
LongStitch: high‑quality genome assembly
correction and scaffolding using long reads
Lauren Coombe*†  , Janet X. Li†, Theodora Lo†, Johnathan Wong, Vladimir Nikolic, René L. Warren and
Inanc Birol 

Abstract 

Background:  Generating high-quality de novo genome assemblies is foundational
to the genomics study of model and non-model organisms. In recent years, long-read
sequencing has greatly benefited genome assembly and scaffolding, a process by
which assembled sequences are ordered and oriented through the use of long-range
information. Long reads are better able to span repetitive genomic regions compared
to short reads, and thus have tremendous utility for resolving problematic regions
and helping generate more complete draft assemblies. Here, we present LongStitch, a
scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using
long reads.

Results:  LongStitch incorporates multiple tools developed by our group and runs in
up to three stages, which includes initial assembly correction (Tigmint-long), followed
by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and
ARKS-long are misassembly correction and scaffolding utilities, respectively, previously
developed for linked reads, that we adapted for long reads. Here, we describe the
LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes
lightweight minimizer mappings to join contigs. LongStitch was tested on short and
long-read assemblies of Caenorhabditis elegans, Oryza sativa, and three different human
individuals using corresponding nanopore long-read data, and improves the contigu-
ity of each assembly from 1.2-fold up to 304.6-fold (as measured by NGA50 length).
Furthermore, LongStitch generates more contiguous and correct assemblies compared
to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently improves
upon human assemblies in under five hours using less than 23 GB of RAM.

Conclusions:  Due to its effectiveness and efficiency in improving draft assemblies
using long reads, we expect LongStitch to benefit a wide variety of de novo genome
assembly projects. The LongStitch pipeline is freely available at https://​github.​com/​
bcgsc/​longs​titch.

Keywords:  Long reads, De novo genome assembly, Genome scaffolding, Minimizers,
Misassembly correction

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Coombe et al. BMC Bioinformatics (2021) 22:534
https://doi.org/10.1186/s12859-021-04451-7

*Correspondence:
lcoombe@bcgsc.ca
†Lauren Coombe, Janet X. Li
and Theodora Lo contributed
equally to this work
Canada’s Michael Smith
Genome Sciences Centre,
BC Cancer Research, 100‑570
West 7th Avenue, Vancouver,
BC V5Z 4S6, Canada

http://orcid.org/0000-0002-7518-2326
https://github.com/bcgsc/longstitch
https://github.com/bcgsc/longstitch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04451-7&domain=pdf

Page 2 of 13Coombe et al. BMC Bioinformatics (2021) 22:534

Background
With the growing availability and accessibility of many different DNA sequencing tech-
nologies, generating high-quality de novo genome assemblies remains a crucial step in
gaining important biological insights from the raw sequencing data. Constructing these
de novo assemblies can enable a multitude of research aims, such as cancer genomics
studies, analysis of non-model organisms, and population studies, to name a few. How-
ever, the complex and repetitive nature of genomes has long been a challenge in rou-
tinely achieving chromosome-scale genome assemblies [1].

To address these challenges, numerous developments in sequencing technologies have
emerged. Many of these platforms provide long-range information to help resolve the
problematic repeats, including linked reads [2, 3], optical maps [4], Hi-C data [5] and
long reads [6]. These sequencing advances in turn inspire the development of new bio-
informatics tools tailored to the specific characteristics of each data type, particularly in
the genome assembly domain [1].

Long-read sequencing from Oxford Nanopore Technologies plc. (ONT, Oxford UK)
and Pacific Biosciences of California, Inc. (PacBio) can generate reads in the kilobases
up to the megabase range, a stark contrast to short-read sequencing, which generally
produces 150-300 bp reads. The long reads thus provide a rich resource of long-range
genomic information, a feature that has proven extremely useful for genome assem-
bly work [7]. While the error rates of long reads remain higher than typical short-read
technologies such as those generated on the Illumina sequencing instrument, the read
accuracy is improving with each new pore chemistry and advances in base-calling algo-
rithms, and read accuracies now average between 87 and 98% [6, 8]. Furthermore, the
throughput and cost of long-read sequencing is also improving, making it an increas-
ingly competitive and accessible technology for many research groups and applications.

