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Abstract

disease (COPD).
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selection operator (LASSO), Markov chain Monte Carlo

Background: Generalized linear mixed models (GLMMs), typically used for analyzing correlated data, can also be
used for smoothing by considering the knot coefficients from a regression spline as random effects. The resulting
models are called semiparametric mixed models (SPMMs). Allowing the random knot coefficients to follow a normal
distribution with mean zero and a constant variance is equivalent to using a penalized spline with a ridge regression
type penalty. We introduce the least absolute shrinkage and selection operator (LASSO) type penalty in the SPMM
setting by considering the coefficients at the knots to follow a Laplace double exponential distribution with mean zero.

Methods: We adopt a Bayesian approach and use the Markov Chain Monte Carlo (MCMC) algorithm for model
fitting. Through simulations, we compare the performance of curve fitting in a SPMM using a LASSO type penalty to
that of using ridge penalty for binary data. We apply the proposed method to obtain smooth curves from data on the
relationship between the amount of pack years of smoking and the risk of developing chronic obstructive pulmonary

Results: The LASSO penalty performs as well as ridge penalty for simple shapes of association and outperforms the

ridge penalty when the shape of association is complex or linear.
Conclusion: We demonstrated that LASSO penalty captured complex dose-response association better than the

Keywords: Penalized splines, Generalized linear mixed models, Ridge regression, Least absolute shrinkage and

Background

The association between the level of a continuous variable
and the mean response at that level may take any func-
tional form. To reduce bias resulting from mis-specifying
the functional form and also from the loss of efficiency in
testing induced by categorizing continuous variables, the
use of nonparametric (flexible) regression models is often
recommended to model the effect of variables recorded
on a continuous scale [1, 2].
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Nonparametric regression techniques, by their nature,
do not require any parametric representation to be spec-
ified a priori, and instead determine the shape of the
association directly from the data. While several compet-
ing approaches are available for such modeling (see, e.g.,
[3—14]), we focus on penalized splines (P-splines) which
is a powerful technique to fit a smooth curve to the data
in a scatterplot. In P-splines, a greater degree of smooth-
ness is achieved by specifying a large number of knots and
imposing restrictions on the knot coefficients to prevent
over-fitting [15]. An important issue, however, is to select
a suitable value for the smoothing parameter, which is not
a trivial task.
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Penalized splines can be viewed as a particular case of
generalized linear mixed models (GLMMs). To achieve
a smooth function, the GLMM can be used to shrink
the regression coefficients of knot points from a regres-
sion spline towards zero, by including them as random
effects and constraining them to follow a normal dis-
tribution with mean zero and constant variance. The
resulting models are called semiparametric mixed mod-
els (SPMMs) [13]. The main advantage of this approach
is that the smoothing parameter, which controls the
trade-off between bias and variance, may be directly
estimated from the data [16]. Moreover, we can take
full advantage of existing methods and software for
GLMMs.

Restricting the changes in the slope at the knots to
follow a normal distribution with mean zero and con-
stant variance is equivalent to using a penalized spline
by imposing a ridge penalty (L, penalization), that is,
restricting the sum of squares of the spline coefficients
at knot points to be less than a judiciously selected
constant [16]. However, imposing L; penalization (i.e.,
restricting the sum of absolute values of the knot coef-
ficients) is also possible. By constraining the coefficients
at knots to follow independent and identical Laplace
(i.e., double exponential) distributions with means zero
will give rise to a LASSO type penalty in a SPMM
setting.

A LASSO type penalty has previously been used in a
penalized spline setting (see, for example, [17-22]) but
primarily for variable selection. The literature on curve
fitting by LASSO penalty is sparse; to our knowledge, it
has never been used or investigated in a SPMM setting
for non-Gaussian outcomes. Because of the nature of the
LASSO constraint, it shrinks some coefficients and sets
others to zero, and hence may be hypothesized to produce
a smoother fit.

In this paper we introduce the LASSO type penalty
under the SPMM framework of curve fitting and inves-
tigate if the performance of curve fitting by SPMM can
be improved using the LASSO penalty rather than using
a typical ridge penalty. For estimation we adopt the
Bayesian approach and use Markov Chain Monte Carlo
(MCMC) algorithm. Recent development in Bayesian
computational software has facilitated smoothing under
full Bayesian framework via mixed model representation
of penalized splines (see, [13, 15, 16, 23-28]).

We consider binary responses and smoothing of a sin-
gle continuous covariate, and systematically compare the
performance of curve fitting using two penalties (LASSO
and ridge), by simulation. We apply the proposed method
to estimate the effect of (amount of cigarette) smoking on
the risk of developing COPD.
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Methods

Penalized spline models for binary data

We introduce the idea of penalized spline regression with
the following simple logistic model:

logitP[Y;=1|x;]=m(x;), i=1,...,n (1)

where Y; is a binary response variable, x; a continuous
covariate measured on subject i and m(-) is a smooth func-
tion. To estimate m(x) we use low-rank thin-plate (LRTP)
splines [29] with K knots t1, . . ., tx as given by

K

m(x) = fo + Prx+ Y ughi(), ()

k=1

where Bo, B1, u1,...,ux are regression coefficients. For
k =1,...,K, the basis functions are:

K
be@) = Y |x — tiPwi(k)

i=1
in which w; (k) is the (i, k)th element of the penalty matrix
QI;I/Z, where the (i, k)th entry of Qi is |t; — &> for
1 < i,k < K. The LRTP has the advantage of using a
relatively small number of knots to obtain a smoother fit.
It also has good mixing properties in the MCMC anal-
ysis (see, e.g., [15]). Other basis functions that are often
used include truncated polynomial splines [16], natural
cubic splines[30], B-splines [12], and thin plate regression
splines [29].

