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Acute ischemic stroke (AIS) is a primary cause of mortality and morbidity

worldwide. Currently, no clinically approved immune intervention is available

for AIS treatment, partly due to the lack of relevant patient classification

based on the peripheral immunity status of patients with AIS. In this

study, we adopted the consensus clustering approach to classify patients

with AIS into molecular subgroups based on the transcriptomic profiles of

peripheral blood, and we identified three distinct AIS molecular subgroups

and 8 modules in each subgroup by the weighted gene co-expression

network analysis. Remarkably, the pre-ranked gene set enrichment analysis

revealed that the co-expression modules with subgroup I-specific signature

genes significantly overlapped with the di�erentially expressed genes in AIS

patients with hemorrhagic transformation (HT). With respect to subgroup II,

exclusively male patients with decreased proteasome activity were identified.

Intriguingly, the majority of subgroup III was composed of female patients

who showed a comparatively lower level of AIS-induced immunosuppression

(AIIS). In addition, we discovered a non-linear relationship between female

age and subgroup-specific gene expression, suggesting a gender- and age-

dependent alteration of peripheral immunity. Taken together, our novel

AIS classification approach could facilitate immunomodulatory therapies,

including the administration of gender-specific therapeutics, and attenuation

of the risk of HT and AIIS after ischemic stroke.

KEYWORDS

acute ischemic stroke, molecular subgroups, peripheral immunity, restricted cubic

spline functions, immunosuppression, consensus clustering

Introduction

Acute ischemic stroke (AIS) is one of the leading causes of death and disability

worldwide, affecting approximately 10 million people each year and resulting in

an enormous economic burden for AIS treatment and post-stroke care (1, 2).

Recent studies have demonstrated that the immunomodulatory therapy targeting
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peripheral immunity is promising for AIS treatment, including

attenuation of hemorrhagic transformation (HT) or AIS-

induced immunosuppression (AIIS) (3–5). However, there is

a complex relationship between peripheral immunity states

and stroke pathology. Without careful consideration of AIS

patient’s peripheral immunity state, broad suppression or

modulation of peripheral immunity may impair the normal

physiological immune functions, such as the clearance of

damaged tissues, subsequent repair responses, or protection

against systemic infections, which would result in worsening

of stroke prognosis (4, 5). For example, the Enlimomab

Acute Stroke Trial, a randomized controlled trial of a murine

monoclonal antibody to ICAM-1 for blocking peripheral

immunity responses, has shown that the Enlimomab-treated

patients exhibited significantly worse outcomes with a higher

incidence of fever, infections, and death (6). By far, there are

no clinically approved immunotherapeutic drug available (7, 8),

partly due to the heterogeneous nature of peripheral immunity

states in patients with AIS (9, 10). These results highlight

the importance of classification of patients with AIS based

on their peripheral immunity states to optimize the efficacy

of immunotherapies.

Accumulating evidence has shown that subgrouping

patients based on gene expression patterns of peripheral

blood plays a key role in patient selection for successful

clinical translation of immune interventions in multiple

diseases including cancers, systemic lupus erythematous,

and sepsis (11–13). In addition, peripheral blood can be

conveniently obtained from patients with a quick and easy

venous blood collection. As a core component of peripheral

immunity, peripheral blood cells such as lymphocytes,

monocytes, and granulocytes are intimately involved in

many immune responses after AIS (14, 15). Moreover, gene

expression profiling of peripheral blood could provide crucial

information for the peripheral immunity state after stroke

(16, 17). Therefore, we hypothesized that transcriptomic

profiling of peripheral blood could be used to establish

novel AIS classification for providing important insights

into the immune interventions for stroke treatment. In this

study, we employed a consensus-clustering approach to

classify patients with AIS into major molecular subgroups

based on their gene expression profiles in peripheral

blood, and we characterized these subgroups by various

integrative analyses. To further investigate the role of age

and gender in the peripheral immunity states of patients

with AIS, we employed a restricted cubic spline analysis

to elucidate their relationships with subgroup-specific

gene expression. Finally, we evaluated the implication

of AIS classification on correlation with hemorrhagic

transformation (HT) in patients with AIS, aiming to

understand the role of peripheral immunity in HT and to

provide new insights into the immune interventions for

stroke treatment.

