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White L. vannamei have become the most widely cultivated shrimp species

worldwide. Cultivation of L. vannamei is one of the predominant sectors in

China’s aquaculture industry. This study focused on the physiological and

biochemical responses, differential protein expression, and expression

characteristics of the related crucial functional protein genes under low

oxygen conditions among different strains of L. vannamei. It was found that

6 h of hypoxic stress caused a significant reduction in the total hemocyte

number in both strains, while the hypoxia-sensitive strain showed a stronger

reduction. In contrast, the hemocyanin concentration showed only an overall

upward trend. Proteomic analysis of L. vannamei muscle tissue revealed

3,417 differential proteins after 12 h of hypoxic stress. Among them,

29 differentially expressed proteins were downregulated and 244 were

upregulated in the hypoxia-sensitive strain. In contrast, there were only

10 differentially expressed proteins with a downregulation pattern and

25 with an upregulation pattern in the hypoxia-tolerant strain. Five protein

genes that responded significantly to hypoxic stress were selected for

quantitative real-time PCR analysis, namely, hemocyanin, chitinase, heat

shock protein 90 (HSP 90), programmed death protein, and glycogen

phosphorylase. The results showed that the gene expression patterns were

consistent with proteomic experimental data except for death protein and

glycogen phosphorylase. These results can enrich the general knowledge of

hypoxic stress in L. vannamei and the information provided differentially

expressed proteins which may be used to assist breeding programs of L.

vannamei of new strains with tolerance to hypoxia.
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Introduction

Dissolved oxygen (DO) is an important factor in the aquatic

environment and an indicator of water quality. The

concentration of DO in water is normally approximately

6 mg/L, while lower than 2.8 mg/L is referred hypoxia (Diaz

and Rosenberg 1995). Global climate change and human

activities intensified hypoxic conditions in marine ecosystems

especially in coastal areas around the world (Breitburg et al.,

2018). The expansion of hypoxic areas in the open ocean and

coastal waters are expected to continue and will have a great

impact on the ecosystem and biodiversity (Keeling, Kortzinger

and Gruber 2010).

Animal responses to hypoxic stress are divided into

physiological, biochemical, and behavioral responses. A

physiological response includes changes in heart rate,

respiratory metabolism, cell proliferation, and apoptosis,

hemocyanin level, immune response, antioxidant capacity, and

osmotic regulation ability. Hypoxic environments may also alter

the expression of certain genes that subsequently leads to a series

of biochemical and physiological responses, which allow

organisms to survive in such conditions.

It’s been reported that hypoxia can elicit adverse effects on

the behavior, growth, development, respiration, metabolism,

immunity, DNA damage, and gene expression of aquatic

organisms (Levin et al., 2009; Guadagnoli, Tobita and Reiber

2011; Zhou et al., 2014; Li et al., 2016). Various studies found that

the rate of growth, weight gain, and feed utilization in channel

catfish (Ictalurus punctatus), Atlantic cod (Gadus morhua), fish

(Leporinus elongates), and silver catfish (Rhamdia quelen) were

decreased under hypoxic conditions (Buentello et al., 2000;

Chabot and Biology. 2005; Filho et al., 2005; Riffel et al.,

2014). An extensive study of red-eared turtles under hypoxic

stress revealed changes in carbohydrate metabolism and the

antioxidant defense system. Along with the increase in

hypoxic duration, the contents of lactic acid and blood

glucose in the blood increased rapidly, while the glycogen in

skeletal muscle and liver was gradually consumed (Ye et al.,

2011).

According to a report by Gray, Wu and Ying (2002), the

anoxic resistance of aquatic animals decreases in the following

order: mollusks, annelids, echinoderms, crustaceans, and fish.

Shrimp and other marine invertebrates lack adaptive immune

mechanisms and rely on innate immune responses to cope with

environmental stress (Tassanakajon et al., 2018). Currently,

research on the effects of hypoxia on prawns and other

crustaceans is mainly focused on changes in innate immune

system parameters, such as total hemocyte counts (THCs) and

hemocyanin concentrations (HCs), which could reveal possible

adaptations to hypoxic conditions. Chen et al. found that the

THC of scallop (Chlamys farreri) gradually and significantly

decreased with a decline in the DO level to 2.5 mg/L (Chen

et al., 2007). A similar study was performed on freshwater prawn

(Macrobrachium rosenbergii) and revealed a reduction in THC

by 36% after 12 h in a 2.75 mg/L DO concentration environment

(Cheng and Chen 2000). In response to hypoxia, shrimp can

increase their HC to maintain oxygen transport. In a related

study, two strains of L. vannamei had significantly decreased

THCs under hypoxic stress, while having significantly increased

HCs (Wei Y et al., 2016).

