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Abstract

Background and Aims: Wound healing and tumor progres-
sion share some common biological features; however, how 
variations in wound healing patterns affect hepatocellular 
carcinoma (HCC) prognosis remains unclear. Methods: We 
analyzed the wound healing patterns of 594 HCC samples 
from The Cancer Genome Atlas (TCGA) and the Internation-
al Cancer Genome Consortium (ICGC) and correlated them 
with immune infiltration and the expression levels of immune 
checkpoint genes. A risk score, which we named the “heal.
immune” score, was established via stepwise Cox estima-
tion. We constructed a nomogram based on age, sex, TNM 
stage, and heal.immune score and explored its predictive 
value for HCC prognosis. Seventy-four clinical patients were 
enrolled in this study, and all were from Huashan Hospital of 
Fudan University between 2015 and 2017 to serve as an in-
dependent validation group. Results: We identified two dis-
tinct wound healing patterns in HCC. The biological processes 
of healing cluster 1 (C1) are related to metabolism, while 
those of healing cluster 2 (C2) are related to the inflamma-
tory response and immune cell accumulation. A total of 565 
wound healing-related genes (based on Gene Ontology) and 
25 immune checkpoint genes were considered. By analyz-
ing differentially expressed genes and implementing a step-
wise Cox estimation analysis, six genes with p values less 
than 0.02 in a multivariate Cox estimation were chosen as 
the “heal.immune” gene set (FCER1G, PLAT, ITGA5, CCNB1, 
CD86 and CD40). The “heal.immune” gene set, as an OS risk 
factor, was further validated in Fudan cohort. We constructed 
a nomogram to predict the 1-, 3- and 5-year overall survival 
(OS) in the TCGA cohort. The area under curve vales of the 
receiver characteristic operator curves were 0.82, 0.76 and 
0.73 in the training group and 0.84, 0.76 and 0.72 in the test 

group. Conclusions: We established a prognostic nomogram 
based on the heal.immune gene signature, which includes six 
wound healing- and immunity-related genes. This nomogram 
accurately predicts the OS of HCC patients.
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Introduction

Liver cancer is one of the most commonly diagnosed can-
cers and the fourth leading cause of cancer death world-
wide, with about 841,000 new cases and 782,000 deaths 
annually.1–3 Its prognosis remains dismal, although much 
progress has been made in both surgical and nonsurgical 
interventions over the past several decades. Due to the 
impact of liver cancer, a scoring system that can predict 
patient survival and inform accurate drug administration is 
urgently needed. Supported by recent progress in genetic 
profiling, including genomic microarrays and high-through-
put sequencing technology in combination with bioinformat-
ic analyses, we can now more readily identify targets for 
clinical treatment and prognostic prediction.

Liver cirrhosis caused by persistent viral infections (i.e. 
the hepatitis B and C viruses), which leads to cellular dam-
age and altered tissue regeneration and inflammatory mi-
croenvironments, is currently the most significant risk factor 
for developing hepatocellular carcinoma (HCC).4–7 As early 
as 1986, the interesting phenomenon was noted that many 
of the same signal transduction pathways were involved in 
both tumorigenesis and wound healing.8 Subsequent stud-
ies confirmed that the similarities between tumorigenesis 
and wound healing include fibroblast recruitment and acti-
vation,9–13 extracellular matrix component deposition,14–16 
infiltration of immune cells,17–20 neovascularization,21–23 
and cellular lineage plasticity.24–26 Although there are some 
specific links between tumorigenesis and wound healing, 
the underlying mechanisms remain unclear. Fortunately, 
high-throughput bioinformatics may open a new avenue by 
which we may better understand these processes. In the 
present study, we used The Cancer Genome Atlas (TCGA), 
the International Cancer Genome Consortium (ICGC), and 
the Gene Expression Omnibus (GEO) database to generate 
a nomogram for evaluating the prognosis of HCC patients.
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Methods

HCC data sources and preprocessing

Public gene expression data and clinical annotations were 
collected from the TCGA and ICGC databases. Patients with-
out survival information were excluded. A TCGA-LIHI cohort 
(369 samples) and an ICGC-LIRI-JP cohort (225 samples) 
were enrolled in this study. FPKM-normalized, log2-trans-
formed RNA expression data and clinical demographic data 
were downloaded from the respective websites (https://
icgc.org/, https://portal.gdc.cancer.gov/). These data were 
then merged to form a single metacohort after batch effect 
removal using the “sva” R package.

