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EpistoNet: an ensemble 
of Epistocracy‑optimized mixture 
of experts for detecting COVID‑19 
on chest X‑ray images
Seyed Ziae Mousavi Mojab1*, Seyedmohammad Shams2, Farshad Fotouhi1 & 
Hamid Soltanian‑Zadeh2,3

The Coronavirus has spread across the world and infected millions of people, causing devastating 
damage to the public health and global economies. To mitigate the impact of the coronavirus a 
reliable, fast, and accurate diagnostic system should be promptly implemented. In this study, we 
propose EpistoNet, a decision tree‑based ensemble model using two mixtures of discriminative 
experts to classify COVID‑19 lung infection from chest X‑ray images. To optimize the architecture 
and hyper‑parameters of the designed neural networks, we employed Epistocracy algorithm, a 
recently proposed hyper‑heuristic evolutionary method. Using 2500 chest X‑ray images consisting 
of 1250 COVID‑19 and 1250 non‑COVID‑19 cases, we left out 500 images for testing and partitioned 
the remaining 2000 images into 5 different clusters using K‑means clustering algorithm. We trained 
multiple deep convolutional neural networks on each cluster to help build a mixture of strong 
discriminative experts from the top‑performing models supervised by a gating network. The final 
ensemble model obtained 95% accuracy on COVID‑19 images and 93% accuracy on non‑COVID‑19. 
The experimental results show that EpistoNet can accurately, and reliably be used to detect COVID‑19 
infection in the chest X‑ray images, and Epistocracy algorithm can be effectively used to optimize the 
hyper‑parameters of the proposed models.

The COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first appeared 
in Wuhan, China in late December  20191. COVID-19 can infect people of all ages including children and ado-
lescents, resulting in serious complications. According to the World Health Organization, as of January 28, 2021, 
there have been more than 100 million confirmed cases of COVID-19, including 2,166,440 deaths. This virus 
can spread in the form of direct contact or by droplets expelled by coughing or sneezing. In some serious cases, 
COVID-19 can affect the respiratory system and cause severe pneumonia and ultimately  death2. Pneumonia 
is a type of infection that causes inflammation in one or both lungs. Currently, a real-time reverse transcrip-
tion polymerase chain reaction test (rRT-PCR) is required to detect the nucleic acid from SARS-CoV-2 in the 
respiratory specimens. However, this test is relatively time-consuming, complicated, and generally shows less 
consistent  results3,4.

Radiography examination is an alternative screening method used by experienced radiologists to visually 
diagnose SARS-CoV-2 viral infection. However, the diagnosis of COVID-19 from radiograph images is a mas-
sive challenge that require high expertise and dedicated knowledge. According to several  studies5,6, physical 
examination of X-ray images by experts provides 70%-80% accuracy. Therefore, a rapid and more accurate 
diagnosis system that helps physicians screen patients and detect COVID-19 symptoms seems more necessary 
for an effective and urgent treatment.

The abundant advances in deep learning and digital image processing, specifically in convolution neural 
networks (CNN), in recent years have opened new possibilities previously thought untenable. Over the past few 
years, researches developed various computer-aided diagnosis systems (CAD) based on artificial intelligence and 
machine learning algorithms to detect abnormalities in radiological images such as computed tomography (CT) 
and X-rays achieving promising results. CT and chest X-ray images (CXR) are generally considered to be fast 
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and effective way for making clinical  decisions7. Diagnosis of breast  cancer8,  epilepsy9, cardiovascular  disease10, 
lung  cancer11, and  pneumonia12 via deep learning models has become a popular technique in the medical field.

In this paper, we propose a new approach for detecting COVID-19 infection on chest X-ray images using a 
decision tree-based ensemble model consisting of two mixtures of discriminative experts (MoE) called Epis-
toNet. The Epistocracy algorithm, a recently proposed hyper-heuristic evolutionary method, has been recruited 
to build and optimize the neural networks used in this work. The main motivation of developing EpistoNet is to 
employ it as a diagnostic tool that can help healthcare providers to detect COVID-19 faster, cheaper, and more 
accurately and accelerate the treatment of those who need it the most. Due to several key differences in other 
proposed approaches such as the size of the dataset used, the pre-processing steps of the data, statistical noise, 
hyper-parameter tuning, etc., the highest accuracy we achieved on our testing dataset using other approaches 
was less than 70%. We decided to develop our own model/algorithms to improve this accuracy. To the best of 
the authors’ knowledge, there is no similar study that proposed such a model for detecting COVID-19 in chest 
X-ray images.