Materials and methods

Data collection

Two datasets (GSE16561 and GSE37587) were extracted

from the Gene Expression Omnibus (GEO) by R/Bioconductor

package GEOquery, including the gene expression matrix,

clinical characteristics, and probe sets. The dataset of samples

drawn from non-stroke neurologically healthy participants

was used as the control. GSE199435 was extracted from the

gene expression dataset of blood samples collected from AIS

patients with HT or non-HT (n = 3 for each group). The

fastq RNA-sequencing data were downloaded from the SRA

database (SRP365953). FeatureCounts was used to count the

reads mapped to individual genes by processing the sorted bam

files with accepted read quality for subsequent analysis.

Removal of batch e�ect

Since GSE16561 and GSE37587 datasets used the same

platform (GPL6883 platform Illumina HumanRef-8 v3.0

expression beadchip), gene expression data were merged for

analysis in our study. The expression values merged from both

datasets were log2 transformed, and then ComBat normalization

in the SVA package was used to remove batch effects.

Consensus clustering

Consensus clustering was performed by

“ConsensusClusterPlus” R package as an unsupervised

resampling analysis for the detection of high consensus

optimal molecular subgroups based on intrinsic molecular

characteristics of gene expression features, through robust

clustering across multiple runs of a clustering algorithm without

external information to mitigate the limitations of individual

clustering algorithms by averaging over various clustering

methods with random or subjectivity (70). The clustering was

performed by a K-means algorithm with the Spearman distance.

The maximum cluster number was set to 10. The final cluster

number was determined by the consensus matrix and the cluster

consensus score (>0.8), as recommended in the literature (70).

Comparing the clinical characteristics of
subgroups

The proportion of male patients and different sampling

times (within 24 h and 24–48 h after AIS) in the subgroups

were compared using the pairwise proportion test. Given

that male and female patients may have different patterns of

correlation with age, gender-stratified analyses were performed
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(18). Pairwise Wilcoxon’s rank sum test was used to test whether

there was a difference in age among the male and female patients

in the subgroups. Since the age of female subjects in subgroups

showed no significant difference in Wilcoxon’s rank sum test,

we used logistic regression models with restricted cubic spline

functions to test the potential non-linearity between female age

and subgroups as described previously (71).

Identification of subgroup-specific
upregulated and downregulated genes

Subgroup-specific upregulated and downregulated genes

were identified by comparing the samples in a specified

subgroup with samples in the other subgroups using the

Wilcoxon rank-sum test (19, 20). To avoid obscuring gene

expression features in pathway enrichment analyses and identify

the most valuable differentially expressed genes, we used the

cutoff criteria defined by Benjamini-Hochberg and adjusted it

to p < 0.05 and the absolute difference of means > 0.2 (19, 20).

Upregulated genes were defined as the subgroup-specific genes

with a difference of means > 0.2, while downregulated genes

were subgroup-specific genes with a difference of means<−0.2.

For any given gene, the difference in mean was calculated by

subtracting the mean of expression in the other group from that

in the samples of the specified subgroup.

Weighted gene co-expression network
analysis

Weighted gene co-expression analysis (WGCNA) was

performed under subgroup-specific signatures to identify

potential modules with characterized biological functions in

each subgroup (21). FlashClust function (in “WGCNA” package)

was used to carry out cluster analysis of samples with

appropriate threshold to detect and remove the outliers. The

soft thresholding power β-value was screened during module

construction by the pick Soft Threshold function in the

“WGCNA” package. The power of β = 9 (scale-free R2 > 0.8)

was selected as the soft-thresholding parameter. The topological

overlap matrix similarity was used to evaluate the distance

between each gene pair. Hierarchical clustering analysis with the

average and dynamic methods was used to build the cluster tree

and classify the genes into modules. After merging the original

modules based on their similarity, we finally identified eight

modules. In the “WGCNA” package, subgroups and gender were

converted to numerical values followed by a regression analysis

with module eigengene values to visualize the expression

tendency of modules. For gender-stratified analysis, Spearman’s

correlation coefficients and the corresponding p-values between

age and modules eigengene values were calculated by the

“WGCNA” package. An alluvial diagram was used to visualize

the main distribution and associations between subgroup-

specific upregulated and downregulated genes and genes in

the eight functional modules using the R software package

“ggalluvial” and “ggplot2.”

Pre-ranked gene set enrichment analysis

Gene set enrichment analysis (GSEA) was performed in

GSEA Desktop v4.1.0 with GSEAPrerank mode and a false

discovery rate (FDR) < 0.05. The gene set databases were

generated from the subgroup-specific signature genes. The

gene list for each subgroup was ranked by negative log10-

transformed adjusted p-values for Wilcoxon rank-sum test,

which was calculated as each subgroup vs. normal control.