Unsupervised clustering of wound healing-related 
genes

A total of 565 wound healing-related genes were identi-
fied by mining Molecular Signature Database (MSigDB). 
Clustering was performed on the metacohort generated by 
merging the TCGA-LIHC and ICGC-LIRI-JP cohorts. The R 
package “Nbcluster” was used to determine the optimum 
number of clusters. The R package “Kmeans” was used to 
perform k-means clustering and to assign the clusters.

Gene set variation analysis (GSVA) and functional 
annotation

To investigate the differences in the biological processes 
between clusters with different healing patterns, we per-
formed GSVA enrichment analysis using the “GSVA” R pack-
age. GSVA is a non-parametric and unsupervised method 
that is commonly used to estimate variation in pathways 
and biological processes in samples from expression data-
sets. The KEGG, GOBP, and HALLMARK gene sets were 
downloaded from the MSigDB database for use in the GSVA 
analysis. Adjusted p values less than 0.05 were considered 
statistically significant. The “cluster Profiler” R package was 
used to perform functional annotation for the m6A gene sig-
nature or other genes with an FDR cutoff less than 0.05.

Identification of differentially expressed genes 
(DEGs) between clusters with different healing pat-
terns

To identify relevant wound healing-related genes, the em-
pirical Bayesian approach included in the “limma” R pack-

age was used to identify DEGs between the different healing 
pattern clusters. The significance criteria for a DEG were 
set as an adjusted p value less than 0.05 and a log2-fold 
change greater than 1 or less than -1. Functional DEG anno-
tation was performed with the “cluster Profiler” R package.

Generation of the heal.immune gene signature and 
heal.immune risk scores

We defined the heal.immune score for prognosis prediction 
based on the metacohort (merged TCGA-LIHC and ICGC-
LIRI-JP cohorts) consisting of 594 samples with complete 
overall survival (OS) data. The meta cohort was randomly 
divided into a training set (70%) and a validation set (30%). 
Sixty wound healing-related genes with fold-changes great-
er than 1 or less than -1 between the two healing pattern 
clusters and twenty-five immune checkpoint-related genes 
(ICGs) were included for in silico signature development. A 
stepwise Cox estimation of high/low-stratified gene expres-
sion data was used to assess the prognostic value of the 
signature genes and to determine which genes to include in 
the heal.immune gene signature. Univariate Cox estimation 
excluded 25 genes with p values greater than 0.05, leaving 
61 genes for subsequent multivariate Cox estimation. Fifty-
five additional genes with p values greater than 0.02 were 
excluded via multivariate Cox estimation, leaving FCER1G, 
PLAT, ITGA5, CCNB1, CD86 and CD40 to be included in the 
heal.immune gene signature. Heal.immune risk scores were 
calculated as follows: 

heal.immune risk score = 0.7701082 * f(FCER1G)  
− 0.6348783 * f(PLAT) + 1.1085626 * f(ITGA5)  

+ 0.8197798 * f(CCNB1) -0.7765288 * 
f(CD86) + 0.5306283 * f(CD40)
f(gene) = 0 (gene ≤ cutpoint) 
f(gene) = 1 (gene > cutpoint)

The cutpoint of each gene was determined via the “Surv_
cutpoint” function from survival package in R.

For the calculation of the heal.immune risk score in the 
validation group, a similar algorithm was applied, with 2−ΔCT 
, instead of 0 or 1 as f (gene) value for each risk gene. The 
CT value of actin in each sample was used as a reference.

Validation the prognostic value of heal.immune gene 
signature in clinical samples

A total of 74 patients, as an outer validation group, were en-
rolled in this study that were from the Huashan Hospital of 
Fudan University between 2015 and 2017. All clinical sam-
ples were collected with informed consent from patients, 
and the research was approved by the Ethics Committee 
of Huashan Hospital, Fudan University (Shanghai, China).