The rapid development of proteomics technology in

recent years has allowed its wide application in the study of

aquatic crustacean pathogen infection (Chongsatja et al.,

2007; Wang et al., 2007). For example, a combination of

two-dimensional (2-DE) electrophoresis, mass

spectrometry, and bioinformatics tools was used to discover

the major allergen of freshwater prawn (Macrobrachium

rosenbergii) (Yadzir et al., 2012). However, only a few

studies have reported the hypoxic stress response in

crustaceans using this approach, one of which is the

investigation of hypoxia effects on oriental river prawn

(Macrobrachium nipponense) muscle proteome using a 2D-

gel-based proteomics approach coupled with mass

spectrometry (MS) (Sun et al., 2016).

In marine crustaceans, changes in gene expression often

underlie or reflect key physiological and biochemical

acclimations to hypoxia, which has been verified by global

transcriptome profiling by microarrays (Li and Brouwer,

2013). Crustaceans also respond to hypoxia by altering

levels of respiratory pigments, antioxidant proteins, and

enzymes involved in glycolysis, amino acid and nucleotide

metabolism (Brouwer et al., 2004; Abe et al., 2007; Jiang

et al., 2009). Particularly, the glycolytic enzymes hexokinase

(HK), phosphofructokinase (PFK), lactate dehydrogenase

(LDH) (Cota-Ruiz et al., 2015; Ulaje et al., 2019), and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

(Camacho-Jim´enez et al., 2018) can be induced

differentially in tissues of L. vannamei in response to

hypoxia.

L. vannamei is one of the main species in the global shrimp

aquaculture business with important economic value. However,

due to the rapid economic development of coastal zones, the

higher frequency of hypoxia caused an increase in expenses for

rearing diets. Hypoxia has become one of the major problems

that affect the normal growth and development of L. vannamei,

and it seriously restricts the sustainable aquaculture of the

species.

Additionally, the muscle tissue of L. vannamei takes up most

of the body mass and uses a lot of oxygen, however, the responses

of shrimpmuscle tissues to hypoxia remain unknown. Therefore,

deep investigation of the hypoxia stress response of muscle tissue,

THC, HC and related genes, which can not only enrich a general

understanding of the hypoxia effect and mechanisms of hypoxia

tolerance, but also can provide novel insights into the assisting

breeding of new shrimp strains with higher resistance to low

oxygen conditions.
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Materials and methods

Shrimp and hypoxia stress

The shrimp (13 ± 0.5 cm) used in the experiment were all

from Hainan Guangtai Marine Culture Co., Ltd. (Wenchang

City, Hainan Province, China). Only shrimp in the inter-molt

stage and similar size of juvenile shrimp were used in the

experiments. Before the formal experiment, they were

acclimated in the aquarium for 3 days, during which the

seawater salinity was 1.9% ± 0.2%, the pH value was 8.1 ±

0.2, and the temperature was 27°C ± 1°C. Food was given

twice a day (no feeding during molting and hypoxic stress),

and half of the seawater was changed in the bucket every day. The

content of DO under hypoxic stress was 0.5 ppm, and the stress

times were 0 p.m., 3 p.m., 6 h, and 12 h. The level of dissolved

oxygen was maintained by filling the barrel with nitrogen.

Two different strains of L. vannamei, namely Zhengda and

A6410 were selected for this study. The former is hypoxia-

sensitive strain and the latter is hypoxia-tolerant strain. Study

has shown that the HIF-1 (Hypoxia-inducible Factor 1)

expression quantity of the strain Zhengda was always higher

than strain A6410 in the whole phase of hypoxia, the

A6410 strain did not need more HIF-1 expression to regulate

target genes to deal with hypoxic stress compared to strain

Zhengda at the same level of hypoxia, which indicated that

strain A6410 has better hypoxia tolerance than strain Zhenda

(Wei L et al., 2016).