Denoting ¥ = (Y1,...,Y05, X = [Lxdi<i<w
Z = [bi(x),...,bk@)]i<i<y B = (Bo, p)T and u =
(u,...,ux)’, Egs. 1 and (2) can be written more com-
pactly in matrix notation as

logit P[Y = 1| X,Z] = XB + Zu. 3)

Model (3) is purely parametric and easily estimated as
an ordinary logistic regression model. This approach is
known as regression spline smoothing. Here, the u; rep-
resent changes in slope from one segment to the next.
So, unconstrained estimation of the u; would lead to a
“overly fluctuating” fit due to the large number of trun-
cated polynomials. An optimum fit could be achieved by
imposing a penalty on the spline coefficients. Specifically,
one could choose a large number of knots (typically 5 to
20, as suggested by Ruppert [31]) and prevent over-fitting
by putting a constraint on the spline coefficients. Con-
straints that can be imposed on uy are: (i) > u,% < ¢, (ii)
> luk| < ¢, and (iii) max |ug| < c. Here, ¢ > 0 is the tun-
ing parameter. Restrictions (i) and (ii) are known as ‘ridge’
and ‘LASSO’ type penalties, respectively [31, 32]. Each of
these constraints will lead to a smoother fit for an appro-
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priate choice of c. However, the ridge penalty is used most
frequently as it is much easier to implement.

Denoting 8 = [B,u]T and W = [X,Z] = (Wili<i<n» We
can write (fori =1,...,n)

1

ﬂ‘:P Y=1|w]=—-—«——.
L [l | l] 1+exp(—wlT9)

(4)

The log likelihood function for 6 is given by

n
o)==y [(1 — y)wl0 +1n (1 + exp(—wiTe))] . (5)
i=1
The LASSO constraint Y |ug| < c¢ is equivalent to
K
the addition of a penalty term A Y |u| to the joint log-
k=1
likelihood of 6 so that the constrained log-likelihood

function is

n

K
e @) == Y[ = yowl 0 +1n 1+ exp-wl0))] = 2l
k=1

i=1

(6)

where 1 > 0 is the smoothing parameter which controls
the trade-off between the goodness of fit and smoothness
of the estimated curves. The A can be either selected by
the user or chosen via numerous methods including cross-
validation, generalized cross-validation and a variant of
Stein’s unbiased estimate of risk [32].

Similarly, imposing the typical ridge penalty u,% <c
yields a restricted maximization equation as

n

K

lcr(0) = — Z [(1 —y)wl o +1n (1 + exp(—w?@))] —A Z u.
i=1 k=1

(7)

Bayesian approach to penalized spline

Tibshirani [32] noted that |uk| in (6) is proportional to
the negative log-density of a Laplace (double-exponential)
distribution. Therefore, the LASSO penalized spline esti-
mate can be obtained as the Bayes posterior mode under
independent double-exponential, DE(0, t) priors for the
u; with mean 0 and variance 272,

179

1
S| v) = 5 &P <_r> (8)

with A = 1/7. Again, ui in (7) is proportional to the neg-
ative log-density of a normal distribution. As a result, the
Bayesian analogue of the ridge regression type penaliza-
tion involves using normal priors for the u;’s,

2
ex (—”k> k=1,...,K. (9
p 202 ) = L, ...,4N.

plug | o) =

1
V2mo?
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with A = 1/202. A fully Bayesian hierarchical modeling
involves specifying a hyper prior distribution for A. Typi-
cally, a non-informative prior that guarantees a unimodal
full posterior is recommended (see, e.g., [33]).

In general, a Bayesian approach for penalized spline
involves a prior distribution on u; specifying that each
uy is likely to be near 0 which is encoded by the mean
of 0 for the prior distribution. By shrinking u; towards
zero, the changes in gradient between consecutive line (or
curve) segments are reduced to achieve a greater degree
of smoothness.

The use of a double-exponential prior on the knot coef-
ficients puts more mass near 0 and in the tails as com-
pared to that of using a Gaussian prior. This reflects the
greater tendency of the LASSO penalty to produce esti-
mates that are either O or large. As a result, the LASSO
penalty shrinks those knot coefficients with minimal val-
ues towards O (generally faster than the ridge penalty).

Penalized splines as mixed models
Using any of the priors (8) and (9), the logistic regression
spline model (3) is in fact a logistic mixed effects model

logit P[Y = 1| X,Z] = XB + Zu, (10)

u Nf(O'A)/)

for response vector Y, known design matrices X and Z,
fixed effects parameter vector 8, random effects vector ,
and a diagonal variance covariance matrix A, = y2Ig in
which y? is the variance of u;. Thus, the nonlinear associ-
ation between an outcome and covariates can be modeled
using penalized splines within the framework of a mixed
effects model, which allows us using current methodol-
ogy and software for GLMMs. The main advantage of this
approach is that the smoothing parameter can be esti-
mated directly from the data in a maximum likelihood or
Bayesian framework. Moreover, using a single model, we
can analyze correlated and over-dispersed data by adding
random effects to the additive predictor, while estimating
nonlinear covariate effects by penalized splines. Note that
this penalized splines approach can be easily extended to
any outcome distribution that belongs to an exponential
family.