Table 1.  Primer sequences of the heal.immune gene set

Gene Forward primer Reverse primer

FCER1G AGCAGTGGTCTTGCTCTTACT TGCCTTTCGCACTTGGATCTT

PLAT AGCGAGCCAAGGTGTTTCAA CTTCCCAGCAAATCCTTCGGG

ITGA5 GGCTTCAACTTAGACGCGGAG TGGCTGGTATTAGCCTTGGGT

CCNB1 TTGGGGACATTGGTAACAAAGTC ATAGGCTCAGGCGAAAGTTTTT

CD86 CTGCTCATCTATACACGGTTACC GGAAACGTCGTACAGTTCTGTG

CD40 ACTGAAACGGAATGCCTTCCT CCTCACTCGTACAGTGCCA

β-actin GGACCTGACTGACTACCTCAT CGTAGCACAGCTTCTCCTTAAT

All these primer sequences were from PrimerBank (https://pga.mgh.harvard.edu/primerbank).

https://icgc.org/
https://icgc.org/
https://portal.gdc.cancer.gov/
https://pga.mgh.harvard.edu/primerbank
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RNA extraction and cDNA synthesis

Frozen tumor specimens were manually ground in liquid 
nitrogen using a mortar and pestle, instantly transferred 
into the lysis buffer, and homogenized using a needle and 
syringe. Total RNA was extracted using AllPrep DNA/RNA 
Mini kit (Qiagen, Hilden, Germany), according to manufac-
turer’s instructions. The quantity and quality of isolated RNA 
samples were determined by microliter spectrophotometer 
(ThermoFisher, Waltham, MA, USA). Afterwards, 1 µg of to-
tal RNA was converted into 200 µL of cDNA using the Prime-
Script™ RT Reagent Kit (TaKaRa Bio, Shiga, Japan) accord-
ing to the manufacturer’s instruction.

Real-time qPCR

The 10 µL reaction contained 5 µL TB Green Mix (TB Green 
Premix Ex TaqII; TaKaRa Bio), 0.2 µL ROX, 2 µL ddH2O, 2 
µL cDNA template, and 0.4 µL of each primer (forward and 
reverse). Amplification and detection were performed using 
the ABI PRISM 7900 Sequence Detection System (Applied 
Biosystems Inc., Foster City, CA, USA). The real-time qPCR 
primer sequences used are provided in Table 1. Conditions 
for amplification were 95°C for 30 s, followed by 40 cycles 
of 95°C for 5 s, and 60°C for 30 s.

Immunohistochemical staining

For immunohistochemistry (IHC), 5-µm paraffin-embedded 
sections of patient/mice tumors were baked at 60°C for 1 
h, deparaffinized in xylene, and rehydrated in a graded se-
ries of ethanol solutions. Antigens were unmasked by mi-
crowave heating of the samples in 10 mM sodium citrate 
buffer (pH 6.0) for 15 m (5 m each for 3 times), and the re-
action was quenched using hydrogen peroxide (3%). After 
washing with phosphate-buffered saline, samples were in-
cubated with the following primary antibodies, respectively, 
at 4°C overnight: anti-FCER1G (A12889; ABclonal, Woburn, 
MA, USA), anti-CD86 (A1199; ABclonal), anti-CyclinB1 
(A19037; ABclonal), anti-TPA (10147-1-AP; Proteintech, 
Rosemont, IL, USA), anti-ITGA5 (27224-1-AP; Proteintech), 
or anti-CD40 (66965-1-Ig; Proteintech). DAB (3,3′-diami-
nobenzidine) was used as a detection system.

Nomogram construction

Of the 594 samples in the metacohort, 524 had complete 
clinical annotations. Table 2 summarizes the baseline clini-
cal demographics. Samples were randomly divided into a 
training set (70%) and a validation set (30%). A nomogram 
was constructed to predict 1-, 3- and 5-year survival via a 
multivariate Cox regression model including high-low-strat-
ified heal.immune risk score, TNM stage, sex, and age as 
variates in the “rms” R package. The accuracy of the nomo-
gram’s predictive power was assessed via calibration and 
receiver operating characteristic (ROC) curves.