The main contributions of this study can be summarized as follows:

1. A new ensemble model called EpistoNet is proposed. EpistoNet is a decision tree-based ensemble model 
using two mixtures of discriminative experts to classify COVID-19 lung infection from chest X-ray images.

2. A new dataset of 2500 X-ray images is created. All collected images belong to the Henry Ford Health System 
in Michigan where this research was conducted. These images have been individually reviewed, interpreted, 
and labeled by experienced radiologists.

3. In order to accurately classify COVID-19 and non-COVID-19 X-ray images, we created a mixture of experts 
trained on k clusters of visually similar images.

4. We also recruited the Epistocracy algorithm, a recently developed, multi-population, and self-adaptive opti-
mization method to optimize the architecture and hyper-parameters of the designed neural networks.

Related work
Many researches have been recently proposed methods to detect COVID-19 positive cases from CXR and CT 
imaging using artificial intelligence (AI) and machine learning (ML) techniques. X-ray images are widely used 
in the diagnosis and evaluation of various diseases including COVID-19 infections by clinical experts. X-ray 
radiography is typically less expensive and exposes the patients to much less radiation compared to CT  scans13. 
However, clinical diagnosis from X-rays compared to other imaging modalities is much more  difficult14 and 
requires significant training and expertise.

El Asnaoui et al.15 conducted a comparative study using various deep learning models (VGG16, VGG19, 
DenseNet201, InceptionResNetV2, InceptionV3, Resnet50, and MobileNetV2) to detect and classify COVID-
19.The experiments were performed using 6087 chest X-ray & CT images cases of COVID-19. The dataset 
was randomly split with 80% of the images for training and 20% for validation. The highest accuracy was 
achieved by InceptionResNetV2 with 92.18% of overall accuracy and 82.80% accuracy for detecting patients 
with Coronavirus.

A deep learning-based method called COVID19XrayNet was proposed by Zhang et al.16 to predict COVID-19 
from X-ray images. COVID19XrayNet comprises of two-step transfer learning pipeline based on ResNet32 with 
two newly integrated layers: smoothing layer (FSL) and feature extraction layer. COVID19XrayNet achieved 
91.92% overall accuracy outperforming the original version of ResNet32.

Hemdan et al.17 suggested COVIDX-Net, a deep learning framework based on seven convolutional neural 
network models namely MobileNetV2, VGG19, InceptionV3, DenseNet201, InceptionResNetV2, ResNetV2 and 
Xception to detect COVID-19 from chest X-ray images. COVIDX-Net was validated on 50 images comprised of 
25 COVID-19 positive cases and 25 normal cases. In their review, VGG19 and DenseNet showed the best results 
of classification with f1-scores of 91% and 89% for COVID-19 and normal, respectively.

In order to identify COVID-19 from normal or other pneumonia cases, Horry et al.18 proposed a multimodal 
classification network based on optimized VGG19 architecture. Before training their model, they applied his-
togram equalization to images followed by enhancement to textures and contrasts using OpenCV library. Their 
proposed network achieved 86% accuracy on X-ray images, 84% for CT scans, and 100% for Ultrasound.

In Wang et al.3, the authors presented COVID-Net, a deep convolutional neural network consisting of a 
heterogeneous mix of convolution layers with variation of kernel sizes for the detection of COVID-19 cases 
from chest X-rays. COVID-Net was trained and tested on COVIDx dataset comprised of 13,975 chest X-ray 
images. The proposed model was able to achieve an overall test accuracy of 93.3% and 91% accuracy specifically 
for COVID-19 cases.

Rahimzadeh et al.19 proposed deep convolution network based on the concatenation of Xception and 
ReNet50V2. They evaluated their model on 11,302 chest X-ray images, consisting of only 31 cases of COVID-
19 and 11,271 cases from the other two classes. Their proposed model achieved an average accuracy of 99.50%, 
and 80.53% sensitivity for the COVID-19, and an overall accuracy of 91.4%.

Kaur et al.20 proposed a metaheuristic-based deep COVID-19 screening model using modified AlexNet archi-
tecture for feature extraction and classification of the input images. Strength Pareto evolutionary algorithm-II 
(SPEA-II) was used to tune the hyper-parameters of modified AlexNet. The proposed model achieved a valida-
tion accuracy of 99.26%.