The likelihood estimation of GLMMs involves a high
dimensional integral over the unobserved random effects.
In general, the likelihood does not have a closed-form as
the integral is intractable, and has to be approximated or
evaluated numerically. Two popular approximation tech-
niques are penalized quasi-likelihood (PQL) [34] and (full)
Laplace approximation [35]. However, both methods yield
biased estimates in curve fitting under SPMM framework,
especially for binary data [36, 37]. More refined approxi-
mation methods using adaptive Gaussian quadrature are
not feasible as the GLMMs representation of the penal-
ized splines involve a large number of random effects [38].
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An attractive alternative to likelihood-based approxima-
tions is to pursue a Bayesian approach that enjoys exact
inference under Bayesian machinery. Bayesian methods
have good frequentist properties when the model is cor-
rect but are known to be computationally intensive.
Moreover, they require specification of prior distributions
which is often not a trivial task, especially for variance
components (see, e.g., [39]).

Nevertheless, Crainiceanu et al. [15] strongly recom-
mend Bayesian methods for penalized splines by noting
at least two potential problems of using approximated
likelihood-based estimation. First, the approximation can
have a considerable effect on parameter estimation, espe-
cially on the variance components. Secondly, the confi-
dence intervals are obtained by replacing the estimated
parameters instead of the true parameters and ignoring
the inherent additional variability. This results in nar-
rower (than they should be) confidence intervals. We
therefore adopt a Bayesian approach to fit the SPMMs in
this paper.

Bayesian estimation
Bayesian analysis considers all unknown parameters as
random variables and characterizes any previous knowl-
edge about parameters by assigning prior distributions to
them preceding the data collection. The marginal poste-
rior distribution of parameters given the data are then
used as the basis of inference. The posterior densities
are, however, analytically unavailable in many cases, espe-
cially for complex models. In such cases, the Markov
Chain Monte Carlo (MCMC) procedure is used to make
inferences by drawing samples from all posterior distri-
butions of interest and calculating the posterior means,
medians, quantile-based confidence bands and predictive
distributions.

Prior Specification for Fixed Effects For each element of
the fixed effects vector B, we consider g; ~ N(O, crjz),

2

where o/ is a large constant to regard the prior as non-

informative. We take 0> = 10° to ensure a proper joint
posterior distribution of the parameters under appropri-
ate priors for the variance components.

Priors for Variance Components The variance compo-
nent estimates in Bayesian mixed models are sensitive to
the prior specification [39]. For the SPMM:s, it is therefore
crucial to choose appropriate priors for variance compo-
nents as curve estimation greatly depends on the variance
components. For the variance components y € {r,0}
in (10), perhaps the most popular choice is a highly dis-
persed inverse-gamma (IG) prior. However, for estimating
SPMMs, the IG prior under-estimates the variance param-
eters and over-smooth the nonparametric functions [36,
37]. Gelman [39] suggested using a wide ranged uniform
prior density on variance parameters y, for example,
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y ~ U(0, 100). (11)

In case y is very close to zero, Gelman [39] suggested
using a special case of the half-t distribution with df = 1,
known as the half-Cauchy distribution:

P(y) o« (y* +s5)7* (12)

with a large value for the scale parameter s, for exam-
ple, s = 25. Later on, in the simulation scenarios, we try
out several of these different priors and investigate the
influence of those.

Markov Chain Monte Carlo Inference Assuming inde-
pendence of prior distributions, the joint posterior distri-
bution of & = (B, 1) and y is given by

P®,y |y) o« PO | y)P) [ [p0i 16,7 (13)

i=1

o P(BYP(u | y)P() [ [ pi 1 6, ).

i=1

Our main interests are to find the posterior marginal
distributions p(f|y) and p(y|y). The joint posterior (13)
does not have a closed form in most cases, and even
if it does, we have to perform multiple integration to
obtain the marginal distribution for each coefficient of the
parameter vectors 6 and y. These integrals are analyti-
cally intractable for most problems. Moreover, the large
dimensionality of the integrals hinders the use of numeri-
cal integration. A standard solution is to apply MCMC to
draw samples from (13) to approximate (the properties of)
the marginal posterior distributions of each parameter. A
thorough coverage of the MCMC algorithm is provided by
Gilks, Richardson and Spiegelhalter [40].

While several software platforms (such as WinBUGS,
OpenBUGS, JAGS, INLA, STAN) are now available for
GLMM fitting via MCMC sampling, we use JAGS (Just
Another Gibbs Sampler) [41] to fit Bayesian models. JAGS
is a mature and declarative language for Bayesian model
fitting with reasonable computation time and a nice link
to R. We call JAGS from inside of R using the R package
R2jags [42] and export results to R. Other alternatives to
R2jags include rjags [43] and runjags [44].