Results

Identification of two healing patterns in HCC

A total of 565 wound healing-related genes reported in the 
Gene Ontology (GO) biological process database from the 
MSigDB were identified and used in this study. Genetic varia-

tion analysis showed that wound healing-related genes were 
rarely mutated, except for TP53 (Supplementary Fig. S1). 
We first compared the healing patterns between tumor and 
nontumor liver tissue to investigate healing dysregulation in 
HCC. We found a significant difference in the gene expression 
patterns in these tissue types (Fig. 1A). To better visualize 
this effect, we used principle component analysis to reduce 
the dimensionality of the data such that tumor and normal 
tissue could be categorized into two ellipses (Fig. 1C).

After batch effect removal, two large cohorts of RNA se-
quencing expression data, i.e. the TCGA_LIHC and ICGC_
LIRI_JP cohorts, were combined into one metacohort con-
taining 594 samples. Based on the expression levels of wound 
healing-related genes and k-means clustering, we identified 
two optimized patterns, which we named “healing cluster 1” 
(C1) and “healing cluster 2” (C2). C1 and C2 comprised 501 
and 93 HCC samples, respectively (Fig. 1B). The expression 
levels of wound healing-related genes in C1 were much high-
er than those of C2. Kaplan-Meier curves showed that C1 pa-
tients had a relatively better OS compared with C2 patients 
(log-rank p test=0.016; Fig. 1D). These observations sug-
gest that the expression patterns of wound healing-related 
genes can be used in HCC classification and prognostication.

C1 and C2 patterns differ in their associated biologi-
cal processes

Next, we checked for differences in the biological processes 
of C1 and C2 by comparing the GSVA enrichment scores of 

Table 2.  Clinical traits of the meta-cohort used for nomogram construc-
tion

TCGA ICGC Metacohort

Age in years

    >60 195 148 326

    <60 165 39 198

    Unknown 3 0

Sex

    Male 245 140 277

    Female 118 47 247

    Unknown 0 0

Stage

    I 170 29 198

    II 84 81 164

    III 81 65 146

    IV 4 12 16

    Unknown 24 0

Event

    Alive 233 152 375

    Dead 130 35 149

    Unknown 0 0

Risk score

    High 174 98 263

    Low 189 89 261

TCGA, The Cancer Genome Atlas; ICGC, International Cancer Genome Consor-
tium.
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gene sets from MSigDB. We found that the biological pro-
cesses associated with C2 were enriched for immune cell 
accumulation and immune response (Fig. 2A). Functional 
annotation of the genes upregulated in C2 reinforced this 
finding (Fig. 2C). In C1, the enriched biological processes 

and functional annotation pointed to metabolism (Fig. 2B, 
D). Based on the above functional annotation, we compared 
the stromal scores, immune scores, tumor purity, and the 
inflammatory response to wounding enrichment scores of C1 
and C2, and we found statistically significant differences in all 

Fig. 1.  Identification of two healing patterns in HCC. (A) The DEGs between tumor and para-tumor normal tissue. (B) Two distinct healing patterns in HCC based 
on wound healing-related genes. (C) Principle component analysis of the wound healing-related genes showing disunity between tumor and para-tumor normal tissue. 
(D) Kaplan-Meier curve of the OS of C1 and C2. Log-rank test p=0.016. HCC, hepatocellular carcinoma; DEGs, differentially expressed genes; OS, overall survival.
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cases (Fig. 2E–H). These results indicate that wound healing 
processes, especially a wound healing-associated inflamma-
tory response, are differentially regulated in the two clusters.

HCC healing clusters are correlated with immune 
infiltration

To explore the differences between the C1 and C2 tumor 
microenvironments, we investigated immune cell infiltra-
tion and immune-related gene expression to characterize 
the immunological landscape. First, the numbers of eight 
types of infiltrated stromal cells were calculated using a 
microenvironment cell population counter (also known as 
an ‘MCP’ counter). Significantly higher numbers of stromal 
cells and immune cells, i.e. T cells, lymphocytes, natural 
killer cells, monocytes, dendritic cells, neutrophils and en-
dothelial cells, were observed in C2 than in C1 (Fig. 3B). 