While recently developed long-read de novo genome assembly tools are generating
assemblies that are highly contiguous, the sequences often harbour errors and underuti-
lize long-range information. Therefore, these assemblies stand to gain from misassembly
correction and further scaffolding, to maximize the rich genomic information provided
by long reads and produce a more optimal solution [9, 10]. These assembly improve-
ments can be vital to many downstream applications such as the analyses of regulatory
elements, structural variations and gene clusters.

A number of genome scaffolders have been developed to contiguate draft genome
assemblies using the information provided by long reads. These tools include LINKS
[11], npScarf [12], OPERA-LG [13], SSPACE-LongRead [14], and, more recently, LRScaf
[15]. Most of these tools utilize alignments of long reads to the draft assembly to infer
joins between sequences, with the exception of LINKS, which uses a paired word of
length k (k-mer) matching approach. LRScaf is the most recently developed long-read
scaffolding tool, and generates a scaffold graph using long-read alignments from mini-
map2 [16] or BLASR [17]. The graph is then manipulated in various ways, including edge
filtering, transitive edge reduction and tip removal followed by a bi-directional traversal
of the graph based on unique and divergent nodes to produce the final scaffolds.

In addition to the scaffolding stage being crucial for maximizing assembly contiguity,
a preceding misassembly correction step is also important to achieve the highest qual-
ity final assembly, without which scaffolding-only utilities risk propagating structural

Page 3 of 13Coombe et al. BMC Bioinformatics (2021) 22:534 	

errors. Effectively, when these errors are identified and rectified before scaffolding, the
sequences then have the potential to be joined with the correct adjacent sequences.
This step can therefore lead to both more correct and contiguous assemblies, as dem-
onstrated by our linked-read assembly correction utility, Tigmint [18]. While there are
multiple tools for correcting raw long reads directly [19], there are none that perform
assembly correction using only long reads de novo. Tools such as Pilon [20] and REAPR
[21] perform misassembly correction using short reads, and others such as misFinder
[22] additionally use a closely-related reference genome. While ReMILO [23] can use
long reads in its assembly correction pipeline, it does not use this evidence exclusively,
but in addition to short-read data and a reference genome.

A wide range of bioinformatics tools in various domains are based on the use of
k-mers, but storing and operating on all k-mers in the input sequences can be very com-
putationally expensive, especially for larger genomes. LINKS addresses this limitation by
thinning the k-mer input set, an early form of sequence “minimizers”. The use of mini-
mizer sketches has gained popularity in recent years, where only a particular subset of
k-mers from the input sequences are considered, resulting in significant savings in runt-
ime and memory usage [24]. Recently, we used this concept of minimizer sketches in our
minimizer graph-based reference-guided scaffolder ntJoin [25].

Here, we present LongStitch, an efficient pipeline that corrects and scaffolds draft
genome assemblies using long reads. LongStitch incorporates multiple tools devel-
oped by our group: Tigmint-long, ntLink, and optionally, ARKS-long. Tigmint-long and
ARKS-long are misassembly correction and scaffolding utilities, respectively, previously
developed for linked reads [18, 26, 27], and are now adapted to use long reads. Within
LongStitch, we introduce our new long-read scaffolder, ntLink, which utilizes light-
weight minimizer mappings to join contigs. We show that these tools, used together in
the LongStitch pipeline, produce high-quality and contiguous assemblies that harbour
fewer misassemblies compared to the current state-of-the-art.

