the gene on

the same chromosome. These elements are usually located close to

the transcription starting site but can be located hundreds of

kilobases (kb) from the gene they regulate[2,3]. Trans-regulatory

elements may be located on a different chromosome and regulate

both copies of the gene. Absolute expression levels are a composite

reflection of many genetic and environmental variables. Dissecting

out the relative contribution of a single regulatory element for a

gene influenced by multiple processes is challenging. A secondary

challenge is to identify the causal genetic variant from other

variants, in regions where linkage disequilibrium (LD) is high.

Numerous genome-wide scale investigations of total gene

expression using genome-wide high density genotyping and classic

linkage/ association mapping have contributed to the identifica-

tion of putative trans and cis-acting regulatory variants [3–8].

These approaches offer the advantage of simultaneously analyzing

thousands of genes by using gene expression arrays. However they

are limited by the potential inter-individual environmental and

genetic differences that may confound results[9].

An alternative method to the mapping of regulatory variants is to

use an allele specific expression (ASE) approach that compares the

relative expression of the two alleles in the same individual [10,11].
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This approach can be applied if the gene under study has

polymorphisms in the transcript, such as single nucleotide polymor-

phisms (SNPs). These polymorphisms can be used to quantify the

relative expression of the two alleles in heterozygous individuals; if the

expression of the alleles is not equal (allelic imbalance), it suggests that

the expression of the gene is under cis-regulation. As both alleles are

exposed to the same environmental, technical and genetic factors (e.g.

trans-acting effects), relative abundance of allele specific transcript will

reflect cis-acting effects only.

Previously we have described the identification of a long range

cis-regulator for IL13 [2], located using ASE mapping methodol-

ogy in CEU (Utah residents with ancestry from northern and

western Europe) HapMap cell lines[12]. Here we apply a robust

cis-mapping approach (described in the results) to validate highly

significant cis-acting variants previously identified by Cheung et al

[5] in whole genome linkage/association-based studies of total

gene expression. We use the same panel of CEU lymphoblastoid

cell lines (LCL) and we extend the analysis to other HapMap

sample sets (Han Chinese from Beijing (CHB) and Yoruba from

Ibadan (YRI)). We discuss the advantages and drawbacks of the

two approaches and the implications of mapping regulatory

variants in populations with greater genetic diversity.

Results

We applied ASE to a set of genes (Table 1) with highly significant

evidence for cis-regulation from total expression data [5,7]. Gene

selection was based on: (1) the presence of a transcribed SNP, as

this is required to measure relative transcript abundance (2)

modest/high minor allele frequencies (MAF) of transcribed SNPs,

to maximise the number of heterozygous individuals available for

ASE analysis 3) PCR-primer design that can be applied to both

cDNA and DNA samples, so that relative abundance of genomic

DNA can be ascertained and used as a control 4) PCR-Primers that

do not include other SNPs to avoid differential primer hybridiza-

tion that could confound results. We selected the six genes that

passed all the criteria and had a high MAF at the transcribed SNP

in at least one of the HapMap populations: IRF5, LRAP, CHI3L2,

HSD17B12, POMZP3 and AKAP10.

An allelic expression dataset was generated from the HapMap

panel of LCLs from CEU, YRI and CHB unrelated individuals (total

of 150 individuals). We performed cell culturing, RNA extraction,

cDNA synthesis and allele specific quantification as described in the

Material and Methods. Data were generated from two independent

cultures (biological duplicates). Each biological duplicate consisted of

9 technical replicates. The overall experimental variability was very

low, with low variance between technical replicates (mean coefficient

of variance of 6%) and a high correlation between biological

duplicates (mean Pearson correlation coefficient r = 0.85). These

results support the assumption that ASE patterns presented here

represent a biological phenomenon, being little influenced by

variations in cell culture and other experimental techniques. Allelic

expression imbalance (AEI) was determined if independent replicate

assays showed allelic expression ratios that deviated from the ratios

observed for genomic DNA. Using the observed variability between

technical and biological replicates, we established an average

sensitivity limit of 1.2 for detecting allele specific imbalances. Any

results below this allelic expression ratio limit could be the result of

experimental noise.

Of the 6 genes selected for this study (IRF5, LRAP, CHI3L2,

HSD17B12 and POMZP3, AKAP10), we observed AEI in the first 5

genes (Figure 1). For some genes, and in certain populations, allelic

imbalances were detected in all the tested individuals. This was the

case for the LRAP gene (in the YRI and CHB panels), the HSD17B12

(in the CEU and CHB) and the CHI3L2 (CEU and CHB). For the

AKAP10 gene we observed allelic expression ratios close to 1 in all

populations, even in the CHB population where there is reported

evidence for cis-regulation [7]. In the CHI3L2 gene we identified

some individuals that show detectable expression of only one allele

(35% of the CEU and 13% of the YRI samples).