Notably, fibroblasts robustly accumulated in C2, consistent 
with the higher expression levels of wound healing-related 
genes. Furthermore, C2 exhibited higher expression levels 
of ICGs (Fig. 3D).

Among 565 healing-related genes, 60 were differentially 
expressed in the two clusters. Hierarchical clustering of the 
DEGs and ICGs partitioned them into two sets with distinct 
expression patterns (Fig. 3A). We analyzed the correlation 
between the two sets and found a significant positive cor-
relation between the DEGs and ICGs (Fig. 3C). Collectively, 
these results suggest that the two HCC healing clusters 
have distinct immune microenvironments.

Development of the heal.immune score and valida-
tion of its prognostic value

As described above, we demonstrated that wound heal-

Fig. 2.  C1 and C2 patterns differ in their associated biological processes. (A–B) Biological processes in C1 and C2 derived by comparing the GSVA enrichment 
scores of gene sets from the MSigDB. (C–D) Functional annotation of DEGs overexpressed in C1or C2 based on the GO biological process database. (E–H) Comparisons 
of the C1 and C2 stromal scores, immune scores, tumor purity, and enrichment scores of the inflammatory response to wounding. GSVA, gene set variation analysis; 
MSigDB, Molecular Signature Database; DEGs, differentially expressed genes.
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ing-related genes were associated with patient outcomes. 
Next, we aimed to devise a scoring system based on the 
wound healing- and immune checkpoint genes to predict 
HCC prognosis. The expression values of the genes were 
replaced with a stratification of high/low via a customized 
cutoff established using the “survival” R package. First, 565 
wound healing-related genes (based on GO) and 25 ICGs 

were considered. Of these, 505 genes with fold-changes 
less than 2 between the clusters were discarded. A step-
wise Cox estimation analysis was further used to narrow the 
gene list. Ultimately, six genes with p values less than 0.02 
in the multivariate Cox estimation, including FCER1G, PLAT, 
ITGA5, CCNB1, CD86 and CD40, were used in the heal.im-
mune gene set and established a scoring system (Fig. 4A). 

Fig. 3.  HCC healing clusters are correlated with immune infiltration. (A) Heatmap showing the expression levels of 60 differentially expressed wound healing-
related genes and 25 ICGs. (B) Differences in the abundance of eight types of infiltrated stromal cells in C1 and C2. (C) Correlations between the differentially expressed 
wound healing-related genes and ICGs. (D) The expression level differences of 25 ICGs between C1 and C2. HCC, hepatocellular carcinoma; ICG, immune checkpoint-
related gene.
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Fig. 4.  Development of the heal.immune score and validation of its prognostic value. (A) Flow chart of the procedure to develop the heal.immune risk score. 
Via stepwise Cox estimation, six genes were chosen as a gene signature to calculate the heal.immune risk score. (B) The expression levels of the risk score genes 
in HCC. (C) The correlation of the six genes; red indicates ICGs and blue indicates wound healing-related genes. (D) The heal.immune scores of C1 and C2. (E–F) 
Multivariate Cox estimation of the six genes as OS risk factors in meta-cohort (validation group) (E) and another independent Fudan cohort (F). (G–H) Kaplan-Meier 
curve of showing the OS between heal.immune score high group and low group in meta-cohort (validation group) (G) and another independent Fudan cohort (H). (I) 
The represent images of immunohistological staining (FCER1G, CD86, CD40, ITGA5, TPA, CyclinB1) in heal.immune score high group or low group. HCC, hepatocel-
lular carcinoma; ICG, immune checkpoint-related gene; CD40, Tumor Necrosis Factor Receptor Superfamily Member 5ECM, extracellular matrix; CD86, B-Lymphocyte 
Activation Antigen B7-2; FCER1G, Fc Fragment Of IgE Receptor Ig; ITGA5, Integrin Subunit Alpha 5.
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Based on univariate Cox estimation, risk scores, referred 
as heal.immune score, were calculated by adding the log 
(HR, Hazard ratio) of each gene multiply its value (1 for 
high, 0 for low), and the results were categorized as high 
risk or low risk using the median value as a cutoff (Fig. 4B, 
D). These genes have high expression heterogeneity in HCC 
and low correlation among themselves (Fig. 4C). We divided 
the 594 patients of the metacohort into a training group 
(70%) and a validation group (30%). Cox estimation veri-
fied the six-gene set as an OS risk factor in validation group 
(Fig. 4E). Moreover, the heal.immune score was highly re-
lated to healing cluster and patient OS. Kaplan-Meier curves 
showed that patients in the heal.immune score high group 
had much shorter OS compared with those in the low group 
of the validation group (Fig. 4G). Moreover, we validated 
the heal.immune gene set in the independent cohort from 
Huashan Hospital, Fudan University. The Fudan validation 
cohort verified the six-gene set as an OS risk factor (Fig. 
4F). As shown in Figure 4H, the heal.immune gene set can 
also effectively discriminate the risk of OS. The IHC stain-
ing of heal.immune gene set of two patients with highest 