Implementation
The LongStitch pipeline

LongStitch is implemented as a pipeline using a Makefile, and consists of assembly
correction and scaffolding stages using long reads (Fig. 1a). The inputs to the pipeline
are any draft sequence assembly and a set of matching long-read sequences. Genome
assembly utilities in the LongStitch pipeline use the long-read data to improve upon the
draft assembly to output a final, scaffolded genome assembly. The input assembly can
be generated using any method and any data type, including the same long reads that
are supplied to LongStitch. The first step of LongStitch is Tigmint-long, which identi-
fies and breaks the input assembly at putative misassemblies. Then, our newly developed
long-read scaffolder ntLink joins the assembly-corrected contigs together based on the
long-range information. Optionally, an additional round of scaffolding can be performed
using ARKS-long.

Tigmint‑long and ARKS‑long

Tigmint [18] and ARKS [26, 27] are both previously published tools from our group.
The tools were originally developed to correct and scaffold assemblies, respectively,

Page 4 of 13Coombe et al. BMC Bioinformatics (2021) 22:534

both using linked reads. For LongStitch, we adapted these tools to use long reads as
input by first generating pseudo-linked reads from the long reads. Briefly, tiled frag-
ments are extracted from the long reads, and paired-end reads (each of length frag-
ment_size/2, default fragment_size = 500 bp) are generated from the fragments. Each
read pair extracted from the same long-read is assigned the same barcode, thus cre-
ating a reads file (in fastq or fasta) formatted like a linked reads file. These pseudo-
linked reads are then input to the previously developed algorithms, which use the
long-range information to perform correction and scaffolding.

In addition to generating the pseudo-linked reads, Tigmint and ARKS required
other minor adjustments to work optimally with the long-read data. When using tra-
ditional linked reads, Tigmint uses bwa mem [28] to align the reads to the contigs,
and then uses the alignments to infer molecule extents. The inferred molecule extents
are examined to find and subsequently cut areas of the assembly that are not sup-
ported by these long molecules. In adapting Tigmint to work with long reads, we use
minimap2 [16] instead of bwa mem, which is better suited to long-read mappings. To
reduce the number of parameters required for users to specify, we also added func-
tionality to automatically calculate appropriate values for two parameters: span and
dist. Span is the number of molecule extents spanning a region of the contig required
for that region to be considered correct, and is set as: span = 0.25 × long_read_cover-
age. Dist is the maximum distance (in bp) allowed between read alignments of the
same barcode for these reads to be merged to the same molecule extent, and is set as
the median read length of the first one million long reads. The optimal values for both
parameters are different for long reads compared to linked reads.

We also found that the optimal parameter settings for running ARKS-long varied
from the recommended settings when using traditional linked reads. Particularly,

(a) (b)

Fig. 1  The LongStitch pipeline. a Overview of the main steps of the LongStitch pipeline. The dashed border
indicates the optional scaffolding step of ARKS-long. b Detailed schematic of the ntLink algorithm. (i) The
input files to the ntLink long-read scaffolder are a draft assembly and long reads. (ii, iii) Minimizer sketches
are computed for each of the input sequences (indicated by filled circles), then these minimizers are used
to map the long reads to the draft assembly. Identical minimizers are vertically aligned, and also indicated
by the vertical dotted line for one long-read. Each of the long-read mappings to the assembly can provide
evidence about which contigs should be joined together, and in which orientation. (iv) After tallying all of
the pairing information from the long reads, a directed scaffold graph is constructed, where the nodes are
oriented contigs and the directed edges indicate long-read evidence between contigs. (v) Finally, the graph
is traversed using abyss-scaffold to produce the final ordered and oriented scaffolds

Page 5 of 13Coombe et al. BMC Bioinformatics (2021) 22:534 	

using a smaller k-value (k = 20), and a low Jaccard index threshold (j = 0.05) was
important to produce optimal scaffolding.

ntLink

While the Tigmint-long and ARKS-long components of the pipeline are adaptations of
previously published algorithms [18, 26, 27], within LongStitch we also introduce a new
scaffolding tool, ntLink, which performs efficient long-read scaffolding using minimizer
mappings (Fig. 1b).