Hemolymph collection and measuring of
total hemocyte counts and hemocyanin
concentrations

Three shrimps were randomly selected from each replicate,

and there have three replicates at different hypoxia treatments,

which used to measure the parameter of THC and HC.

Pericardial blood was drawn from shrimp with a 1 ml syringe

and mixed with anticoagulants (30 mM trisodium citrate, 0.34 M

sodium chloride, 10 mM EDTA, and 0.115 M glucose) of the

same volume on the ice. A hemolymph volume of 10 µl was

absorbed by a microtransfer gun and counted under a light

microscope, and the appropriate amount of hemolymph was

centrifuged at 4°C and 5,000×g for 10 min. Then, 100 µl

supernatant was taken and mixed with 2,900 µl of buffer

solution (50 mM Tris, 10 mM CaCl2, and pH = 8.0). The

absorbance values of the diluted plasma were measured at

335 nm using a UV spectrophotometer (1 cm path length)

(PerkinElmer Lambda 25). The hemocyanin concentration

(unit: mg.ml−1) was calculated using the following formula:

E335 nm (mg.ml−1) = 2.3×OD335 nm (E stands for HC; 2.3 is

the extinction coefficient of hemocyanin for mg.mL−1) (Yang and

Pan 2013; Wei Y et al., 2016).

Protein extraction and digestion

Themuscle of the three individuals from each treatment were

mixed equally, so total nine samples for each group were

subjected to protein extraction. The muscle tissues of two

strains of L. vannamei after 0 h and 12 h hypoxia were

selected respectively as proteomics experimental materials. For

the convenience of bioinformatics analysis of data, the samples of

hypoxia with 0 h were defined as control I and experiment I

respectively. Correspondingly, samples of hypoxia with 12 h were

defined as control II and experiment II respectively. The sample

was ground with liquid nitrogen, transferred to precooled

cracking buffer (8 M urea, 40 mM Tris-HCl or TEAB with

1 mM PMSF, 2 mM EDTA, and 10 mM DTT, pH = 8.5), and

ultrasonically treated for 2 min to release proteins. After

centrifugation at 25,000×g for 20 min at 4°C, the supernatant

was transferred to a new test tube, reduced with 10 mM

dithiothreitol (DTT) at 56°C for 1 h, and alkylated for 45 min

in the dark with 55 mM iodoacetamide (IAM) at room

temperature. After centrifugation (25,000×g, 4 °C, 20 min), the

protein-rich supernatant was quantified by a standard Bradford

protein assay. The extracted protein samples were analyzed by

SDS–PAGE electrophoresis with Coomassie brilliant blue gel

staining. The protein solution (100 µg) with 8 M urea was diluted

4-fold with 100 mM TEAB. Trypsin Gold (Promega, Madison,

WI, United States) was used to digest the proteins at a protein:

trypsin ratio of 40:1 at 37°C overnight. After trypsin digestion,

peptides were desalted with a Strata X C 18 column

(Phenomenex) and vacuum-dried according to the

manufacturer’s protocol.

Labeling and grading of polypeptides

After trypsin digestion, the peptides were dissolved by adding

30 µl of 0.5 M TEAB, and the iTRAQ labeling reagents were

transferred and combined with samples at room temperature.

Peptide labeling was performed using the iTRAQ reagent 8-Plex

kit, according to the manufacturer’s operating procedures.

Labeled peptides of different reagents were desalted with a

combination of Strata X C18 columns (Phenomenex) and

vacuum-dried according to manufacturer specifications. The

peptides were separated by the Shimadzu LC-20AB HPLC

Pump system coupled with a high pH RP column. The

peptides were reconstituted with buffer A [ACN:H2O (1:19),

pH = 9.8 adjusted with ammonia] to a total volume of 2 ml and

loaded onto a column containing 5 μm particles (Phenomenex).

The peptides were separated at a flow rate of 1 ml/min in the

following sequence: 5% buffer B [H2O:ACN (1:19), pH =

9.8 adjusted with ammonia] for 10 min, 5%–35% buffer B for

40 min, and 35%–95% buffer B for 1 min. The system was

maintained in 95% buffer B for 3 min and then in 5% buffer

B for 1 min before equilibration with 5% buffer B for 10 min.
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Elution was monitored by measuring the absorbance at 214 nm,

and its fractions were collected every minute. The eluted peptides

were pooled as 20 fractions and dried by vacuum.