To map putative cis-acting variants associated with the observed

AEI observed we correlated the ASE data with surrounding SNPs

across approximately 200 kb 59prime and 39prime to the gene. If a

candidate SNP has a cis-acting effect on the expression of the

tested gene, AEI will only be observed in individuals heterozygous

at that candidate SNP [2,13]. The direction of the imbalance will

depend on the phase relationship between the alleles at the

candidate SNP and at the transcribed SNP. In particular,

assuming an ASE ratio of allele 1 and allele 2 at the transcribed

SNP then, individuals that contain the over-expressed allele at the

cis-regulatory SNP in phase with allele 1 will have ratio in excess of

one; similarly, individuals with the over-expressed allele in phase

with allele 2 will have ratio less than one. For each gene, we used

HapMap haplotype data for the cell lines considered.

For each candidate SNP we then used linear regression (LR) to

assess whether there was evidence of an increasing or decreasing

(linear) relationship between the ratio of expressions for the phased

heterozygous type 1 (e.g. TC) (group 1), combined homozygous

types (e.g. TT and CC) (group 2), and phased heterozygous type 2

(e.g. CT) (group 3) genotypes (see Figure 2). The statistical

significance of the estimated slope between the group labels 1, 2,

Table 1. Genes and transcribed Single Nucleotide Polymorphisms (SNP) used in ASE assay.

Chromosome Gene Coding SNP Position (ENSEMBL) Alleles Heterozygous Frequency

CEU CHB YRI

17 AKAP10 rs2108978 19802050 (Non-Synonymous) C/T 0.483 0.289 0.559

1 CHI3L2 a rs13721 111585505 (Non-Synonymous) C/A/T 0.6 0.44 0.04

1 CHI3L2 a rs7542034 11585504 (Synonymous) G/A 0.036 0.044 0.322

11 HSD17B12 rs1061810 43834510 (39_UTR) C/A 0.317 0.378 0.483

7 IRF5 b rs2070197 128376236 (39_UTR) C/T 0.38 0.0 0.06

5 LRAP rs1056893 96271195 (Synonymous) C/T 0.433 0.556 0.417

7 POMZP3 rs1056119 76093427 (59_UTR) C/T 0.4 0.27 0.55

aDifferent transcribed SNPs were used to obtain ASE data for the CEU/CHB and YRI datasets due to MAF differences in the populations used.
bOnly the CEU population was analysed due to the low MAF observed for transcribed SNPs in the YRI and CHB populations.
doi:10.1371/journal.pone.0004105.t001

Cis-Acting Regulatory Variants
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Figure 1. Allelic expression ratios (Log2) in CEU, CHB and YRI samples. Horizontal line represents a ratio of 1 (log2 = 0), where the
expression of each allele of a gene is equal. Populations are represented by (#) CEU, (m) CHB and (X) YRI. Number of samples tested: HSD17B12
(CEU = 17, CHB = 12, YRI = 22 ), LRAP (CEU = 15, CHB = 11, YRI = 22), CHI3L2 (CEU = 17, CHB = 6, YRI = 15), AKAP10 (CEU = 21, CHB = 8, YRI = 27), POMZP3
(CEU = 20, CHB = 5, YRI = 24), IRF5 (CEU = 13). For the CHI3L2 we observed individuals with monomorphic expression (CEU = 6,YRI = 2) which are not
represented in the graphic.
doi:10.1371/journal.pone.0004105.g001

Figure 2. Statistical model for the detection of cis-acting variants. We applied a linear regression (LR) model ((similar to that of Teare et
al[13]) to assess whether there was evidence of linear relationship between the allelic expression ratio of the phased heterozygous type 1 (TC/TA,
group 1), combined homozygous types (TT/TA or CC/TA, group 2), and phased heterozygous type 2 (CT/TA, group 3). We assumed that homozygous
types group will have no allelic imbalances.
doi:10.1371/journal.pone.0004105.g002

Cis-Acting Regulatory Variants
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and 3 (x-axis) and allelic expression ratio (y-axis) is invariant to the

labelling of the heterozygous groups. If the AEI data for a given

transcript SNP is unidirectional showing overexpression of the

same allele in all cell lines, the cis-acting variant is likely to be in

high LD with the transcript SNP. If the AEI data is bidirectional,

the cis-acting variant is likely to be in low LD with the transcript

SNP. The three HapMap sample sets used (CEU, YRI and CHB)

were analysed independently.

In our data, we found cis-association in all of the 5 genes that

showed differential allelic expression (Figure 3). Where cis-

associations localised to a region of high LD, neighbouring SNPs

showed similar levels of association.