COVID-CheXNet, is another hybrid deep learning framework developed by Al-Waisy et al.21 to diagnose 
COVID-19 infection from the X-ray images. The COVID-CheXNet system combines the results obtained 
from two different pre-trained deep learning models based on ResNet34 and HRNet (high-resolution network 
model) trained using a large-scale dataset. By enhancing the contrast of the X-ray images and reducing the noise 
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level using the contrast-limited adaptive histogram equalization and Butterworth bandpass filter, the proposed 
COVID-CheXNet system has managed to diagnose the COVID-19 patients with a detection accuracy rate of 
99.99%.

Moreover, Mohammed et al.22 did a comprehensive investigation of ML based classification methods for 
automated diagnosis of COVID-19. Based on the results obtained from different experiments, ResNet50 model 
had achieved the optimum accuracy of 98.8% while the traditional techniques such as SVM demonstrated the 
best result for an accuracy of 95% and RBF (Radial basis function) an accuracy of 94% for the prediction of 
coronavirus disease.

Finally, Ismael et al.23 reported another deep learning approach that allows detection of COVID-19 patients. 
Authors used pretrained deep CNN models (ResNet18, ResNet50, ResNet101, VGG16, and VGG19) for feature 
extraction, and the Support Vector Machines (SVM) for classification. Their dataset contained 180 COVID-19 
and 200 normal chest X-ray images. The deep features extracted from the ResNet50 model and SVM classifier 
achieved an accuracy of 94.7%.

These approaches lack the generalizability for unseen data due to various pre-processing steps performed 
and assumptions involved in the model development and hyper-parameter fine tuning conducted specific to 
their own dataset. In this paper we describe the development and evaluation of a new approach for detection of 
COVID-19 from chest X-ray images using a minimal pre-processing pipeline and automatic optimization of the 
hyper-parameters of various models using a recently proposed algorithm.

Methods
In this section, we will discuss the architecture design methodology and the key components of EpistoNet, 
motivated by the need of developing a feasible solution to help combat COVID-19.

As depicted in Fig. 1, first, the procedure to create the training dataset was briefly described. Then, the pre-
processing steps, the EpistoNet architecture design, and the optimization of expert networks of the proposed 
approach were explained.

Dataset description. The dataset utilized in this research is comprised of 2500 X-ray images consisting of 
1250 COVID-19 and 1250 non-COVID-19 images provided by Henry Ford Health System (HFHS) of Michi-
gan in Detroit (see Table 1). All images stored in JPEG format containing 3 channels of 8-bit data. The non-
COVID-19 images include normal, as well as non-COVID-19 viral and bacterial pneumonia infections (see 
Fig. 2). These X-rays depict the front view of a patient’s upper torso, with a clear view of the lungs. All images 
have been cropped to frame the entire rib cage with reasonable padding space and down sampled to 224 by 224 
pixels when compiled into a singular dataset. No other modification or image enhancement was done to the 
original images to further minimize the time between taking the X-ray and detection of COVID-19. Out of 2500 
images, we left out 500 images containing 250 COVID-19 and 250 non-COVID-19 for testing. The remaining 
2000 images were used 80% for training and 20% for validation.

Figure 1.  Block diagram of the proposed method for diagnosing COVID-19 in chest X-rays images.

Table 1.  Distribution of X-ray images in training, validation, and testing datasets. The total number of X-ray 
images in each category and across the dataset is displayed in bold.

Dataset COVID-19 Non-COVID-19 Total

Training 800 800 1600

Validation 200 200 400

Testing 250 250 500

Total 1250 1250 2500
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Figure 2 shows examples of the X-ray images that we received, with the first set of images representing 
COVID-19, and the second set representing non-COVID-19 images:

In this study, we did not use online datasets mainly due to the limited number of COVID-19 positive cases 
available in the public datasets and lack of verification mechanisms that allows us to verify the validity and reli-
ability of these datasets.

Ethical issues. First, our study used anonymized X-ray images collected at the Department of Radiology, 
Henry Ford Health System (HFHS), Detroit, MI. There were no potentially identifying marks/features and no 
patient identifiers in the images. This study was approved by the IRB committee of HFHS (No. 14030).

Secondly, the IRB committee of HFHS waived the need for obtaining the informed consent for this study.
Thirdly, all methods were performed in accordance with the relevant guidelines and regulations, including 

those of the Declaration of Helsinki.