HPLC analysis

Each fraction was resuspended in buffer A (2% ACN and

0.1% FA in water) and centrifuged at 20,000×g for 10 min. The

supernatant was loaded onto a C18 trap column at 5 μl/min for

8 min using an LC-20AD nano-HPLC instrument (Shimadzu,

Kyoto, Japan) by an autosampler. The peptides were eluted with a

trap column and then separated by an analytical C18 column

(inner diameter 75 μm) packed in-house. The gradient was run at

a rate of 300 nl/min starting with 8%–35% buffer B (2% H2O and

0.1% FA in ACN) for 35 min and then 60% buffer B for 5 min

followed by 80% buffer B for 5 min. At the final stage, 5% buffer B

was used for 0.1 min and equilibrated for 10 min.

Bioinformatics analysis

High-resolution mass spectrometry data were used for

further analysis. The DDA data were evaluated using

MaxQuant’s integrated Andromeda engine with further

spectrum library generation with Spectronaut. For large-scale

DIA data, Spectronaut was used constructed spectral database

information to complete deconvolution extraction of data, and

the mProphet algorithm was used to complete quality control of

data analysis by obtaining a large number of reliable quantitative

results. GO, COG, and pathway annotation analysis were also

performed during this step. The cohort of differentially expressed

proteins among different comparison groups was identified

based on these results.

Total RNA extraction, reverse
transcription, and quantitative real-
time-PCR

Themuscle of the three individuals from each treatment were

mixed equally, so total nine samples for each group were

subjected to total RNA extraction. The muscle tissues of two

strains of L. vannamei after 0 h and 12 h hypoxia were selected

respectively as the experimental materials used in RNA

extraction, which were consistent with those used in proteome

analysis. RNAiso Plus (TaKaRa) was used for total RNA

extraction following the manufacturer’s protocol. The

obtained RNA samples were treated with DNase I (Promega)

to remove contaminating DNA. Next, approximately 2000 μg of

total RNA was reverse transcribed into cDNA using a GoScript

reverse transcription system (Promega) in a 25 μL reaction

mixture. The expression of the hemocyanin, chitinase, HSP90,

PDCD4, and GP genes was individually determined with

quantitative real-time-PCR (qRT–PCR). SYBR green Master I

(Roche) was used to perform qRT–PCR using obtained cDNA

samples (2 μl) in a 20 μl reaction mixture on a ROCHE

LightCycler 96 Real-Time Cycler PCR Detection System

(Roche Applied Science, Mannheim, Germany) using the

following primers (Table 1). Ribosomal protein L8 was chosen

as a reference housekeeping gene (Rojas-Hernandez et al., 2019).

qRT–PCR was performed with the following cycling conditions:

94°C, 10 min; (94°C, 15 s; 60°C, 1 min) × 40 cycles. All samples

were examined in triplicate on the same plate. qRT–PCR data

were normalized using ribosomal protein L8 expression as a

reference gene (Rojas-Hernandez et al., 2019). qRT–PCR data

were analyzed using the 2-△△Ct method (Livak and Schmittgen

2001) and expressed as an n-fold value against the control

sample.

Results and discussion

Physiological responses of two strains
under the hypoxic stress

In this study, overall, there was no significant change in THC

of the two strains after 3 h of hypoxic stress compared to 0 h.

However, after 6 and 12 h of hypoxic stress, the THC parameters

of the two strains were significantly reduced (p < 0.05).

Compared with 3 h of hypoxia, 6 h of hypoxia significantly

decreased the THC parameter (p < 0.05). Compared with

hypoxia for 6 h, THC decreased significantly after 12 h of

hypoxia (p < 0.05). The THC of the hypoxic-sensitive strain

was significantly lower than that of the hypoxic-tolerant strain

after 12 h and 6 h of hypoxia treatment. However, there was no

significant difference in THC content between the two strains at

the same time of hypoxia treatment (3, 6, and 12 h) (p > 0.05)

(Figure 1A). The HC of hypoxic and sensitive strains showed an

overall upward trend, but compared with 0 h, hypoxic treatment

for 3, 6, and 12 h had no significant effect on HC (p > 0.05)

(Figure 1B).