For the genes where all tested individuals of a population

demonstrated AEI in the same direction (see Figure 1), it is difficult

to detect any regulatory variants using the LR model. However,

we can assume that these individuals which have the same AEI

phenotype will all be heterozygous at the putative regulatory SNP

(will have the same haplotype) and test whether there is evidence

of a deviation away from ratio one at those heterozygous SNPs. In

this setting we use a one sample t-test, which is more robust to

small sample sizes and minor deviations from the Gaussian

distribution than the standard z-test. In addition we verify if

imbalance results from the over-expression of the same allele at the

regulatory SNP in all individuals, to eliminate false positives.

For LRAP and HSD17B12 we observed overlapping cis-

associations in all three populations (Figure 3). For POMZP3 we

found cis-association in two populations but for the CHB, there

were insufficient samples for significant cis-mapping. In the IRF5

gene we identified a large region with several cis-associated SNPs

within the same haplotype block. These included the putative

regulatory SNPs identified by Cheung et al [5,14] and other SNPs

found by others [3]. For the CHI3L2 gene we found significant cis-

associations in the CEU dataset, including the putative SNPs

reported by Cheung et al [5], however no association using the

same exonic SNP was found for the CHB data set, probably due to

the small sample size. In the YRI samples while we still observed

AEI, no significant cis-associations were detected for CHI3L2. All

tested samples in this population were homozygous for the SNP

found by Cheung et al [5], therefore eliminating the support to a

functional role for this SNP in this population.

Combining all the unrelated individuals from the three

populations in the analysis can increase the power to detect cis-

effects on allele expression that are common, but of small

magnitude. Stranger et al [3] recently showed that pooling total

gene expression data from four Hapmap populations assisted in

detecting smaller regulatory effects that are shared across

populations. We performed the same analysis (LR model) using

a combination of any 2 populations, as well as using the 3

Figure 3. Cis-association of SNPs with ASE data. Hapmap populations used: CEU (blue), CHB (green) and YRI population (yellow) unrelated
individuals. Dots represent the results using a LM and crosses represent SNPs associated with ASE data which are in complete LD with the transcribed
SNP (T-test results). Coordinates are in NCBI Build 35. Horizontal lines reflect a multiple testing adjusted gene-wide statistical significance threshold of
5%. Vertical lines represent the 59 prime (grey) and 39 prime(black) of the gene.
doi:10.1371/journal.pone.0004105.g003
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populations. For the CH3IL2 gene we did not use the YRI data,

since a different transcribed SNP was used to determine the ASE

results for the CEU and CHB datasets.

We cannot pool the samples without applying appropriate

corrections, as population differentiation can produce spurious

associations. We applied a stratified linear regression, and performed

conditional permutations to control for the inflation of p-values,

where data from an individual of a given population were assigned

only to another individual of the same population [3].

The results obtained by using multi-populations overlap with

the single-population analysis (Figure 4). Due to the increase in the

sample size, the associated cis-effect DNA regions when using the 3

populations were smaller than those detected by using single-

populations.

Discussion

Using the ASE approach we observed allelic expression

imbalance for five of six candidate genes described by Cheung et

al [5]. By mapping the allelic expression data we confirm the effect

at the cis-acting polymorphisms identified by Cheung for these

genes but these SNPs did not always carry the strongest effect. By

using a more recent higher density SNP genotyping database we

identified strong association with others SNPs in the vicinity of the

polymorphism identified by Cheung et al [5], analogous with

recently published data[3,15].

As previously reported, repeating the analysis in other populations

can allow the confirmation of an association signal. Using a

population with low LD may help in localising the cis-acting signal to

a smaller number of variants and therefore aid downstream analysis.

Here we have verified that the association signals detected replicate

very well across populations, even though the populations are

divergent and the sample sizes are small. The only exception was for

the CHI3L2 gene, for which AEI was observed in both the YRI and

CHB populations, but no statistically significant association was

identified with neighbouring SNPs. By comparing the results from

the 3 populations that have different LD structures particularly the

YRI, where LD is lowest, we were able to localise the association to a

smaller region for both LRAP and HSD17B12 genes.

An important feature of the ASE approach is its potential to

detect cis-acting effects, as this approach is robust to environmental

confounders and trans-acting effects. It is possible to map cis-acting

polymorphisms even using a low number of individuals using this

method; eleven individuals in the CHB population were sufficient

to accurately map the effect at the LRAP gene. Currently, cell lines

with genotyping data are limited in number. ASE in addition can

only be applied to individuals with a heterozygous transcript SNP

which limits sample size. To increase statistical power others have

pooled samples from different populations and we have repeated

this approach using ASE.