Frequentist methods for curve fitting
We also consider two popular frequentist approaches: (i)
Generalized Additive Model (GAM) of Hastie and Tibshi-
rani [10] as implemented in R package gam [45] (ii)) GAM
of Wood [11] as implemented in R package mgcv [46].
The gam package uses a back-fitting algorithm for
model fitting in which the non-parametric smoothing
terms are represented by local regression or smoothing
splines. The amount of smoothing is controlled by the
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user-specified degrees of freedom (df). In gam, few df
results in a less bumpy but possibly more biased esti-
mate, while many df results in a more flexible curve, with
increased risk of over-fitting [10]. The default df in gamis
the trace of the implicit smoother matrix minus 1.

In mgcv package, the model is estimated by maximizing
a quadratically penalized likelihood. The smooth func-
tions are represented by penalized regression splines using
optimal basis functions. The basis dimension (or num-
ber of knots) are user-specified and are chosen to be
neither too small to avoid over-smoothing nor too large
to avoid computational cost. The default basis dimen-
sion in mgcv is arbitrary. The smoothing parameter is
selected by Generalized Cross Validation (GCV) [47] or
Un-Biased Risk Estimator (UBRE)[14] or Akaike Infor-
mation Criteria (AIC) [48] or Laplace approximation
to Restricted Maximum Likelihood (REML) [14] or by
regression splines with fixed degrees of freedom, although
the REML appeared to be most effective choice [46]. The
confidence interval is obtained by employing a Bayesian
approach to variance estimation.

Evaluation of performance

To systematically compare the performance of smooth-
ing in a SPMM using LASSO type penalty versus ridge
regression penalty (SPMM-LASSO vs. SPMM-RIDGE),
we carried out a series of simulations with data simulated
from and analyzed using logistic regression models with
smooth terms.

Methods
Data generation
Data were generated from a binary distribution consid-
ering three different shapes of association between the
probability of a positive outcome and covariate. We con-
sidered the sample size of # = 500. For each configuration,
1,000 datasets were simulated.

Using one independent continuous covariate x, binary
responses (Ys) were generated according to the model

logitP [Y; = 1| ;] = m(x;), (14)

where the covariate x was simulated from a 1/ (0, 1) and the
smooth function m(-) took one of the three test functions
shown in Table 1. The functions were scaled so that the
success probability was in the range [ 0.02, 0.98]. The over-
all prevalence of a positive (Y = 1) outcome was kept at
0.5. We considered one simple curve (concave), one com-
plex curve (double hump), and one linear function as the
functional form for the association between the covariate
and the probability of a positive outcome. A linear func-
tion was chosen to verify how well the smooth function
recaptured it as a check similar to whether the nominal
level of significance (probability of type I error) holds in
the hypothesis testing.
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Table 1 Test functions used for data generation
Name S:hape Function
. /
Linear tonom log(3) * x
17\
Concave e sin(r * X)
: A/\
Double Hump R 15 {6X2§1ﬁ§);6 AX;((;;T;WO ]

Analysis of simulated datasets

Each simulated dataset was analysed by fitting a logis-
tic (mixed effects) model of the form (14) in which the
smooth term was represented by a penalized spline using
LASSO or ridge penalty. We adopted low-rank thin-plate
splines with several knot points. For penalized splines,
the number of parameters to be penalized are repre-
sented by the number of knots, and the magnitude and
number of parameters to be penalized have important
consequences. Thus, we considered three different num-
ber of knot points: 7, 20 and 35. These choices of knots
were following Harrel [30], Rupert [31] and Wand [49].
Harrell [30] argued that using 4-7 knots usually results in
a reasonable fit if the knots partition the data into evenly
sized groups, whereas Ruppert [31] recommended tak-
ing a large number of knots (typically 5 to 20) to ensure
the desired flexibility. Wand [49] suggested choosing the
number of knots (K) as

K = min(number of unique x’s/4, 35)

and specifying the knot positions as

k+1
t = (ﬁ) th sample quantile of unqiue x’s, 1<k<K.

(15)

Representing the penalized spline as mixed model
component, we estimated the model parameters using
a Bayesian approach where noninformative priors were
used for all parameters. Specifically, N(0,10°) distribu-
tions were used for all fixed effects, while a Uniform (0,
100) prior specification was considered for each variance
component. We also fitted models using Half-Cauchy
prior with scale parameter set to 25 (i.e., Half-Cauchy (25))
for each variance component and check the sensitivity of
the results to this choice. The Bayesian estimates were
medians from 55,000 iterations of the MCMC algorithm
after discarding the first 5,000 iterations as burn-in. We
ran a single chain and thinned it by keeping every 50th
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iteration. All simulations and analyses were carried out in
R software and the MCMC was performed using JAGS
(see, Supplementary Material for R code).

For each of the simulated dataset, we also adopted two
frequentist GAMs as implemented in R packages: (i)
gam, and (ii) mgcv. In gam, we considered smoothing
splines for estimating smooth functions and used four dif-
ferent df: 7, 20, 35 and using default. In the mgcv package,
the smooth functions were represented using penalized
thin plate regression splines. The smoothing parameter
was estimated during model fitting by REML. We speci-
fied four different number of basis dimensions: 7, 20, 35
and using default.

Measures of performance
The overall performance of the estimator #1(x) was evalu-
ated using the following criteria: (i) mean average squared
distance/error (MASE) from the true curves; (ii) point-
wise 95% mean average coverage probabilities (MACPs);
and (iii) pointwise 95% mean average confidence interval
lengths (MACLs).