Principal component analysis and sample
correlation analysis

Principal component analysis (PCA) can reflect the

variability between and within groups through the original

data and present the trend of intergroup separation in the

experimental model. To master the aggregation and separation

of experimental Group I, experimental group II, control I, and

control group II experimental groups, four histone protein

expression datasets were treated as four variables and

analyzed by PCA with SPSS software (Figure 2). The analysis

results show good independence of the four groups of variables,
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so four groups of data can be used for subsequent comparative

analysis. To quantitatively reflect the correlation between the

four groups of proteins, the Pearson correlation coefficient of

protein expression between each group was calculated by SPSS

software and presented in the form of a heat map

(Supplementary Figure S1). Pearson correlation coefficients of

protein expression in all four groups were between 0.9 and 1.0,

which indicated a strong correlation between all groups.

Statistical analysis of differential proteins

The extraction of ion peak areas was first performed by

Spectronaut software, and the MSstats software package was used

to calibrate and normalize the data within the system. In this

study, three comparison groups were set up, namely,

experimental group II vs. experiment I, control group II vs.

control I, and experimental group II vs. control group II, and the

differences in the expression of various comparison histones were

assessed according to the set comparison group and the linear

mixed effect model. When the condition of fold change ≥1.5 and
corrected p value (adj_p value) < 0.05 was met, the difference was

considered significant.

In this study, four groups of protein expression data were first

analyzed by data-dependent acquisition (DDA) mass

spectrometry and all detectable nonredundant high-quality

MS/MS spectrogram information was obtained after database

identification in MaxQuant software, which was used as the

spectrogram database for subsequent DIA (Supplementary

Figure S2). The total number of peptide and the number of

protein detected in the three comparison groups were 16,603 and

3417, respectively. A total of 1,452 proteins were detected in the

experimental group II vs experimental group I comparison

group; among them, 1,417 proteins had no significant

difference in expression level (p > 0.05), 10 proteins were

significantly upregulated, and 25 proteins had downregulated

expression levels (p < 0.05). In the control group II vs control

group I comparison group, a total of 1,448 proteins were

detected, among which 1,175 proteins had no significant

difference in expression level (p > 0.05), 29 proteins were

significantly upregulated, and 244 proteins were significantly

downregulated (p < 0.05). In contrast, among the

1,525 proteins detected in the experimental group II vs

control group II comparison group, 1,460 detected proteins

had no significant difference in expression (p > 0.05),

49 proteins had significantly upregulated expression, while

16 proteins had significantly downregulated expression (p <
0.05). The volcanogram illustrates the differential protein

expression in the three comparison groups in a more intuitive

manner (Supplementary Figure S3).

Gene ontology classification of differential
proteins

In the GO (Gene Ontology) classification diagram of

experimental group II vs. experimental group I, proteins in

experimental group II related to biological process, cellular

component, and molecular function category, were mostly

upregulated compared to experimental group I, such as genes

involved in signaling, metabolic process, response to stimuli,

regulation of the biological processes, and membrane systems

(Figure 3A). However, all differentially expressed proteins in the

category of multicellular biological processes were

downregulated. In the GO classification diagram of control

group II vs. group I, control group II had upregulated

proteins mostly from the category belonging to biological

process, cellular component, and molecular function.

(Figure 3B). Among them, proteins were identified that were

involved in responses to stimuli, negative and positive regulation

TABLE 1 Primer sequence of the selected genes.

Genes primers (59 to 39) Accession numbers

L8 F:TAGGCAATGTCATCCCCATT DQ316258.1

R:TCCTGAAGGAAGCTTTACACG

Hemocyanin F:AGTGGGCATCCTTTGTCGG KY695246.1

R:CTGTTGGTGAAGAGGTGCGG

Chitinase F:ATCGCAACCCATCAAACCTCG AF315689.1

R:ACAATCGTCGCAGACACGGT

HSP 90 F:GGGTCACGTCCAACAGCAAC QCYY01001690.1

R:TCGCCTTCACAGACACMGAGC

PDCD4 F:GATTAACTGTGCCAACCAGTCCAAAG XM_027364270.1

R:CATCCACCTCCTCCACATCATACAC

GP F:CCAGAATCCTCCACATAACT MK721970.1

R:GGAATACTGGCTCCATCAC
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FIGURE 1
THC and HC in two strains of L. vannamei. (A) THC in two strains of L. vannamei, (B) HC in two strains of L. vannamei. Each bar represents the
mean value of three determinations. The same letters in the data bar indicate no significant difference (p > 0.01), while different letters indicate
significant difference (p < 0.01).