Another limitation of the ASE approach relates to the need to

use transcribed SNPs. Although others have attempted to use

Figure 4. Multi-population cis-mapping (CEU, CHB, YRI). For the CHI3L2 gene, only CEU and CHB populations were pooled. Horizontal lines
reflect a multiple testing adjusted gene-wide statistical significance threshold of 5%.
doi:10.1371/journal.pone.0004105.g004
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intronic SNPs, the results are less successful and genes have to be

highly expressed in LCLs for effective results [15].

For LRAP, CHI3L2 and POMZP3 we could identity a main SNP

effect using the three (two for CHI3L2) populations pooled

together (rs2910686, rs2764546 and rs2005354 respectively).

Refining the cis- associated regions can overcome the difficult

task of isolating the causal regulatory variants that may be in LD

with many others. Although combining different populations in a

single analysis has advantages, there are implications we must

consider as haplotype patterns between candidates SNP identified

and the functional SNP itself may vary between populations and

therefore confound results.

Evidence of cis-regulation has been reported for the AKAP10 gene

by Spielman et al [7] only for the CHB and JPT whereas no

observation was found in the CEU data set. In addition Stranger et al

[3] only found cis-association for this gene when pooling samples

from different populations together. We did not observe AEI in the

AKAP10 gene using a total of 54 samples, and the SNPs reported

previously to be associated clearly did not influence the allelic

expression data in our study; in particular, individuals heterozygous

or homozygous at the associated SNPs had similar allelic ratios (very

close to one). It is possible that previous published expression data

has been confounded by factors that not affect ASE for this gene.

Allele specific expression and total gene expression offer

complementary approaches to identifying putative cis-regulatory

mechanisms of gene expression. ASE when available on a high-

throughput platform, similar to the method recently described by

Serre et al [1], may have significant advantages over total gene

expression data as it is a cleaner representation of cis-acting effects.

Applying these assays to find regulatory variants which contribute

to human phenotypic variation, such as responses to disease, can

provide candidate regions for future investigation in fine-scale

association studies of human disease.

Materials and Methods

Samples and RNA/cDNA preparation
Lymphoblastoid cell lines for 60 HapMap CEU, 60 HapMap

YRI and 30 HapMap CHB were obtained from the Coriell Cell

Repositories. Cell lines were cultured as described previously [16].

Total RNA was extracted with the RNeasy Mini-Kit (Qiagen) and

treated during the process with RNase-free DNase I (Qiagen).

Synthesis of First-Strand cDNA was processed according to the

StrataScriptTM First-Strand Synthesis System (Stratagene). For the

experimental reaction we used 10 mg of total RNA.

Allele specific transcript quantification
Informative exonic or untranslated SNPs for each gene were

primarily selected from HapMap data (http://www.hapmap.org/).

Where no informative SNPs were available at the HapMap data,

additional transcribed SNPs were genotyped. Primers were designed

using the dedicated software Spectrodesigner (Sequenom) and the

same designs were applied to cDNA and genomic DNA samples. All

primer designs are available upon request. The Allelotype platform

from Massarray (Sequenom) was utilized for the accurate relative

quantification of allele specific cDNA species. For each of the cDNA

and genomic DNA assays, we performed 9 technical replicates.

Biological replicates from independent cultures were assayed equally.

For a given cDNA or gDNA assay the allelic transcript ratio was

calculated on each of the 9 technical replicates from the relative

quantity of the two allele-specific transcripts. The mean allelic

transcript ratio for the whole assay was then calculated, and

normalised to the mean allelic transcript ratio for the genomic

controls.

HAPMAP haplotypes
Haplotypes were downloaded from the HapMap Phase II

database (http://www.hapmap.org). For data analysis we used all

the Hapmap SNPs within 200 Kb of the transcribed SNP;

monomorphic SNPs were excluded from the analysis. The minimum

number of SNPs tested in each gene was: IRF5 750, LRAP 686,

CHI3L2 563, HSD17B12 406, POMZP3 660 and AKAP10 572.

Locations of the SNP markers were based on those of the human

reference sequence (http://genome.ucsc.edu) of May 2004 (hg 17,

build 35). Phase software was used to reconstruct haplotypes to

include the SNPs not present in the HapMap data [17].

Statistical analysis of allelic expression
For the association analysis, log2-transformed ratios of allele

expression values for individuals with the heterozygous genotype

at the transcribed SNP were used. To map putative cis-variants we

used a statistical analysis approach based on the linear regression

method (similar to that of Teare et al[13]). For genes where all

individuals showed AEI, at SNPs where all samples are

heterozygous, we applied a t-test to assess if there is a deviation

from ratio 1. Additionally we confirm if AEI were cause by the

over expression of the same allele among the samples tested for a

given gene. For each gene, we performed 1000 permutations to

determine a gene-wide significance p-value threshold [18] that

corresponds to an overall false positive rate of 5%. All analyses

were performed using the R statistical package. The ASE mapping

R script is available upon request.
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