or lowest heal.immune score revealed a distinct expression 
between the two groups, which is consistent to the qPCR 
result (Fig. 4I).

Establishment of a nomogram using the heal.im-
mune score in combination with clinical traits

The 524 (out of 594) patients with full clinical data were 
enrolled for nomogram construction. The baseline charac-
teristics of the patients are shown in Table 2. The patients 
were divided into a training cohort (70%) and a validation 
cohort (30%). Multivariate and univariate Cox estimation 
showed that age, sex, TNM stage, and heal.immune score 
were independent risk factors for HCC (Table 2). A prog-
nostic model constructed by fitting previous risk factors 
into a multivariate Cox model (Fig. 5C) confirmed that the 
heal.immune score is an independent risk factor for OS in 
HCC patients. Based on the strength of the multivariate Cox 
model, a nomogram integrating heal.immune score, age, 
sex, and TNM stage was constructed (Fig. 5A). A gross 

Fig. 5.  Establishment of a nomogram using the heal.immune score in combination with clinical traits. (A) Nomogram predicting 1-, 3- and 5-year OS of HCC 
patients. (B) Calibration curve for the nomogram predicting 3- and 5-year OS. (C) Multivariate Cox regression results of the risk factors used to develop the nomogram. 
(D and E) The AUC of the ROC curves using the nomogram to predict 1-,3- and 5-year OS in the training data and in the validation data. AUC, HCC, hepatocellular 
carcinoma; OS, overall survival; ROC, receiver characteristic operator.



Journal of Clinical and Translational Hepatology 2022 vol. 10(5)  |  891–900 899

Hu B. et al: A novel prognostic nomogram for hepatocellular carcinoma

score was calculated by adding up all of the points. The 
calibration curve for predicting 3- and 5-year OS indicated 
that the nomogram-predicted survival closely corresponded 
with actual survival outcomes (Fig. 5B). For predicting 1-, 
3- and 5-year survival, the area under the curve (AUC) val-
ues of the ROC curves were 0.82, 0.76 and 0.73 (Fig. 5D) 
in the training group and 0.84, 0.76 and 0.72 in the test 
group (Fig. 5E). This new nomogram based on age, sex, 
TNM stage, and heal.immune score provides a relatively ac-
curate tool for predicting survival in HCC patients.

Discussion

Although HCC has been studied in great detail, methods for 
early diagnosis as well as treatment effects and prognosis 
have not been well characterized. For diagnosis and treat-
ment, it is necessary to further understand its molecular 
mechanism of occurrence and progression. Thanks to ad-
vances in high-throughput sequencing technology, the rela-
tionships between genetic changes and immune infiltration 
and the occurrence and progression of diseases can be ana-
lyzed to obtain important bioinformatics-derived data that 
can be used for diagnosis, treatment, and prognosis.