Frontiers in Physiology frontiersin.org06

Chang et al. 10.3389/fphys.2022.979472

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.979472


of the biological processes, signal transduction, growth, immune

system processes, locomotion, pigmentation, membrane-

enclosed lumen, extracellular regions, supramolecular

complex, cell junction, and antioxidant activity. In the GO

classification diagram of experimental group II vs control

group II, some proteins were related to biological processes,

cellular components, and molecular functions, while the other

part was downregulated in control group II compared with

experimental group II (Figure 3C). Among the upregulated

proteins were those involved in cellular component

organization or biogenesis, organelles, supramolecular

complexes, molecular transducer activity, and structural

molecule activity. However, the expression of differential

proteins associated with the stress response, extracellular

region part, and membrane were downregulated.

Eukaryotic orthologous groups
classification of differential proteins

In this study, the identified proteins were compared with the

KOG (eukaryotic orthologous groups) database to predict and

classify their possible functions. In the KOG classification

diagram of experimental group II vs. experimental group I,

the main difference among the proteins was associated with

post-translational modification function (amino acid transport

and metabolism) and the cytoskeleton, as well as post-

translational modification and protein turnover (chaperones)

(Figure 4A). In the KOG classification diagram of control

group II vs. control group I, in addition to proteins with

uncertain functions, there were many differences within

proteins involved in post-translational modification, protein

FIGURE 2
Principal Component Analysi X-axis displays the first principal
component and y-axis displays the second principal component.
The orange circles indicates experiment I, the green circles
indicates experiment II, the blue circles indicates control I and
the purple circles indicates control II.

FIGURE 3
Barplot of the Gene Ontology analysis. (A) experiment II vs.
experiment I, (B) control II vs. control I, (C) experiment II vs. control
II. The bar chart shows the distribution of correspondingGO terms.
Different colors represent different GO categories.
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turnover, chaperones, translation, ribosome structure and

biogenesis, and signal transduction mechanisms (Figure 4B).

In the KOG classification diagram of experimental group II

vs. the control group, most proteins were related to post-

translational modification, protein turnover, chaperones,

translation, ribosomal structure and biogenesis, carbohydrate

transport, and metabolism (Figure 4C).

Expression analysis of important
functional protein genes under the
hypoxic stress in L. Vannamei

Hemocyanin gene, chitinase gene, heat shock protein 90 gene,

programmed cell death protein gene and glycogen phosphorylase

gene were selected for expression analysis (Figure 5). After 12 h of

hypoxia stress, the expression levels of hemocyanin gene,

programmed cell death protein gene and glycogen phosphorylase

gene were significantly increased in hypoxia-sensitive and hypoxia-

tolerant families (p < 0.05), and the expression levels of these genes

were significantly different in the two families (p < 0.05). The

expression of chitinase gene in the two families was significantly

decreased (p < 0.05), and the expression of chitinase gene was

significantly different (p < 0.05). The expression level of heat shock

protein 90 gene in hypoxic-sensitive family was significantly

increased (p < 0.05), while the expression level of heat shock

protein 90 gene in hypoxic-resistant family was not significantly

changed (p > 0.05).

Discussion

The dynamic changes in protein expression in the muscle

tissue of L. vannamei under hypoxic stress were studied by the

FIGURE 4
Barplot of the KOG analysis. (A) experiment II vs. experiment I, (B) control II vs. control I, (C) experiment II vs. control II. Eukaryotic orthologous
groups (KOGs) were delineated by comparing protein sequences encoded in complete genomes, representing major phylogenetic lineages. X-axis
displays the KOG term, y-axis displays the corresponding protein count illustrating the protein number of different function.
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iTRAQ technique. A total of 3417 proteins were detected. The