First, minimizers are generated from both the input draft assembly and long reads as
described in Roberts et al. [24], using a sliding window (w), and k-mer size (k) (Fig. 1b-
i). Briefly, starting at the beginning of each sequence, the canonical hash values of w
adjacent k-mers are generated using ntHash [29], and the smallest value is chosen as the
minimizer for that window. For each minimizer, we also keep track of the corresponding
sequence ID, the position (in bp) where the minimizer was found, and the strand of the
canonical k-mer (“+” if the canonical k-mer is from the forward strand, else “−”). When
applied over all of the input data, this process generates an ordered minimizer sketch for
all input sequences.

Then, these minimizer sketches are used to map the long reads to the input draft
assembly (Fig. 1b-ii). Any minimizers that are not unique in the draft assembly are dis-
carded to avoid ambiguous mappings due to repeats. For each minimizer in a long read’s
ordered sketch, the minimizer sketch of the draft contigs is queried. For every minimizer
match in the draft contigs sketch, the information about which contig the minimizer hits
to, as well as the position and strand of that minimizer in the contig is readily available.
By performing this matching for each minimizer in the ordered sketch for a long read,
we convert the minimizer sketch to an ordered list of contig hits (Ex. A {2}, B {2}, C {1}
for the indicated read in Fig. 1b-iii), where adjacent identical contig hits are collapsed,
and the numbers of collapsed hits are retained. The contig hits are filtered to remove
any contigs less than the minimum contig size (z, default 1000 bp), and any subsumed
contigs. Removing the small, often repetitive sequences using this minimum contig size
heuristic reduces the complexity of the downstream scaffold graph.

From this list of contig hits, we can infer oriented pairings between the draft contigs.
As well as the obvious adjacent pairings (Ex. A → B, B → C in Fig. 1b-iii), we also add
pairs based on transitive pairings in the run of contig hits (Ex. A → C). All transitive
pairings are added for lists of contig hits up to f (default 10). To avoid the computational
overhead becoming too large with many contig hits, when there are more than f contigs
in a list, transitive pairings are only generated over weakly supported contigs, which are
defined as contigs with only a single minimizer hit from the long read (Ex. “C” in the
indicated long read in Fig. 1b-iii).

Each of these inferred contig pairs are also oriented relative to each other, and the gap
size between them estimated. Each join suggested by a long read lr is due to minimizer
mappings to the contigs in the pair. Therefore, for each of these joins, there are terminal
minimizer hits (mA, mB) for each contig (cA, cB) in a pair, where mA is the last mini-
mizer in contig cA that the long read lr hits to, and mB is the first minimizer in contig
cB that the long read lr matches (Additional file 1: Fig. S1). We compare the strands of
canonical minimizers mA and mB in the long read lr sketch and the contigs (cA, cB) to

Page 6 of 13Coombe et al. BMC Bioinformatics (2021) 22:534

orient the assembly sequences. If, for example, mA has the same strand in contig cA
and long read lr, contig cA is assigned the positive orientation, otherwise, it is reverse-
complemented. To estimate the gap size, a similar approach to that employed in ntJoin
[25] is used, where the distance between the minimizers mA and mB on the long read lr
is determined and then corrected for the distance of the minimizers to the contig ends
(Additional file 1: Fig. S1). For each contig pair, we also track the number of ‘anchor-
ing reads’, or reads mapping to at least two minimizers on each contig in the pair. After
tallying all the long reads, any contig pairs without sufficient ‘anchoring reads’ support
(parameter a, default 1) are flagged as noisy edges, and filtered out.