The pointwise MASE was defined as the mean over the
1,000 replicated datasets of the average squared error,

ASE = (1/n) Y (i) — m(x)}>.

i=1

The 95% pointwise MACP and MACL were obtained
as the means of the 1,000 average coverage probabili-
ties (ACP) and average credible intervals lengths (ACL),
respectively. We defined

ACP = (1/m) Y 1 (ip(xi) < m(xi) < iy (%)),
i=1

ACL = (1/m) Y (i (%) — g (%)) »

i=1

where 1(.) denotes an indicator function; 771; and 771y are
the lower and upper limits of the pointwise CI, respec-
tively. To asses the fit at the boundary of each simulated
function, we additionally computed all these performance
indicators also separately for the lower and upper 10%
range of the covariate.

To compare the fits graphically, we plotted the mean fit-
ted values of the nonparametric functions and smoothed
95% pointwise coverage probabilities of the true func-
tions. At each observed value of x, the mean fitted value
was obtained by taking the average over the 1,000 replica-
tions. The smoother for coverage probability was obtained
using penalized thin plate regression splines while consid-
ering logit-transformed coverage probabilities from 1,000
replications as continuous outcome.
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Results of the simulation study

Simulation results when two different penalties were used
in penalized splines fitting are summarized in Table 2 and,
exemplarily for one shape of association (double hump
shape), in Fig. 1.

The penalized spline under a mixed model framework
using either LASSO or ridge penalty performed well in
recapturing the true curves. The mean average squared
distances (MASEs) were reasonably small and the mean
average coverage probabilities (MACPs) were generally
near nominal level in most cases. However, for the lin-
ear and complex (double hump) shapes of association, the
LASSO penalty overall performed better than the ridge
penalty in terms of all performance indicators irrespective
of the number of knots considered. For simple (concave)
shape of association, both penalties performed quite sim-
ilarly. At the boundaries (< 10% and > 90% of the ranges
of x values), the LASSO penalty always performed better
than ridge penalty in all cases.

As we increased the number of knots (K), the overall
change in curve fitting performance was not remarkable
except for the complex (double hump) shape of associ-
ation. In general, with larger K, the MACP and MACL
were larger for both penalties in all considered cases with
very few exceptions. The MASE, however, showed differ-
ent patterns depending on the shape of association. More
specifically, for larger K, the MASEs were smaller for lin-
ear shape of association and larger for double hump shape
of association for both penalties. For the concave shape of
association, the MASEs fluctuated (for both penalties) as
K increased.

Figure 2 illustrates the ability of the SPMM using two
different penalties to recapture the true functions for K =
35. The upper panel of Fig. 2 presents the true curves
mj(x),j = 1,2,3 and the estimated curves 7(x) based
on 1,000 replications. The SPMM using either (LASSO
or ridge) penalty recovered the true curves reasonably
well for all the shapes. However, for the linear associ-
ation, the SPMM-LASSO fit was relatively close to the
true line especially at the borders. For the concave shape,
both penalties yielded very similar fits. For the complex
(double hump) shape, the reconstructed nonparametric
functions had noticeable negative biases when curvature
was high. However, the SPMM-LASSO worked well in
estimating the high curvature and tail areas as compared
to SPMM-RIDGE.

The lower panel of Fig. 2 compares the empirical point-
wise coverage probabilities of the 95% confidence inter-
vals of three test functions obtained from SPMMs using
two different penalties. For the linear shape of associa-
tion, the coverage probabilities of the credible intervals
from both penalties were slightly above the nominal value
of 95%. The SPMM-LASSO coverage probabilities were
higher than that of SPMM-RIDGE throughout the range
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Table 2 Simulation results from logistic spline fit by RIDGE and LASSO penalties
At Boundaries
Full Curve
Lower 10% Upper 10%
Penalty MASE MACP MACL MASE MACP MACL MASE MACP MACL
Function : Linear
K=7
LASSO 0.105 0.96 1.332 0.270 0.96 2.755 0.281 0.96 2.765
RIDGE 0.149 0.96 1.369 0.445 0.95 2.830 0.537 0.95 3.024
K=20
LASSO 0.104 0.96 1.358 0.255 0.96 2.821 0.285 097 2826
RIDGE 0.148 0.96 1403 0415 0.95 2907 0.549 0.96 3.071
K=35
LASSO 0.096 0.96 1.356 0.223 0.96 2813 0.287 097 2.815
RIDGE 0.142 0.96 1.401 0.365 0.96 2.898 0.553 0.96 3.045
Function : Concave
K=7
LASSO 0.338 0.95 1.791 1.282 092 3461 1.123 0.93 3467
RIDGE 0.341 0.95 1.786 1313 0.92 3.465 1.150 093 3471
K=20
LASSO 0.359 0.96 1.953 1421 094 3.886 1.151 0.95 3.787
RIDGE 0.364 0.96 1.951 1476 0.94 3979 1.206 0.95 3.855
K=35
LASSO 0.350 0.96 1.958 1.351 0.95 3.873 1.113 0.96 3.829
RIDGE 0.355 0.96 1.953 1424 0.94 3,965 1.173 0.95 3.846
Function : Double Hump
K=7
LASSO 0.301 0.90 1.502 0.291 092 1.655 0472 0.92 2441
RIDGE 0.345 0.89 1.583 0.328 0.92 1.769 0.678 091 2.506
K=20
LASSO 0316 0.95 1.901 0.315 094 1.854 0514 0.95 2.697
RIDGE 0.383 0.94 1.932 0.382 0.93 1.980 0.753 093 2.786
K=35
LASSO 0323 0.95 1.942 0.382 0.95 2.021 0.531 0.95 2818
RIDGE 0.39 0.94 1.987 0.445 0.94 2.152 0.780 093 2.894