EpistoNet architecture design. To build an efficient classification model, we propose a method using 
mixture of deep CNN experts to detect COVID-19 from chest X-ray images. The identification and extraction 
of relevant features from X-ray images is a challenging task that requires multiple neural network architectures 
to directly operate on the given data and find patterns that help in detection and classification of the COVID-19 
infection. For this purpose, we have designed an ensemble model which is able to exploit discriminative features 
and obtain higher accuracy than individual CNN models on the HFHS dataset.

Mixture of experts model. Mixture of experts is a type of ensemble based on the divide-and-conquer principle 
where each individual model is specialized in a given part of the input space, learning different aspect of the 
problem.

As shown in Fig. 3, MoE architecture is composed of k expert models which are supervised by a gating net-
work. The gating network is a discriminator network trained together with the experts on the same input and 
decides which expert(s) to use for the final classification task.

Figure 2.  Examples of COVID-19 and non-COVID-19 chest X-ray images.

Figure 3.  Mixture of experts model.
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The output of the gating network can be interpreted as the probability that input x is assigned to expert i (see 
Eq. (1)). The gating network employs softmax function for activation:

in Eq. (2), zj is the output of the gating network. The softmax function makes the outputs of the gating network 
sum to one. This network of experts can potentially improve the accuracy and the reliability of the overall clas-
sification  system24.

Data partitioning using K‑means clustering method. In order to effectively discriminate COVID-19 from non-
COVID-19 X-ray images, we decided to split our main dataset into k clusters and train explicitly localized expert 
networks on each cluster capable of differentiating between visually similar images. To this point, first we applied 
a cluster-based pre-processing step to our dataset of 2000 images and partitioned them into 5 clusters of variable 
size using K-means clustering method. K-means is a type of unsupervised machine learning technique com-
monly used for clustering unlabeled data into k clusters.

Optimization of expert networks using Epistocracy algorithm. To further improve the accuracy of each convolu-
tional neural network, we have used Epistocracy  algorithm25. Epistocracy algorithm is a multi-population self-
adaptive optimization method that uses different explorative and exploitative techniques to search the problem 
space and find the optimal solution. To avoid stagnation and to prevent a premature convergence, the algorithm 
employs multiple mechanisms such as dynamic population allocation and regression-based leadership adjust-
ment. The algorithm uses a stratified sampling method called Latin Hypercube Sampling (LHS)26 to evenly 
distribute the initial population for an efficient exploration of the search space. Figure 4 shows the flow diagram 
of the proposed algorithm.

As illustrated in Fig. 4, the Epistocracy algorithm is made of two key components: Governors and Citizens. 
Citizens are individual solutions that are randomly, and uniformly generated. In each iteration, all individuals 
are evaluated with a pre-defined fitness function. Governors are the top-performing individuals who are selected 
through the Select() function to lead the population and influence and evolve the generation of the new popu-
lation via Lead() function. In Epistocracy algorithm, citizens can directly vote for governors and affect their 
position in the government.

The architecture of each expert model is made of a base and a head. The base model is a popular CNN model 
pre-trained on ImageNet for transfer learning. The head model which consists of fully connected layers, is 
automatically constructed using Epistocracy algorithm. By repeatedly evolving each architecture and optimiz-
ing their corresponding hyper-parameters, Epistocracy algorithm can effectively produce the optimal model 
fine-tuned for classification.

Neural network architecture design. Using Epistocracy algorithm, the architecture of each neural network in the 
initial population is generated on a modular basis, in which each module consists of 1 dense layer and 1 dropout 
layer (see Fig. 5). The MAX_DENSE_LAYERS is used as a variable to define the maximum number of dense lay-
ers allowed in the head model. The last module of the architecture only contains 1 dense layer with two neurons 
performing the binary classification task. Each layer in the fully connected layers are randomly switched on 
and off with a given probability to randomly create variable length architectures. Figure 5 illustrates a modular 
example for the fully connected layers.

(1)y(x) =

k∑

i=1

gi(x)yi(x)

(2)gi =
ezi

∑k
j=1

ezj

Figure 4.  Flow diagram of Epistocracy algorithm.
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In addition to generating the architecture of neural networks, the hyperparameters of the fully connected 
layers are also individually randomized. These hyperparameters are randomly selected to increase the diversity 
of the population and the possibility of finding an optimal one. The number of neurons, the activation method, 
and the dropout rate are randomly selected from Table 2:

The Epistocracy algorithm strives to find the optimal CNN architecture in an efficient amount of time.