We employed a restricted cubic spline analysis to determine

the non-linear relationship between co-expression modules and

log-transformed age in different gender for pre-ranked GSEA

analysis as described (22, 23). To cover the most valuable

differentially expressed genes (DEGs) of GSE199435 in the

pre-ranked GSEA, we adjusted the cut-off value to p < 0.05

and logFC > 0.2 in comparison between AIS patients with

HT and patients without HT (non-HT), according to DESeq2.

Based on the ranking metric of logFC, the concordance in

transcriptional profile between subgroup-specific genes of each

WGCNA module and the transcripts was performed by the

pre-ranked GSEA (24, 25).

Functional module enrichment analysis

Kyoto Encyclopedia of Genes and Gene Ontology

(KEGG) and Reactome pathway enrichment analyses for the

subgroup-specific upregulated and downregulated genes were

performed for genes in the modules using “clusterprofiler” and

“ReactomePA” R package (26, 27). The pathways with P < 0.05

were considered statistically significant for functional modules.

Results

We analyzed a total of 131 peripheral blood samples

collected from 107 patients with AIS and 24 healthy individuals

from two independent datasets (GSE16561 and GSE37587). We

used the ComBatmethod to process 18,599 genes and eliminated

the batch effect by normalization (Figure 1A).

Consensus clustering of AIS cases

Based on the unsupervised consensus clustering method,

we classified the 107 patients with AIS into three subgroups
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FIGURE 1

Consensus clustering analysis of gene expression profiles of peripheral blood samples in patients with AIS. (A) Box plots showing the normalized

relative expression (y-axis) of data from genesets GSE16561 and GSE37587. (B) The heatmap representing the consensus matrix with a cluster

count of 3, which was determined by the minimal consensus scores of >0.8. (C) Bar-plots showing the consensus scores (y-axis) and the

corresponding numbers of the subgroup. The maximum number of subgroups was set to 10.
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based on their gene expression profiles. Subgroups I, II, and

III consisted of 41, 24, and 42 patients with AIS, respectively.

We showed that the gene expression pattern of each subgroup

is highly specific by consensus matrix analysis (Figure 1B). The

minimal consensus score analysis for subgrouping indicated

that three groups would provide robust classification based

on the criteria of cluster count with a consensus score > 0.8

(Figure 1C) (70).

Next, we performed the pair-wise differential expression

analysis of each subgroup with the other two subgroups by

GSEA. As shown in Figure 2A, we detected 1,372, 1,012,

and 712 genes showing subgroup-specific upregulation, as

well as 1,363, 609, and 337 genes showing downregulation

in subgroups I, II, and III, respectively (Benjamini-Hochberg

adjusted p < 0.05 and the absolute difference of means > 0.2,

Supplementary Figure S1). To investigate the specificity of these

differentially expressed genes in each subgroup, we performed a

GSEA analysis to compare their gene expression profiles with

that of the normal control. The normalized enrichment score

revealed that the subgroup-specific genes were also significantly

and differentially expressed when compared with the control

group (Figures 2A–C, FDR <0.05).

Characterization of subgroups

To characterize the clinical features of the three subgroups,

we analyzed the distribution of gender, age, and sampling time

after AIS in each subgroup. Intriguingly, the gender distribution

among the subgroups was very different. As shown in Figure 3A,

the proportion of women in subgroup III was significantly

higher than that in subgroup I. Intriguingly, subgroup II

consisted of men only (Figure 3A). Therefore, we separatedmale

and female patients for age analysis. We found that the average

age of male subjects in subgroup I was significantly younger

than subgroups II and III (Figure 3B). In contrast, there was no

significant difference between the average age of female subjects

in subgroups I and III, as determined by Wilcoxon’s rank sum

test (Figure 3C). To explore whether there was a non-linear

relationship, we performed a logistic regression model analysis

with restricted cubic spline (RCS) functions, which revealed

a U-shaped relationship between female age and subgroups,

without significant linearity (Pnon−linear = 0.0223; Figure 3D).

To determine whether the sampling time would affect the

pattern of AIS subgrouping, we separated patients into 2 groups

(sampling time during 24–48 h and within 24 h), and there was

no significant difference among the subgroups in female or male

cases (Figures 3E,F).