We report mean average squared distance (MASE), mean average 95% coverage probability (MACP), and mean average coverage length (MACL) measures for full curve and

boundaries for each K, penalty and curve

of x values. For concave shape, the coverage probabili-
ties from both penalties agreed slightly better with the
nominal value (95%) throughout the range of x except at
the boundaries. For the double hump shape, the coverage
probabilities of the ClIs from both penalties were higher
than the nominal value (95%), except at boundaries and
where biases in the estimated nonparametric functions
were noticeable. At x-values where the bias was visible,
ClIs from both penalties yielded low coverage probabili-
ties, but nonetheless SPMM-LASSO had better coverage
than SPMM-RIDGE.

Results from the frequentist methods are summarized
in Supplementary Tables S2 and S3. Overall, the findings

were consistent with that of the Bayesian approach. In
most of the simulation scenarios, the Bayesian methods
had slightly better performance in recapturing the true
curves.

Sensitivity analysis

We also carried out a number of other simulations
using (i) Half-Cauchy(25) priors for the variance compo-
nents; (ii) truncated quadratic splines ; and (iii) natural
cubic splines. For Half-Cauchy (25) priors, the over-
all results were very close to those reported above.
Both the truncated quadratic splines and the natural
cubic splines yielded inferior fits as compared to the
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low-rank thin-plate splines. However, in both cases the = Application to COPD data

LASSO penalty performed better than using the ridge In this section we used the SPMM to study the association
penalty, especially for complex shapes (see Supplementary  between amount of smoking and risk of chronic obstruc-
Table S1). tive pulmonary disease (COPD). We also investigated the
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association between the risk of COPD and some occupa-
tional variables after adjusting for potential confounders
using data from the initial cross-sectional phase of the
Canadian cohort of obstructive lung disease (CanCOLD)
study [50].

Methods

Data and variables

The data on 6,592 adults aged 40 or above were obtained
from the initial (baseline) cross-sectional phase of the
prospective longitudinal CanCOLD study. The CanCOLD
study is a large, prospective, population-based, multi-site
study of COPD. Healthy non smokers, smokers without
COPD and subjects with COPD were recruited from
nine urban cities across Canada by random telephone
digit dialling to identify eligible adults who were then
invited to attend a clinic visit to complete questionnaires
and to perform prebronchodilator and postbronchodila-
tor spirometry (See [51] for complete details). Data used
in this study were collected between August 2005 and
May 2009.

We used data from the baseline visit that contained
information on subjects’ COPD status (normal, at risk,
Global Initiative for Chronic Obstructive Lung Disease
(GOLD) stage I, GOLD stage II, GOLD stage III, GOLD
stage 1V), demographic characteristics, smoking history

and occupation. Although there were 6,592 subjects in the
study, we excluded 28 participants with the following cri-
teria: (i) reported cigarette pack years less than zero or
greater than 150; (ii) participants with implausible BMI
values less than 9 or greater than 60; and (iii) reported
smoking more than 60 cigarettes per day. We therefore
analysed data from 6,564 individuals.

Focus on smoking history
While various factors may effectively contribute to the
development of COPD, smoking is far and away the
primary cause of the disease, according to the World
Health Organization (http://www.healthline.com/health/
copd/smoking). Thus when looking for other modifiable
risk factors for the COPD, it is important to adjust for
smoking in the best way possible. An essential measure of
smoking intensity is ‘pack years’ calculated as the number
of packs smoked per day multiplied by number of smok-
ing years. As the pack years is a continuous variable, its
effect on the COPD occurrence may be nonlinear rather
than linear. When a nonlinear effect is evident (or appar-
ent), adjusting for a linear effect is likely to lead to residual
confounding [52].

We used the SPMM to model the effect of pack years on
the risk of COPD (binary outcome, COPD: 0 = no, 1 = yes)
nonparametrically. More specifically, we fit the model
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logit P[COPD; = 1 | pack years;] = By + m1 (pack years;), (16)

where By is the intercept of the model, 71 is some smooth
function of pack yearsand i = 1,...,6564.

We then evaluated the effect of occupational exposures
(such as asbestos, chemical manufacturing, welding, hard
rock mining, coal mining) on COPD, one by one, with
and without adjusting for the effects of potential con-
founders: pack years, age, sex, and BMI. Note that due to
the multiple response allowed for the occupational expo-
sure, different occupational categories considered in this
study were not mutually exclusive. For example, an indi-
vidual working in a steel mill/factory was also reported in
the occupational exposure group of welding, and chemi-
cal/plastic manufacturing. As such, we could not include
the occupation as a single categorical variable in the
model. For estimating the adjusted effect we fit the model

logit P[COPD; = 1 | covariates;] :xiTﬁ—f— m (pack years;)
+ my(age;) + m3(BMI),
(17)

where m;,j = 1,2,3 are smooth functions, x; are
fixed effect covariates that include an intercept, a binary
(yes/no) occupation variable and sex, and g are fixed effect
parameters.