It is widely recognized that there are biological similari-
ties between wound healing and cancer features and pro-
gression; for example: lymphocyte infiltration in wound 
healing and tumor microenvironments; dermal cell migra-
tion and crawling in wound healing and epithelial-mesen-
chymal transition; wound healing- and cancer-associated 
fibroblast activation; and extracellular matrix (ECM) remod-
eling, which occurs during both processes. Unfortunately, 
these biological similarities have not attracted the attention 
of most researchers, especially in the HCC field. These two 
processes are distinctive to a degree. A key difference be-
tween wound healing and cancer is that wound healing is a 
self-limiting process, whereas tumors continue to expand, 
evolve, and spread. This difference is related to differences 
in the composition of the microenvironment. During wound 
healing, once re-epithelialization is complete, inflammation 
disappears, but this is not the case during tumorigenesis.

Here, we describe the analysis of a sample of 594 pa-
tients in TCGA and ICGC cohorts. By comparing the expres-
sion levels of 565 wound healing-related genes between 
HCC and normal tissue, we found that most genes were 
dysregulated in HCC, i.e. they differed in healing pattern, 
albeit with etiological similarity. We clustered patients into 
the C1 and C2 healing clusters based on the expression 
levels of wound healing-related genes. Interestingly, there 
were clear correlations between healing pattern and the de-
gree of immune infiltration as well as the proportions of im-
mune cells. Defying our expectation, the degree of immune 
cell infiltration was negatively correlated with OS.

Normally, the MHCI/II complexes of antigen-presenting 
cells display exogenous or endogenous antigens for detec-
tion by T cell surface receptors, thereby activating an im-
mune response that kills target cells.27–29 However, T cells 
are also regulated by co-inhibitory signals that have nega-
tive effects on T cell activity, proliferation and survival, thus 
preventing excessive immune activation.30–32 Such opposing 
pathways represent a sophisticated self-protective mecha-
nism. These immunosuppressive molecules, called immune 
checkpoints, are profoundly intertwined with tumor occur-
rence and progression. These factors help tumors evade the 
immune system and induce immune tolerance,33–35 thereby 
rendering large numbers of tumor-infiltrated immune cells 
ineffective at combatting tumors. Our current findings re-
flect this phenomenon. Twenty-five ICGs were found to be 
highly expressed in C2 patients. From an alternative per-
spective, C2 patients may benefit from immunotherapy, and 

immune checkpoint inhibitors may improve their prognosis.
Via stepwise Cox estimation, we established FCER1G, 

PLAT, CCNB1, CD40, CD86 and ITGA5 as a gene signature 
to calculate the heal.immune risk score. FCER1G encodes a 
high-affinity IgE receptor associated with leukocyte infiltra-
tion in dermatitis, and it plays a key role in allergic reac-
tions.36,37 In neoplasms, the function of FCER1G remains 
elusive; however, in renal cell carcinoma and multiple my-
eloma, FCER1G upregulation leads to cancer generation and 
development via interactions with immune cells.38,39 PLAT 
encodes a fibrinolytic enzyme that plays a role in cell migra-
tion and tissue remodeling.40–42 CCNB1 encodes cyclin B1, 
which promotes cell proliferation and tumor growth in vari-
ous human cancers.43–45 ITGA5 encodes an integrin family 
member. Extensive research has revealed that integrins me-
diate multiple pathological processes, including thrombotic 
disease, infectious diseases, inflammation, fibrosis, and 
cancer, by mediating cellular adhesion to the ECM and en-
gaging and activating downstream signaling pathways.46–50 
Collectively, these risk genes are critically positioned to 
regulate immune cell infiltration, ECM remodeling, cell cycle 
regulation and cell-ECM interactions. Further exploration of 
their functions in HCC is urgently needed.

Finally, we established age, sex, TNM stage, and heal.
immune score as independent prognostic risk factors based 
on multivariate and univariate Cox models, and these fac-
tors were incorporated into a nomogram. We confirmed the 
reliability of this scoring system by evaluating prognosis in 
the validation cohort. In this study, we integrated, for the 
first time, wound healing-related genes and ICGs to devise 
a metric to predict HCC prognosis, and we showed that this 
approach has good accuracy. The nomogram described here 
might serve as a new tool for clinical diagnosis and treat-
ment.
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