Next, we conducted pre-ranked GSEA and restricted

cubic splines analysis to determine the correlation between

age and subgroup-specific gene expression across female and

male patients. As shown in Figure 4, the subgroup-specific

genes were concentrated in the gene sets with a non-linear

correlation with the corresponding age in female patients

with AIS (NES = 1.58, FDR < 0.001), but not in male

patients (NES = 0.81, no significant difference). These results

demonstrate that gender and age are determining factors

for gene expression in the peripheral blood of patients

with AIS.

Identification of gene co-expression
modules

The weighted gene co-expression network analysis

(WGCNA) is a powerful tool to identify modules with a

coordinated expression of genes with similar patterns (36). In

an attempt to discover unique and specific subgroup signatures,

we performed WGCNA of all subgroup-specific genes and

control. The specific expression tendency revealed 8 WGCNA

modules (Figures 5A,B; Supplementary Table S1). In addition,

the cluster analysis by flashClust revealed no outlier samples

(Supplementary Figure S2A). The power of β was set at 9

to ensure a scale-free network based on the scale-free fit

index and the mean connectivity (Supplementary Figure S2B).

The topological overlap measure (TOM) for each gene pair

was then calculated. Consistently, the hierarchical clustering

analysis based on the TOM dissimilarity measure (1-TOM)

also revealed eight modules (Supplementary Figure S2C). Then,

we used an alluvial diagram to visualize the main distribution

and associations between subgroup-specific upregulated and

downregulated genes and genes from eight modules (Figure 5C).

Based on the main distribution (color bars) and association

(lines) of WGCNA modules with the subgroup-specific genes,

we identified the upregulated and downregulated associations

between WGCNA modules and the corresponding primary

subgroups (Table 1). To investigate the relationship between

clinical features and gene expression of WGCNA modules, we

performed the Pearson correlation analysis, which verified that

all modules were correlated with AIS, and this served as the

positive control. Importantly, module 6 exhibited the highest

degree of negative correlation with AIS (r-value=−0.35), while

modules 2, 4, 5, and 7 showed comparable levels of positive

correlation with AIS with r-values ≥ 0.2 (Figure 5A). With

respect to subgroup I, the specific genes from modules 3, 4, 5,

and 7 appeared to be independent of gender in patients with AIS

(Figure 5A p > 0.05 in AIS_Gender_Male column). Notably,

we observed a linear relationship between co-expression

modules and age in male patients with AIS (except modules

2 and 6) (Figure 6A). In contrast, modules 1 and 8 showed

significant linear correlation as shown in the corresponding

age bracket in AIS female patients (Figure 6A). Apart from

modules 2 and 6, we ascertained the non-linear relationship

between most co-expression modules and log-transformed

age in female patients with AIS through the incorporation
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FIGURE 2

Identification of subgroup-specific di�erentially expressed genes and comparison with control. (A–C) GSEA enrichment plots (red lines)

showing the subgroup-specific upregulated gene (Specific-up) and subgroup-specific downregulated gene (Specific-down) in subgroup I (A),

subgroup II (B), and subgroup III (C). Green lines represent the di�erentially expressed genes between the corresponding subgroup and the

normal controls. NES denotes the normalized enrichment score with FDR (** <0.01, and *** <0.001).
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FIGURE 3

Clinical characteristics within subgroups. (A) Barplot showing the proportion of male patients in each subgroup. (B,C) Barplot showing the age

distribution in each subgroup in male (B) and female patients (C). Values are means ± SD. NS indicates no significant di�erence between groups

(p > 0.05). *P < 0.05, **P < 0.01, and ***P < 0.001. (D) Non-linear relationship between subgroup and the age of female patients analyzed by

restricted cubic spline model. The black line represents the pooled odds ratio (OR), and the red lines indicate a 95% confidence interval (CI). (E,F)

Box-plots showing the proportion of sampling time (within 24h and between 24 and 8h) after AIS in each subgroup of female (E) and male (F)

patients. NS indicates no significant di�erence between groups (p > 0.05).

of the restricted cubic spline analysis with pre-ranked GSEA

(Figure 6B). Likewise, the accumulation of gene sets pertaining

to a non-linear correlation in the corresponding age in male

patients with AIS was not observed except in module 4

(Figure 6C). The linear and non-linear relationships between

age and relevant modules in patients with AIS are visualized

in the heatmap presentation as shown in Figure 6A. Together

with the observation that modules 2 and 6 were primarily
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FIGURE 4