possible functions of all identified proteins were annotated

according to GO, KEGG, and DEPS databases. By comparing

the proteome of the control group and the experimental group,

detailed information about the proteome response to hypoxic

stress could be obtained. Low oxygen levels affect the immune

function of L. vannamei. Crustaceans have nonspecific

immunity, where hemocytes are the main effector of the

immune response (Huang and Ren, 2019). Hemocytes have

the ability to wrap, engulf, and degrade invading pathogens

and play a crucial role in crustacean immune defense (Liu

et al., 2020). A number of animal hemocytes often change in

response to environmental changes or pathogenic

microorganism infection (Qiu et al., 2011), so they are a

marker of body health and immune capacity. Under the

condition of low oxygen (1.5 PPM), THC of green-lipped

mussel (Perna viridis) (Wang et al., 2012) and scallop

(Chlamys farreri) (Chen et al., 2007) decreased gradually with

decreasing DO value. In this experiment, the THC of the two

strains of L. vannamei showed a downward trend at 0 h and 3 h

FIGURE 5
Expression of five genes in different periods of hypoxia in two strains of L. vannamei. X-axis displays the KOG term, y-axis displays the
corresponding protein count illustrating the protein number of different function.
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after hypoxia treatment, without reaching a significant

difference. THC was significantly decreased at 6 and 12 h after

hypoxia treatment (p < 0.05), which was similar to the above

results.

Hemocyanin is the most important plasma protein of

crustaceans and can bind and transport O2 and CO2 to serve as

the respiratory protein of prawns. In addition to its main function as

an oxygen carrier, hemocyanin has been identified as a nonspecific

innate immune defense molecule of crustaceans (Coates and Nairn

2014) with antiviral and antibacterial properties (Lee, Lee and

Soderhall 2003). It can be functionally converted into phenolic

oxidase with agglutination abilities and hemolytic activity (Zhang

et al., 2006). When oxygen levels in the environment are low,

crustaceans meet their oxygen needs by increasing the

concentration of hemocyanin. A previous study revealed that HC

in L. vannamei was significantly increased (p < 0.05) under hypoxic

conditions (Wei L et al., 2016). Another shrimp species, oriental

river prawn (Macrobrachium nipponense), had significantly

increased (p < 0.05) expression levels of hemocyanin in response

to the hypoxic environment (Sun et al., 2016). In contrast, 10 h of

hypoxic conditions negatively affected the HC rate in the southern

king crab (Lithodes santolla) (Paschke et al., 2016).

In this study, hypoxia treatment had no significant effect on

the HC of L. vannamei in the two strains with hypoxia tolerance

and sensitivity (p > 0.05), and there was no significant difference

in HC between the two strains at different periods of hypoxia (p >
0.05). However, HC showed an overall upward trend compared

to the control group, consistent with previous reports. In

addition, HC increased gradually with prolonged hypoxia

time, which was consistent with proteomic data.

Under low DO circumstances, shrimp can adjust the use of

energy substrates (carbohydrate, lipids, and proteins) to balance

oxidative (Ulaje et al., 2019). In this experiment, immune-related

proteins, such as hemocyanin, chitinase, and heat shock protein 90,

were found among the proteins expressed at significantly different

levels under hypoxic stress. Hemocyanin plays an important role in

the innate immunity of L. vannamei, such as antibacterial, antiviral,

hemolytic, anti-infective, and antitumor activities (Jiang et al., 2007;

Zhang et al., 2009; Coates and Nairn 2014; Zheng et al., 2016).

Chitinases are widely exist in organisms as a group of hydrolytic

enzymes that hydrolyze chitin. The function of chitinases in

biological processes such as the growth of fungi, the molting of

arthropods, and the invasion of bacteria or parasites into

chitincontaining structures of the host has been intensely studied

(Arakane and Muthukrishnan, 2010; Chaudhuri et al., 2010; Pesch

et al., 2016). Chitinase is a key enzyme in the innate immunity of L.

vannamei and involved in numerous immunomodulatory responses

(Zhang et al., 2016; Niu et al., 2018; Song et al., 2020), especially in

preventing bacterial infection (Duo-Chuan 2006; Gao et al., 2017).

Chitinase expression in L. vannaensis infected with white spot

syndrome virus is upregulated at the translation level (Jiang

et al., 2007). A previous study demonstrated that chitinase plays

a role in regulation of both humoral and cellular immune responses

in shrimp due to the expression of various immune related genes

and other functional proteins with antibacterial and antiviral

activities was widely changed in LvChi5 silencing shrimp (Niu

et al., 2018).

Heat shock proteins are an important molecular chaperone

in eukaryotic cells (Zininga, Ramatsui and Shonhai, 2018). They

play a role in protecting cells from stress and oncogenic

transformation, providing cell cycle regulation, antigen

presentation, and participation in cellular stress responses,

including changes in environmental conditioning stress (Kühl

and Rensing 2000; Udono 2012; Wu et al., 2017; Sornchuer et al.,

2018). It helps to refold the denatured protein into an appropriate

conformation (Nakamoto et al., 2014).