Finally, after the contig pairs are fully tallied using all of the minimizer sketches from
the long reads, a scaffold graph is created, where the nodes are oriented contigs, and
directed edges are created between the tallied contig pairs (Fig. 1b-iv). The edge prop-
erties are the number of long reads that support the contig pair, and the median esti-
mated gap size. Each contig node is represented in its forward and reverse orientations
in the graph, so each tallied pair will be represented twice (ex. A+ → B+ , B- → A- for
Fig. 1b-iv).

The scaffold graph is then input to abyss-scaffold [30], a scaffolding layout tool from
our ABySS [31] suite of tools, which manipulates and traverses the graph to generate the
final scaffold sequences (Fig. 1b-v).

Test runs

To test the correction and scaffolding utilities of LongStitch on real sequencing data,
we obtained ONT long-read data and Illumina short-read data for three human indi-
viduals (NA12878, NA19240, and NA24385) [32, 33], C. elegans N2 Strain, and O. sativa
Japonica (Additional file 1: Table S1). We assembled the short-read data using ABySS
[31], and the long-read data with Shasta [9] to generate the baseline assemblies to
improve using LongStitch. The Shasta assemblies were polished using the correspond-
ing long reads with Racon (v1.4.13) [34]. For the O. sativa long-read assembly scaffold-
ing tests, we downloaded a previously published Canu [35] assembly of PacBio data [36]
(GCA_002573525.1). Assembly tool versions and statistics for the baseline assemblies
are summarized in Additional file 1: Tables S2 and S3.

We improved each of the baseline assemblies using LongStitch (v1.0.0), setting G to
the appropriate genome size for each species and optimizing the k and w parameters
for ntLink (v1.0.0), with all other parameters kept at the default values (Tigmint v1.2.3,
ARCS/ARKS v1.2.2). The k and w parameters were optimized using a grid search with
k values {24, 32, 40} and w values {100, 250, 500}, and selecting the run with the highest
NG50 length. We note that these ranges of k and w settings work well for a variety of
scaffolding runs with different sources (e.g. different laboratory origin) and sequencing
data types (e.g. short vs. long reads).

Each of the baseline assemblies was also scaffolded with LRScaf (v1.10.0), using
parameters -mioll 400 -i0.15 -mxel 500 -mxohl 500 -micl 1000 [15]. The long reads were
mapped to the draft contigs using minimap2 [16] prior to LRScaf, as this is a required
pre-processing step for the tool. In addition, all baseline assemblies were scaffolded with
OPERA-LG (v2.0.6) using default parameters, supplying the corresponding short reads
in addition to the long reads, as required by the tool [13].

Page 7 of 13Coombe et al. BMC Bioinformatics (2021) 22:534 	

All assemblies were analyzed using QUAST v5.0.2 (--fast --scaffold-gap-max-size
100,000 --large) [37], and the corresponding reference genome (Additional file 1:
Table S4). To assess the contiguity of the assemblies, we used both the NG50 and NGA50
lengths. While the NG50 statistic describes that at least half of the genome is in pieces
at least the NG50 length, the NGA50 metric is similar, but uses alignment blocks instead
of sequence lengths for the calculation. Jupiter plots were also generated to visualize the
consistency of each human assembly with the human reference genome (ng = 75, min-
BundleSize = 50,000) [38]. All benchmarking tests were run on a DELL server with 128
Intel(R) Xeon(R) CPU E7–8867 v3, 2.50 GHz with 2.6 TB RAM.

Results and discussion
To demonstrate the performance of LongStitch in improving upon draft assemblies
using long reads, we ran the default steps of the correction and scaffolding pipeline (up
to the ntLink stage) on six different human assemblies, as well as C. elegans and O. sativa
assemblies. We also ran OPERA-LG [13] and the current state-of-the-art long-read scaf-
folder, LRScaf [15], on these data (Fig. 2, Additional file 1: Tables S5 and S9, Fig. S2).