GSEA analysis of subgroup-specific di�erentially expressed genes. (A) The enrichment plot illustrates that most subgroup-specific genes had a

significantly non-linear relationship with female age. The normalized enrichment score (NES) and FDR (*** <0.001) in the female group. (B) The

enrichment plot illustrates that most subgroup-specific genes had a significantly non-linear relationship with male age. The normalized

enrichment score (NES) is shown without significant di�erence (FDR > 0.05).

distributed in subgroup III-specific genes (Figure 5C), these

results highlight the correlation of gender, rather than age, with

gene co-expression in modules.

Functional enrichment analysis of genes
in the co-expression modules

KEGG and Reactome pathway analyses were used to

identify enriched pathways in the co-expression modules.

Interestingly, we found that many of them were related to

inflammatory factors, complement synthesis, coagulation factor

production, and the expression of C-type lectin receptors

(Table 1; Figures 7–10). Notably, modules 4 and 5 primarily

constituted of the subgroup I-specific upregulated genes. They

were substantially enriched in pathways involved in neutrophil

extracellular trap formation, inflammasomes, and metabolism

of lipid and lipoprotein (Supplementary Figures S3,S4). With

respect to module 4, we found the integration of NLRP3

with the inflammasome pathway (Supplementary Figure S4A).

In modules 4 and 5, enriched pathways included platelet

activation, thrombus formation, platelet adhesion to exposed

collagen, platelet activation, formation of fibrin clot (clotting

cascade), and common pathway of fibrin clot formation

(Supplementary Figures S3,S4). Analysis of downregulated

genes in subgroup I in modules 3, 7, and 8 revealed pathways

related to the regulation of the immunocoagulation tangles

(Supplementary Figures S3,S4). We also identified the

regulation of gene expression by hypoxia-inducible factors

in module 8, which suggest improved perfusion and enhanced

arterial remodeling in this module (Figures 9, 10B) (28).

Additionally, these pathway analyses revealed functions such

as nucleotide excision repair, DNA damage bypass, HDR

through Homologous Recombination (HRR), and DNA

double-strand break repair in tandem with the increased activity

of hypoxia-inducible factor and SUMOylation in module 8

(Figure 9), suggesting the anti-hypoxic injury by regulation

of gene expression as shown in module 8 (Figures 7–10).

Interestingly, module 1 showed the downregulation of genes

enriched in proteasome activity in subgroup II (Figure 7,

Supplementary Figure S3A). Furthermore, module 6 was related

to phosphorylation of CD3 and TCR zeta chains in subgroup

III (Figure 9). Genes in this pathway included CD3D, CD3E,

CD3F, and CD247 (CD3ζ) which are also the representative

markers of T-cells (Figure 10B). We also identified the

enhanced normal T-cell function and comparatively lower

levels of AIIS in subgroup III (Figure 10) (3). From module

2, specific-downregulated genes in subgroup III encompassed

the enrichment of calmodulin-dependent kinase-related genes

including CAMK2A and CAMKK2 (29, 30). Consistently, they

are known as the fundamental regulators of immune function

in conjunction with the enrichment of platelet activation and

coagulation-related pathways (Supplementary Figure S4A)

(31–33). The identification of these pathways in subgroup

III-specific modules 2 and 6 demonstrates the specific

peripheral immunological activity in female patients with

AIS (Figures 3A, 5C). Another interesting observation was

the enrichment of disparate metabolism pathways. For

instance, we identified ADH4, DLD, PDK1, ABAT, and

SDHD enriched in module 8 that were related to propanoate

metabolism, pyruvate metabolism, and tricarboxylic acid

(TCA) cycle, whereas ALDOC, PFKI, ALDOA, TKT, RPIA,

and FBPI were enriched in the pentose phosphate pathway in

modules 1 and 4. These results suggest the diverse regulation

of metabolism in periphery immune response in patients

with AIS (Supplementary Figures S3,S4). Furthermore,

we identified that modules 1 and 6 showed distinct co-

expression patterns in relation to oxidative phosphorylation
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FIGURE 5

Identification and characterization of 8 modules by weighted gene co-expression analysis (WGCNA). (A) Module-trait relationship of gender and

age in male and female patients. The positive and negative correlation coe�cients of WGCNA modules and clinical characteristics are colored

from red to blue. Each row corresponds to a module eigengene, each column corresponds to a trait. Each cell depicts the corresponding

Pearson correlation r-values and p values in the bracket. (B) The scaled expression values of genes in each of the 8 WGCNA modules are

displayed in the heatmap. (C) Alluvial diagram showing the inherent relationship between modules and subgroups.