In this study, Hsp90 was significantly upregulated in hypoxic-

sensitive L. vannamensis after 12 h of hypoxia stress, while there was

no significant change in the expression of Hsp90 in hypoxic-tolerant

families. HSPs have been shown to be one of the main response

proteins to hypoxic stress (Zhang, Zhang and Zhang 2016; Niu et al.,

2018). Although Ulaje et al. showed that Hsp70 and Hsp90 gene

expression in L. vannamei was down-regulated under hypoxia, in

both the short- and the long-term (Ulaje et al.,2020),most researches

in crustaceans have indicated that the up-regulation in the

expression of Hsps genes is a general response to cope with

hypoxia (Sun et al., 2014, 2016; Jolly et al., 2018), which was

consistent with the results of this study.

The hypoxic-sensitive strain L. vannamensis can regulate the

protein level in a timely manner in response to the hypoxic-

sensitive strain, while the protein expression in the hypoxic-

tolerant strain is at a normal level. In addition, after 12 h of

hypoxia, the expression of neuroendocrine differentiation factor

in the hypoxic sensitive family was significantly upregulated,

whichmay be related to its role in immune regulation (Sung et al.,

2016; Song et al., 2020; Junprung et al., 2017). The role of other

proteins identified in this study as a part of the response to

hypoxia stress in L. vannamei remains to be further studied.

Conclusion

Hypoxia stress has become a frequent occurrence in commercial

L. vannamei farming, so it is important to explore the molecular

mechanisms of the hypoxic response and adjustment to changing

oxygen levels. This study demonstrated the changes in physiological

and biochemical levels in shrimp under conditions of low oxygen

stress and investigated the expression of the hypoxic stress protein

regulation mechanism and its function by comparing proteomics

data among two strains of L. vannamei with different tolerances to

hypoxia. The results from proteomic analysis were confirmed with

qRT–PCR to detect the gene expression level.

Studies have indicated that low oxygen levels have an effect

on THC and HC parameters. The hypoxia-sensitive strain

showed a decreased number of hemocytes after 3 h under

hypoxic conditions, while the hypoxia-tolerant strain response
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with significant changes in hemocyte number was delayed to 6 h

in a hypoxic environment. Since hemocytes are involved in

oxygen transportation together with the immune response,

these results suggest the weakening of immune system

capacity in response to low oxygen levels.

A total of 3417 proteins were detected in proteomics analysis.

The hypoxia-sensitive strain showed 273 differentially expressed

proteins in response to 12 h hypoxia treatment, while in the

hypoxia-tolerant strain, this number was reduced to 35 proteins.

The cohort of proteins that were affected in the two strains

included hemocyanin, Hsp90, GP, chitinase, PD, actin, ferritin,

and trypsin. These proteins were classified into immune-related

proteins, energy metabolism-related proteins, cytoskeleton-

related proteins, chaperones, and others.

Five protein genes with significant changes at the proteomic

level in two strains of L. vannamei were chosen for qRT–PCR to

confirm the gene expression patterns, namely, hemocyanin,

chitinase, HSP90, PD, and GP. This group of proteins is

probably an important component of the L. vannamei

response to hypoxia stress and could be considered biomarkers.
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SUPPLEMENTARY FIGURE S1
Sample correlation analysis heat map. The sign of correlation coefficient
represents positive or negative correlation. The value represents the
strength of correlation: 0.8–1.0 represents a strong correlation,
0.6–0.8 represents a strong correlation, 0.2–0.4 represents a weak
correlation, 0.0–0.2 represents a very weak correlation or no correlation.

SUPPLEMENTARY FIGURE S2
Protein mass distribution. X-axis displays the protein mass interval
(Kilodalton), y-axis displays the corresponding protein number.

SUPPLEMENTARY FIGURE S3
Differential protein volcano map. experiment II-vs. -Experiment I,
(B) control II-vs.-control I, (C) experiment II-vs.-control II. X-axis of
the volcanogram refers to the multiple protein fold change
difference (log2), and the Y-axis corresponds to -log10 (P value). The
green circle indicates the proteins with significantly downregulated
patterns, the red circle indicates the proteins with significantly
upregulated patterns, and the gray circle indicates the proteins with
no significant difference.
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