CNN fitness score function. A model is first created by calling a unique function specific to the desired CNN 
architecture such as VGG16. This function takes the mixed list of hyper-parameter values and returns a model 
built with those values. Included within this function is functionality to map each hyper-parameter value to its 
respective place in the layer construction of the model. The new model is then trained on the input dataset using 
global variables for training parameters (such as number of epochs, etc.). Once training is complete, the valida-
tion accuracy score for the model is retrieved from the training history and returned by the function.

Epistocracy parameters. When running Epistocracy, the population size (number of individuals) was set to 100. 
Mutation rate was 20%, and crossover rate (number of individuals recombined genetically each generation) was 
80%. 20 full generations of Epistocracy were run in full without any early stoppage. After Epistocracy fully runs 
and various architectures are generated the top performing one is finally returned.

The proposed architecture of EpistoNet. The proposed EpistoNet decision tree is then designed using MoE I and 
MoE II as shown in Fig. 6:

Experimental results and discussion
Extensive experiments were performed to evaluate the performance of the proposed model to classify COVID-19 
from chest X-ray images. In our experiment, we set the training, and validation ratios to 80%, and 20% respec-
tively. We hold out 25% of the entire dataset, namely 500 images out of 2500 for testing.

Evaluation of deep convolutional neural networks for detection of COVID‑19. To identify the 
best classification model, we employed deep convolutional neural networks of different depth and complexity 
and evaluated their performance using HFHS testing dataset. We applied transfer learning to initialize the data 
training and to facilitate the feature extraction from the input data using ImageNet weights. As it is shown in 
Table 3, VGG16 achieved the highest accuracy (0.86%) among eight different CNN models. This is treated as 
ground truth for comparing the accuracy of the proposed model.

Evaluation of cluster‑based CNN models. To determine the optimal number of clusters we employed 
the elbow method. In fact, we tried different numbers of clusters k, and plotted the number of clusters k versus 
the inertia which is the average of the squared distances from the cluster centers of the respective clusters. As 
it is shown in Fig. 7, for the given data, the optimal number of clusters is 5, where inertia starts decreasing in a 
linear fashion.

To design our classifier, we employed eight state-of-the-art CNN models on each cluster (see Table 4). To 
train each CNN model, we used 50 epochs and a batch size of 32. The input data was split into training and 

Figure 5.  This specific chromosome would result in the following sequence of layers: dense, dropout, dense, 
dense, dropout, dense (classification layer). The last layer is always on since this classification layer is a required 
component of the model. Number 1 indicates “on” and 0 indicates “off ”.

Table 2.  Hyper-parameters of the dense and dropout layers.

Hyper-parameter Value

Number of neurons 7, 8, 9, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096

Activation method ‘relu’, ‘elu’, ‘sigmoid’, ‘softmax’, ‘tanh’

Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5
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validation, with 80% of the data used for training and 20% for validation. The results for each trained CNN are 
illustrated in Table 4.

In Table 4, M1–M8 models are VGG16, VGG19, Xception, InceptionV3, InceptionResNetV2, ResNet50V2, 
EfficientNetB7, and MobileNetV2 respectively.

Optimization and fine‑tuning of CNN parameters. To further optimize the performance of CNN 
models, we applied the Epistocracy algorithm to generate the optimal architecture of the neural network classi-
fier. As shown in Table 5, the CNN models were noticeably improved, confirming the capability of Epistocracy 
algorithm in the optimization of complex and non-linear problems.

Next, we designed a mixture of experts consisting of 5 optimized CNN models. To choose a gating network 
for the mixture of experts, we trained and tested different CNN models. From the experimental results obtained 
(see Table 6), InceptionV3 achieved the highest accuracy for detection of COVID-19 cases among all CNN 
models, whereas InceptionResNetV2 presented the highest accuracy for non-COVID-19 cases. To improve 
the performance of the classification model, therefore, we built two mixtures of experts with different gating 
networks. In the first mixture of experts (MoE I), we used InceptionV3, and in the second mixture of experts 
(MoE II) we used InceptionResNetV2.

Figure 6.  The decision tree of EpistoNet, including two mixtures of experts.

Table 3.  Classification accuracy of each CNN individual model on HFHS testing dataset. The highest 
accuracy obtained is displayed in bold.