TABLE 1 The number of di�erentially expressed genes by case-control and case-case comparisons and co-expression modules in each subgroup.

Subgroup Subgroup-

control

comparison

Subgroup-specific

upregulation

genes

Subgroup-specific

downregulation

genes

Modules

Up Down

Subgroup_I 4,092 1,372 1,363 4 and 5 3, 7, and 8

Subgroup_II 2,945 1,012 609 8 1

Subgroup_III 898 712 337 6 2

Supplementary Figure S3B), whereas modules 3 and 6 exhibited

different co-expression of genes involved in ribosome biogenesis

(Supplementary Figure S3C). Finally, we identified the

enrichment pathways involved in protein processing in the

endoplasmic reticulum (Figure 7, Supplementary Figure S4B),

protein export, and ribosome activity inmodule 3 (Figures 5C, 7;

Table 1; Supplementary Figures S3B,C). These results suggest

that the ribosome-related pathways influence protein synthesis

and secretion disorders in patients with AIS of subgroup I.

Correlation of transcriptomic pattern in
subgroup I with HT

Given that our identified modules in patients with AIS are

closely associated with HT, we asked whether our classification

could reveal the risk of HT in patients with AIS. To this

end, we analyzed an independent dataset (GSE199435) which

separated patients with AIS into HT and non-HT groups.

We first identified the differentially expressed genes (DEG)

in non-HT patients with AIS compared with those of HT.

Then, we performed a pre-ranked gene set enrichment analysis

to determine the enrichment of HT-related DEG to the co-

expression modules with subgroup-specific signature genes.

We found that a significant number of genes in modules 4

and 5 in subgroup I-specific upregulated genes were positively

enriched in the HT-related upregulated genes (Figure 11A,

NES > 1.5, FDR < 0.001). A similar number of genes in

modules 3 and 8, mainly from subgroup I that were specific-

downregulated genes, was negatively enriched in the HT-related

downregulated genes (Figure 11A NES < −1.8, FDR < 0.001).

In contrast, a smaller number of genes was observed when

analyzing the non-subgroup I modules 1, 2, and 6 (Figure 11A).

Therefore, we compared the DEG in modules 3, 4, 5, and 8

with those in HT-specific DEG. As shown in the Venn diagram
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FIGURE 6

(A) Heatmap showing association of gender-specific distribution of age with the expression of subgroup-specific genes in each module. Red

and blue indicate upregulation and downregulation, respectively. Samples were ordered by increasing age in each gender. (B,C) The enrichment

plots of the restricted cubic spline-GSEA showing the significance of the non-linear relationship between all normalized expression of genes in

each module and log-transfer age in female patients (B) and male patients (C).

in Figure 11B, we identified 267 genes in common (FDR <

0.05). As shown in the heatmap in Figure 11C, their differential

expression pattern was highly similar and coordinated in

these two sets of genes. Finally, we performed Reactome

analysis for the identification of enriched pathways in these

261 genes. Results identified pathways including the activation

of matrix metalloproteinases (MMP2 and MMP25), pentose

phosphate pathway, DNA double-strand break repair, DNA

repair, and translation (Figure 11D, Supplementary Figure S5).

Taken together, these results suggest that subgroup I and AIS

patients with HT share a similar transcriptional profile.

Discussion

Acute ischemic stroke is a heterogeneous disorder with

more than 100 pathologies implicated in its pathogenesis

(34, 35). Therefore, it is important to develop various subgroup

classification approaches for developing a personalized

therapeutic strategy for effective stroke treatment. The advent

of the subgroup classification such as the Trial of Org 10172

in Acute Stroke Treatment (TOAST), Causative Classification

System (CCS), and Chinese Ischemic Stroke Subclassification

(CISS) system during the past decade has facilitated the

clinical application of antiplatelet and anticoagulation therapies

(36, 37). In addition, the classification of AIS cases improves

the clinical feasibility of time-dependent and population-

specific revascularization therapies (38, 39). However, current

AIS subgroup classification methods, mainly based on

clinical evaluation and neuroimaging assessment, fail to

address immune interventions that are promising but require

personalized medications.