Following simulation results, which suggested that the
Bayesian SPMM using LASSO penalty had relatively bet-
ter curve fitting performance than other frequentist and
Bayesian methods, we only adopted the Bayesian SPMM
imposing LASSO type penalty for curve fitting. Each of
the smooth functions in (16) and (17) was estimated
by using penalized low-rank thin-plate regression splines
with a large number of knots K = 20, where knot
positions were specified as in (15). Considering LASSO
penalty, we imposed the centering constraint on each
smoother such that the sum of the elements of each
smoother m1(.) is zero (see, [14] for details). Representing
each smoother as a mixed model component, we esti-
mate the model parameters using a Bayesian approach
via MCMC sampling. Noninformative prior distributions
were used for all fixed effects and variance components
(N(0,10°) and Uniform(0, 100), respectively). To estimate
each model, we ran 2 chains and the estimates were medi-
ans from 55,000 iterations after discarding the initial 5,000
iterations of burn-in. Both chains were thinned by keep-
ing every 50th iteration. A 95% posterior credible interval
for each parameter of interests was obtained as 2.5th
and 97.5th percentiles of the posterior sample. We evalu-
ated convergence of the chains by visually examining the
trace plot, density plot, sample autocorrelation function
for each parameter, and also following Gelman and Rubin
[53] to quantify the between-chain and the within-chain
variability of a quantity of interest.
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Results of the data analysis
Table 3 presents the demographic characteristics, smok-
ing behavior and occupational exposure types in the entire
cohort, stratified by COPD status. Approximately 21%
participants were diagnosed with COPD. Compared to
non-COPD participants, COPD participants were older,
included more men, more smokers, and more pack years
of smoking, had a higher proportion of smokers who
had quit smoking, and had a slightly higher proportion
of occupational exposure to hard rock, coal, asbestos,
chemical, steel, welding and saw-milling.

For all models fit via MCMC simulation, we observed
good mixing properties of the chains with fat hairy cater-
pillars like trace plots, similar density plots, and few sig-

nificant autocorrelations. The Gelman-Rubin 4/ (R) values
[53] for the estimates were all less than 1.03 indicating
good convergence of the chains.

Table 3 Characteristics of the participants/study population, by
COPD status

Characteristic

Summary Measure (total n = 6,564)

COoPD NO COPD
n=1367 (20.8%) n=5197 (79.2%)

Age 65.2 (11.2) 57.0 (10.8)
Male 755 (55.2%) 2286 (44.0%)
BMI 27.3 (5.3) 279 (5.7)
Ever smoker 943 (69.0%) 2623 (50.5%)
(cigarette)
Ever smoker (pipe or
cigarette)

Never smoker 406 (29.7%) 2543 (48.9%)

Ex smoker 645 (47.2%) 2030 (39.1%)

Current smoker 316 (23.1%) 624 (12.0%)
Pack Years 229 (24.6) 10.5 (17.0%)
Average cigarette per 13.2 (12.6) 83 (11.4)
day
Duration of smoking 23.0 (19.7) 11.8 (14.9)
(year)
Smoking cessation 943 (69.0%) 2623 (50.5%)
Occupation

Hard rock mining 34 (2.5%) 80 (1.5%)

Coal mining 11 (0.8%) 12 (0.2%)

Working with 59 (4.3%) 157 (3.0%)
asbestos

Chemical/plastics 80 (5.9%) 231 (4.4%)
manufacturing

Foundry/steel 39 (2.9%) 106 (2.0%)
milling

Welding 68 (5.0%) 172 (3.3%)

Saw-milling 39 (2.9%) 103 (2.0%)

Mean (SD) is reported for quantitative variables, while count (%) is reported for
categorical variables
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The first panel of Fig. 3 shows the estimated nonpara-  association between pack years and COPD was nonlinear.
metric functions of pack years obtained from fitting model =~ The risk of COPD increased sharply until about 60 pack
(16) using a LASSO penalty. It is clearly apparent that the  years and then flattened out.
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Fig. 3 LASSO type penalized splines estimates of my (pack years), m,(age) and m3(BMI) for the logit of the prevalence of COPD. The shaded regions
are the pointwise 95% credible sets obtained from the fully Bayesian fit
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Results from all models fits to evaluate the associ-
ation between occupational variables and COPD are
summarized in Table 4. All of the considered occupa-
tional variables including hard rock mining, coal mining,
working with asbestos, chemical/plastics manufacturing,
foundry/steel milling, welding, saw-milling were found to
have a statistically significant impact on the risk of the
prevalence of COPD when considering unadjusted mod-
els. However, none of these variables significantly affected
COPD when the models were properly adjusted for the
effects of potential confounders.

The estimated shape of the pack years-COPD associ-
ation from the adjusted model (17) (where occupational
variable was hard rock mining) was the same as shown
in the first panel of Fig. 3. Also, the estimated nonpara-
metric functions of age and BMI from adjusted model are
shown in the second and third panels of Fig. 3, respec-
tively. It is evident that the age of the participants was
linearly associated with COPD prevalence whereas the
BMI-COPD association was slightly nonlinear. Low BMI
was associated with an increased risk, and a lowered risk
with increasing BMI plateaued off at BMI 40.