CNN model Accuracy Classes Precision Recall F1-score

VGG16 0.86
Non-COVID 0.88 0.84 0.86

COVID 0.85 0.88 0.86

VGG19 0.85
Non-COVID 0.92 0.76 0.83

COVID 0.80 0.94 0.86

Xception 0.80
Non-COVID 0.78 0.83 0.80

COVID 0.82 0.76 0.79

InceptionV3 0.79
Non-COVID 0.81 0.76 0.79

COVID 0.78 0.82 0.80

InceptionResNetV2 0.86
Non-COVID 0.85 0.87 0.86

COVID 0.86 0.84 0.85

ResNet50V2 0.82
Non-COVID 0.84 0.79 0.81

COVID 0.80 0.85 0.82

EfficientNetB7 0.50
Non-COVID 0.50 1.00 0.67

COVID 0.00 0.00 0.00

MobileNetV2 0.84
Non-COVID 0.85 0.82 0.84

COVID 0.83 0.86 0.84
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Figure 7.  The elbow method used to estimate the optimal value for K = 5.

Table 4.  Classification accuracy of different CNN models trained on each cluster. The highest classification 
accuracies among eight different CNN models are marked in bold.

Clusters M1 M2 M3 M4 M5 M6 M7 M8

C0

Accuracy 0.90 0.90 0.85 0.88 0.93 0.80 0.62 0.85

Precision
Non-COVID 0.86 0.89 0.83 0.95 0.92 0.76 0.62 0.85

COVID 1.00 0.92 0.91 0.78 0.93 1.00 0.00 0.85

Recall
Non-COVID 1.00 0.96 0.96 0.84 0.96 1.00 1.00 0.92

COVID 0.73 0.80 0.67 0.93 0.87 0.47 0.00 0.73

F1-score
Non-COVID 0.93 0.92 0.89 0.89 0.94 0.86 0.77 0.88

COVID 0.85 0.86 0.77 0.85 0.90 0.64 0.00 0.79

C1

Accuracy 0.81 0.85 0.73 0.75 0.77 0.82 0.75 0.81

Precision
Non-COVID 0.85 0.87 0.80 0.79 0.83 0.82 0.75 0.86

COVID 0.64 0.77 0.43 0.50 0.53 0.86 0.00 0.62

Recall
Non-COVID 0.91 0.95 0.85 0.91 0.87 0.98 1.00 0.89

COVID 0.50 0.56 0.33 0.28 0.44 0.33 0.00 0.56

F1-score
Non-COVID 0.88 0.90 0.82 0.85 0.85 0.89 0.86 0.88

COVID 0.56 0.65 0.38 0.36 0.48 0.48 0.00 0.59

C2

Accuracy 0.87 0.80 0.82 0.86 0.83 0.86 0.60 0.87

Precision
Non-COVID 0.86 0.77 0.84 0.86 0.84 0.83 0.60 0.87

COVID 0.90 0.88 0.78 0.85 0.80 0.92 0.00 0.89

Recall
Non-COVID 0.95 0.95 0.86 0.91 0.88 0.96 1.00 0.93

COVID 0.76 0.58 0.76 0.78 0.74 0.70 0.00 0.78

F1-score
Non-COVID 0.90 0.85 0.85 0.88 0.86 0.89 0.75 0.90

COVID 0.83 0.70 0.77 0.81 0.77 0.80 0.00 0.83

C3

Accuracy 0.78 0.84 0.73 0.81 0.87 0.84 0.68 0.80

Precision
Non-COVID 0.67 0.81 0.58 0.76 0.84 0.77 0.00 0.77

COVID 0.82 0.86 0.80 0.83 0.88 0.88 0.68 0.81

Recall
Non-COVID 0.59 0.68 0.57 0.59 0.73 0.73 0.00 0.54

COVID 0.86 0.92 0.81 0.91 0.94 0.90 1.00 0.92

F1-score
Non-COVID 0.63 0.74 0.58 0.67 0.78 0.75 0.00 0.63

COVID 0.84 0.89 0.81 0.87 0.90 0.89 0.81 0.86

C4

Accuracy 0.91 0.93 0.83 0.87 0.83 0.85 0.85 0.89

Precision
Non-COVID 0.80 1.00 0.43 1.00 0.00 0.00 0.00 1.00

COVID 0.93 0.93 0.90 0.87 0.85 0.85 0.85 0.89

Recall
Non-COVID 0.57 0.57 0.43 0.14 0.00 0.00 0.00 0.29

COVID 0.97 1.00 0.90 1.00 0.97 1.00 1.00 1.00

F1-score
Non-COVID 0.67 0.73 0.43 0.25 0.00 0.00 0.00 0.44

COVID 0.95 0.96 0.90 0.93 0.91 0.92 0.92 0.94
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As shown in Fig. 8, we employed 5 expert networks and a gating network to compute the weights for each 
expert and dynamically combine the inputs. The weights of the gating network are adjusted during the general 
training of the model on HFHS training dataset.