In this study, we developed a novel classification of AIS

by consensus clustering of transcriptomic profiles in peripheral

blood. Most of the subgroup-specific genes overlap with AIS

signature genes as revealed by GSEA (Figure 2) and WGCNA

(Figure 5A). These results highlight the importance of subgroup

classification for a more precise correlation of peripheral

immunity with AIS. Moreover, this study indicates that our

subgroup classification is independent of sample collection time

for the first 24 h or from 24 to 48 h, making our classification

approach more flexible in terms of administration of gender-

specific therapeutics for the attenuation of the risk of HT and

AIIS, considering that the therapeutic time window of immune
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FIGURE 7

Module-based pathway analysis. Visualization of pathways identified by the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis.
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FIGURE 8

Heatmap showing the scaled expression values of genes in representative subgroup-specific KEGG pathways related to inflammation and

corresponding signature of each co-expression module among subgroups. (A) Chemokine signaling pathway and cytokine-cytokine receptor

interation. (B) C-type lectin receptor signaling pathway, TNF signaling pathway, and complement and coagulation cascades. Heatmap colors

correspond to the level of mRNA expression as indicated in the color rang.

interventions is typically 6–48 h after AIS in clinical studies

(40, 41).

Our transcriptome-based classification revealed subgroup-

specific functional modules or pathways based on the

tendency of co-expression patterns by WGCNA. As an integral

component of the peripheral immunity response to AIS,

our analysis confirmed that multiple inflammatory factors

including chemokines, interleukins, and tumor necrosis

factors are secreted from peripheral blood cells to trigger

pro- or anti-inflammatory responses as reported previously

(31, 42, 43). We also demonstrate that complement synthesis,

coagulation factor production, and C-type lectin receptor

expression in peripheral blood cells apparently play an

instrumental role in peripheral immunity in response to AIS

(44–46). Our findings also support the notion that AIS could

regulate periphery immune response through the alteration of
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FIGURE 9

Module-based pathway analysis. Visualization of pathways identified by the Reactome.
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FIGURE 10

Heatmap showing the expression level of genes in representative subgroup-specific Reactome pathways related to inflammation as indicated in

Signaling by Interleukins (A) and TNFs bind their physiological receptors, Chemokine receptors bind chemokines, Peptide ligand-binding

receptors, Phosphorylation of CD3 and TCR zeta chains, Formation of Fibrin Clot Formation, and Relation of gene expression by

Hypoxia-inducible Factor (B) and corresponding signature of each co-expression module among subgroups, heatmap colors correspond to the

level of mRNA expression as indicated in the color rang.
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FIGURE 11

Genes in modules in subgroup I overlaps with hemorrhage transformation (HT)-specific di�erentially expressed genes (DEG). (A) Pre-ranked

gene set enrichment analysis showing the enrichment of DEG related to HT in the co-expression modules with subgroup I-specific signature

genes. (B) Venn diagram showing the number of overlapped genes (267) between HT-specific DEG and subgroup I-specific genes. (C) Heatmap

representing the overlap genes between DEGs related to HT and subgroup I-specific genes. (D) Diagram showing pathways identified by

Reactome with the negative log10 p-values of the overlapped genes shown in B and C.

immunometabolism, including the tricarboxylic acid (TCA)

cycle, the pentose phosphate pathway, propanoate metabolism,

oxidative phosphorylation, and pyruvate metabolism (47–49).

Our co-expression analysis further suggested a correlation

between the immunometabolism and maintenance of DNA

stability, consistent with recent studies showing that DNA

double-strand break repair, DNA damage bypass, and

homologous recombination were allegedly regulated by

pyruvate metabolism and TCA cycle (50). In fact, the intricate

roles of transcriptional reprogramming and alteration of

immunometabolism in peripheral immune cells after AIS

remain largely unknown. Our identification of various co-

expression patterns within different subgroups could provide

a comprehensive insight for future studies on immunotherapy

for stroke.