Discussion

Under the semiparametric mixed model (SPMM), we
introduced the LASSO type absolute penalty to investi-
gate if the performance of curve fitting can be improved
over that using a typical ridge penalty.

Table 4 Results from SPMMs fit using LASSO penalty for assessing
the effect of occupational exposures on the occurrence of COPD

Odds Ratio (95% CI)?

Unadjusted Adjusted

Age - *

Pack Years - *

BMI - *

Sex (Men) - **

Occupation
Hard rock mining 16(1.1,24) 1.1(0.7,1.8)
Coal mining 3.5(1.5,8.0) 1.7(0.7,4.3)
Working with asbestos 14(1.1,20) 0.8(0.5,1.1)
Chemical/plastics manufacturing 13(1.1,1.7) 1.1(0.8,1.5)
Foundry/steel milling 14(1.0,20) 1.0(0.7,1.5)
Welding 15(1.1,20) 1.2(09,1.6)
Saw-milling 15(1.0,2.1) 1.2(0.8,1.8)

@Adjusted ORs were obtained from the SPMM as shown in (17) adjusting for pack
years, age, sex and BMI

" Covariates were modeled using penalized splines. A summary of odds ratio and Cl
were not provided by the method; see Fig. 3 for smooth curves when occupation
was hard rock mining

" OR=14(13,16)when occupation was hard rock mining
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We adopted a fully Bayesian approach to estimate
SPMMs for binary outcomes. Via simulations, we assem-
bled evidence suggesting that using a LASSO penalty
is an eligible competitor to the typical ridge regression
type penalty. We evaluated the relative performance of
the penalties in three different scenarios: linear, simple
(concave function) and complex (double hump) shapes of
association.

Test results suggested that the LASSO penalty per-
formed better than the ridge penalty in recapturing the
linear and complex functional forms between continuous
predictor and binary outcome. For simpler nonlinear asso-
ciation both penalties performed similarly. These results
may be due to the fact that, for linear association, there
are a large number of very small regression coefficients
at knots to be penalized and the LASSO penalty does a
better job in shrinking them towards zero. Tibshirani [32]
showed that the LASSO defines a continuous shrinking
operation that can produce coefficients that are exactly
zero. Relatively more shrinkage of all small knot coef-
ficients towards zero leads to a straight line fit rather
than curvature. For the complex shape, there are a small
to moderate number of large or moderate-sized regres-
sion coefficients at knots. In such cases, the LASSO
penalty puts more weight on large coefficients and, hence,
may perform better to estimate the curvature areas as
compared to the ridge penalty, which penalizes all regres-
sion coefficients almost uniformly. Finally, for the simple
nonlinear shape (concave function) of association, there
are a large number of very small or moderate-sized coef-
ficients to be shrunk and in such situations both penalties
perform similarly.

Note that in a linear regression setting, LASSO is a
worthy competitor to subset selection and ridge regres-
sion, outperforming other methods when there are a
small to moderate number of moderate-sized effects [32].
Similarly, the LASSO penalized SPMMs for curve fit-
ting does not significantly outperform its closest con-
tender the ridge penalty in all cases but performs
better in scenarios where the curvature is high or
the association is linear, although the LASSO penalty
yielded better fit around boundaries in all considered
cases.

Overall, we found that the Bayesian estimates of the
nonparametric functions were not very sensitive to the
choice of prior distributions for the variance components.
Results from using uniform priors for variance compo-
nents were very similar to those obtained using half-
Cauchy priors. Low-rank thin-plate splines were found
to perform better than natural cubic splines or truncated
quadratic splines, confirming the results in Crainiceanu
et al. [15]: a good choice of basis function has important
consequences for the mixing properties of the MCMC
chains in Bayesian analysis.
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We also found that the Bayesian methods had
marginally better performance than the popular fre-
quentist methods for curve fitting in most cases. How-
ever, because of the differences in estimation techniques,
representation of smooth functions, choice of splines and
basis functions, selection of smoothing parameter, the
observed differences in frequentist and Bayesian methods
may be due to any number of reasons, not necessarily the
type of penalty imposed.

We applied the proposed Bayesian method to iden-
tify the association between some occupational variables
and chronic obstructive pulmonary disease (COPD) after
investigating the shape of the smoking-COPD association
using data from the Canadian cohort of obstructive lung
disease (CanCOLD) study. We found that the smoking-
COPD association was nonlinear. To identify potential
occupational risk factors for COPD, while minimizing
the risk of residual confounding, it is crucial to adjust
for smoking appropriately and that seemed to be using a
smooth function given that the shape is not linear. After
adjusting for smoking pack years, age, sex and BMI, we
found all occupational variables had statistically insignifi-
cant effects on COPD.

In this paper, we included both simulated and real
datasets. However, the range of simulation scenarios
investigated was not exhaustive. For simplicity, and to
avoid intensive computational efforts, we smoothed only
one covariate in the simulation. The extension to smooth
multiple covariates in a SPMM is straightforward and we
demonstrated this on an example from CanCOLD-COPD
data.

Conclusion

The promising results from this study suggest that the
LASSO penalty might better capture complex dose-
response association. However, the Bayesian estimation
of SPMM using LASSO penalty is relatively complex and
time consuming; it might take relatively three-fold more
time compared to ridge penalty.
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