To optimize the overall performance of each mixture of experts, once again, we employed the Epistocracy 
algorithm to design the architecture and to optimize the hyper-parameters of the classification layers. Figure 9 
displays the confusion matrix corresponding to MoE I and MoE II:

As summarized in Table 7, MoE I, and MoE II were able to achieve 93% classification accuracy on non-
COVID-19, and 95% accuracy on COVID-19 chest X-rays respectively using the HFHS testing dataset.

To classify COVID-19 from CXR images, we developed EpistoNet, a decision tree-based ensemble from 
MoE I and MoE II. Given a new X-ray image, first MoE II will classify the image. Any image classified by MoE 

Table 5.  Improving the accuracy of expert models using Epistocracy algorithm. The numbers in bold 
represent the improved accuracy after using Epistocracy algorithm.

Expert Model Accuracy Classes Precision Recall F1-score

C0

Original InceptionResNetV2 0.93
Non-COVID 0.92 0.96 0.94

COVID 0.93 0.87 0.90

Epistocracy optimized InceptionResNetV2 0.95
Non-COVID 0.96 0.96 0.96

COVID 0.93 0.93 0.93

C1

Original VGG19 0.85
Non-COVID 0.87 0.95 0.90

COVID 0.77 0.56 0.65

Epistocracy optimized VGG19 0.88
Non-COVID 0.91 0.93 0.92

COVID 0.76 0.72 0.74

C2

Original MobileNetV2 0.87
Non-COVID 0.87 0.93 0.90

COVID 0.89 0.78 0.83

Epistocracy optimized MobileNetV2 0.90
Non-COVID 0.92 0.92 0.92

COVID 0.88 0.88 0.88

C3

Original InceptionResNetV2 0.87
Non-COVID 0.84 0.73 0.78

COVID 0.88 0.94 0.90

Epistocracy optimized InceptionResNetV2 0.88
Non-COVID 0.90 0.70 0.79

COVID 0.87 0.96 0.92

C4

Original VGG19 0.93
Non-COVID 1.00 0.57 0.73

COVID 0.93 1.00 0.96

Epistocracy optimized VGG19 0.94
Non-COVID 0.75 0.86 0.80

COVID 0.97 0.95 0.96

Table 6.  Classification accuracy of the entire MoE using different CNN models to serve as a gating network. 
Precision, Recall, and F1-score are calculated using the testing dataset. The highest accuracies achieved using 
different gating networks are marked in bold.

Gating network Val. acc. Testing acc. Classes Precision Recall F1-score

VGG16 0.91 0.83
Non-COVID 0.82 0.85 0.83

COVID 0.84 0.81 0.83

VGG19 0.9225 0.85
Non-COVID 0.84 0.87 0.85

COVID 0.87 0.83 0.85

Xception 0.9250 0.87
Non-COVID 0.88 0.85 0.86

COVID 0.86 0.88 0.87

InceptionV3 0.9225 0.90
Non-COVID 0.88 0.91 0.90

COVID 0.91 0.88 0.89

InceptionResNetV2 0.9125 0.89
Non-COVID 0.89 0.88 0.88

COVID 0.88 0.90 0.89

MobileNetV2 0.92 0.86
Non-COVID 0.84 0.88 0.86

COVID 0.88 0.83 0.85

EfficientNetB7 0.9175 0.83
Non-COVID 0.84 0.81 0.83

COVID 0.82 0.85 0.83

ResNet50V2 0.9125 0.85
Non-COVID 0.85 0.86 0.85

COVID 0.86 0.85 0.85
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II as COVID-19, is probabilistically 95% accurate. However, if an image was classified as non-COVID-19, MoE 
I must be consulted. If MoE I classifies the new image as non-COVID-19, we can accept the classification with 
93% accuracy. However, if classification by MoE I is COVID-19, this will be considered undetermined where 
the probability of being COVID-19 would be 7% only.