It is worth noting that our pathway analysis in each module

reveals the closely intertwined action of peripheral immunity-

mediated inflammation, thrombosis-driven friability of cerebral

vasculature, and coagulation disequilibrium. In agreement with

these findings, recent studies have shown that the ischemic

cerebral infarct progression is accompanied by microvascular

thrombosis and subsequent HT (51, 52). In fact, these peripheral

immunity-mediated inflammatory mechanisms have led to the

concept that AIS is a systemic inflammatory and a thrombo-

inflammatory disease (31–33). Interestingly, our GSEA analysis

demonstrates that the coordinated expression pattern in the
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subgroup I-specific DEG is significantly analogous to that in the

HT-specific modules (53). We further identified the activation

of matrix metalloproteinases (including MMP2 and MMP25)

that were enriched in the overlapping genes between these

two groups, supporting their possible role in HT as reported

previously (54–56). Moreover, we identified the pathways

related to ribosome biogenesis and protein translation in both

subgroups I and the HT-specific module. Currently, the role

of protein translation in HT remains unknown, and obviously

future studies will be required to provide the underlying

mechanisms. Interestingly, our results suggest a potential

mechanism of coagulation by peripheral immunity. We showed

that modules 4 and 5, which are mainly from subgroup I specific

upregulated genes, are all enriched in a pathway related to

neutrophil extracellular trap (NET) formation, which is known

to play a key role in hemorrhagic transformation and a thrombus

resistant to lytic therapy (57, 58). In addition, our finding is

in agreement with previous reports showing that the formation

of NET may be induced by IL-1B, CAMP(LL37), and C3 in

peripheral blood cells (59–62).

It is not uncommon in clinical settings that AIS induces

AIIS, which is characterized by decreased CD3+T lymphocyte

(3). Our pathway enrichment analysis shows that module 6,

which is specifically upregulated in subgroup III (comprised

mostly female patients) is plausibly correlated with a lesser

degree of AIIS compared to subgroups I and II. Consistently,

it has been reported that the female patients showed a reduced

level of AIIS compared with male patients, suggesting a gender-

specific response in post-AIS peripheral immunity (63–65). In

addition, recent studies have shown a diminished level of T

cell activity following the release of coagulation factor V(F5),

arginase 1 (ARG1), LL33 (CAMP), and IL33 from the periphery

immune cells, resulting in peripheral immunosuppression (66–

69). We discover the lack of upregulation of ARG1, IL 33,

and F5 in subgroup III, which denotes a contrary expression

tendency in module 6 (see Supplementary Table S1). In contrast,

module 2 consists of calmodulin-dependent kinase-related genes

CAMK2A and CAMKK2, which are crucial regulators of

peripheral blood cell functions (29, 30). It has been reported that

peripheral blood cells are capable of producing complements

and factors in coagulation cascades including C2, C5AR1, F13A1

(coagulation factor XIII, A1 Polypeptide), and SERPINA1 (a

form of antiplasmin protein) (44). Interestingly, these genes

are enriched in module 2 in our study, further supporting a

correlation between thromboinflammation and AIIS. Finally,

we found that the proteasome activity is decreased specifically

in subgroup II. We speculate that peripheral blood cells in

this AIS subgroup patients may reduce proteasome activity

for alleviating ischemic injury. Since subgroup II is mainly

composed of older male patients and subgroup III is mostly

of female patients, this gender-dependent characteristic of

classification by molecular subgrouping may guide personalized

immunotherapeutic treatment for stroke.

Our study has several limitations. Firstly, we only examined

107 AIS cases, and a larger sample size in the future would

be necessary to verify the robustness of our classification.

Secondly, we could not directly evaluate the prognostic value

using this classification method due to the lack of relevant

clinical details in the datasets. For example, we were not

able to relate the subgroups to clinical information such

as comorbidities, demographic characteristics, thrombolysis

or types of endovascular treatment, type of hemorrhage

transformation (spontaneous HT, thrombolysis-induced HT,

etc.), and TOAST classification. Therefore, we could not

determine the predictive value of this classification on the

prognosis of patients with AIS. Finally, samples were mainly

collected from patients in the United States and China. Future

prospective validation work is required by using samples

collected from other countries.

In conclusion, the peripheral blood transcriptomic profiling

for AIS classification reveals distinct and specific expression

patterns. Considering the heterogeneity of the peripheral

immunity in stroke patients, this molecular classification

approach would have a prognostic impact by improving

the efficacy of immunotherapies, prediction of the risk of

hemorrhagic transformation, and therapeutic time window of

immune interventions. Thus, this classification could potentially

improve the prognosis of patients with AIS by providing a

more informative and personalized medication strategy by

the identification of patients with AIS who are vulnerable to

stroke-induced immunodeficiency, resistant to gender-specific

immunotherapy, and at risk of hemorrhagic transformation and

other comorbidities.
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