Figure 8.  MoE I is a mixture of experts used for classification of COVID-19 infection.

Figure 9.  The confusion matrices of the proposed models. (a), and (b) Show the results for the original MoE 
I with InceptionV3 as a gating network, and MoE II with InceptionResNetV2 as a gating network. (c), and (d) 
Show the results for the Epistocracy optimized version of Moe I and MoE II respectively.
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Qualitative analysis and visualization. To understand which areas of the image were highlighted and 
utilized by the model to detect COVID-19 infection, Gradient-weighted Class Activation  Mapping27 (Grad-
CAM) was used. Grad-CAM is a class-discriminative localization map that displays the most relevant and sig-
nificant regions of an image upon which the classification decision was made by the model. The localization 
maps are shown as a heatmap, where the intense red color represents the most significant area considered by 
the classification model. This visualization technique can be used by radiologists and pathologists to localize 
COVID-19 manifestations in the chest X-rays. In Fig. 10, the Grad-CAM visualization heatmap of some testing 
images are shown.

From Fig. 10a, it is obvious that our model is focusing on lung opacities, which are the main indicators of 
COVID-19 infection. In Fig. 10b, the misclassification is due to the indistinguishability of the texture or pres-
ence of medical devices and wires in the images which result in very similar probability values for each class.

EpistoNet performance analysis. Compared to the performance of the individual models using the 
HFHS testing dataset, EpistoNet exhibits an excellent classification performance. During the initial testing on 
the Henry Ford dataset before any optimization, the highest accuracy achieved was 86% by VGG16. After par-
titioning the training-validation dataset into 5 clusters using K-means clustering algorithm and applying the 
Epistocracy optimization technique and building two mixtures of discriminative experts out of 5 best individual 
Convolutional Neural Network models the classification accuracy was significantly increased.

Based on experimental results, it is demonstrated that EpistoNet can accurately, and reliably detect COVID-19 
infection from X-ray images. The accuracy of the proposed model compared to the related work is quite encour-
aging, given the limited amount of labeled data and differences in the quality and quantity of samples used for 
training and testing. Using EpistoNet, the diagnosis of the Coronavirus disease can be done automatically at a 
low cost, rapidly, and with high accuracy. With isolation of suspicious cases and treatment of infected patients, 
the spread of the disease can be significantly reduced.

Conclusion
In this study we proposed EpistoNet, an ensemble of Epistocracy-optimized mixture of discriminative experts 
for automatic detection of COVID-19 infection from chest X-rays. Each mixture of expert consists of 5 deep 
convolutional neural networks and a gating network. We evaluated the performance of various state-of-the-art 
convolutional neural networks using HFHS dataset. Transfer learning was utilized to get a better initialization 
state for classification of COVID-19 disease. Epistocracy algorithm was also employed to build and optimize 
the head models composed of neural networks of variable length. The experimental results show that EpistoNet 
can effectively classify COVID-19 vs. non-COVID-19 infections, even with a limited data set. The accuracy 
rates achieved by EpistoNet for the classification of COVID-19 were found to be higher than that of stand-alone 

Table 7.  Performance evaluation of MoE I and MoE II. The final accuracies for detection of COVID-19 and 
non-COVID-19 infection are displayed in bold.

Mixture of expert Testing acc. Classes Precision Recall F1-score

MoE I 0.92
Non-COVID 0.92 0.93 0.92

COVID 0.93 0.92 0.92

MoE II 0.92
Non-COVID 0.94 0.89 0.92

COVID 0.89 0.95 0.92

Figure 10.  Grad-CAM class activation map of COVID-19: (a) True COVID-19 classification, (b) false non-
COVID-19 classification.
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VGG16 or similar models trained on HFHS dataset. Other approaches lack the generalizability of our method for 
unseen data due to various pre-processing steps performed and hyper-parameter fine tuning conducted specific 
to their own dataset. In EpistoNet pipeline, a minimal pre-processing step is required, and Epistocracy algorithm 
is recruited to systematically optimize the models’ hyper-parameters without any human intervention. EpistoNet 
can be effectively leveraged as a fast, cheap and portable tool to provide excellent diagnostic aid to healthcare 
professionals such as physicians and radiologists for the early detection and urgent treatment of patients with 
COVID-19, mitigating the devastating impact of COVID-19 on lives and livelihoods.
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