For each short-read ABySS assembly, LongStitch substantially improved the contiguity
of the baseline assemblies, from a 10.8-fold increase in NGA50 length (1.1–12.2 Mbp)

Fig. 2  Contiguity and correctness of assemblies improved with LongStitch compared to LRScaf and
OPERA-LG. For three human individuals, NA12878, NA19240 and NA24385, short-read ABySS assemblies and
long-read Shasta assemblies (white) were improved using long-read data from the respective individual. The
resulting assemblies from LongStitch (orange), LRScaf (blue) and OPERA-LG (purple) were assessed using
QUAST for their contiguity and correctness. Extensive misassemblies (as defined by QUAST) are shown on
the x-axis. For the correction and scaffolding runs shown, the default steps of LongStitch were run (up to the
ntLink stage). Ideal assemblies are located in the top-left corner

Page 8 of 13Coombe et al. BMC Bioinformatics (2021) 22:534

for NA12878 up to a very considerable 304.6-fold increase (14.5 kb to 4.4 Mbp) in
NGA50 length for the NA19240 individual. Despite the baseline short-read assembly
for the NA19240 individual having the lowest contiguity of the short-read assemblies
(NGA50 length = 14.5 kb), the LongStitch pipeline was still able to leverage the long-read
information to increase the contiguity of this very fragmented assembly to the megabase
scale (NGA50 length = 4.4 Mbp). This demonstrates a very promising option for a hybrid
assembly approach, as scaffolding a fragmented short-read assembly with long reads can
generate a very contiguous assembly with an extremely high base accuracy. LongStitch
also generates assemblies that are more contiguous than those produced by the LRScaf
scaffolder, with final NGA50 lengths up to 5.1-fold higher (1.4-fold, 2.3-fold, 5.1-fold,
1.8-fold and 1.6-fold for human individuals NA12878, NA19240, NA24385, C. elegans
and O. sativa, respectively). Furthermore, the LongStitch assemblies are more correct,
as assessed using QUAST, with LRScaf generating 72.2%, 274.2% and 271.7% more
extensive misassemblies (as defined by QUAST) than LongStitch for human individu-
als NA12878, NA19240 and NA24385, respectively. This trend was also evident in the
smaller genomes tested, with LRScaf producing 183.5% and 121.0% more extensive mis-
assemblies than LongStitch for the C. elegans and O. sativa tests. In fact, for two of the
human individuals (NA19240 and NA24385), C. elegans and O. sativa, the assemblies
produced by LongStitch have fewer (469, 1,279, 272 and 517 respectively) extensive mis-
assemblies than the baseline, demonstrating the effectiveness of the Tigmint-long mis-
assembly correction step. When also considering local misassemblies, the Tigmint-long
step achieves a positive predictive value (PPV) of 0.18–0.96 and true positive rate (TPR)
of 0.02–0.45 (Additional file 1: Table S10). For all short-read assembly tests, OPERA-LG
generated lower NGA50 values and more total misassemblies than both LongStitch and
LRScaf, despite utilizing additional short-read evidence for scaffolding.

As well as showing great potential in a hybrid assembly use-case, the LongStitch pipe-
line can also utilize long reads to improve Shasta assemblies of the same data. Long-
Stitch improves upon the baseline long-read assembly NGA50 lengths 2.0, 5.8, 3.4 and
1.2-fold for the NA12878, NA19240 and NA24385 human individuals, and C. elegans,
respectively. This demonstrates that there is still underutilized long-range information
in the long-read sequencing data that can be leveraged to improve the assemblies, even
after the initial de novo Shasta assembly. LongStitch generates assemblies with higher
NGA50 lengths and fewer extensive misassemblies than OPERA-LG for all runs. Com-
pared to LRScaf, LongStitch achieves higher or equivalent NGA50 lengths for NA19240
and NA24385 (1.4-fold higher and equivalent NGA50 lengths, respectively), but does
produce slightly lower NGA50 lengths for the NA12878 individual and C. elegans. How-
ever, similar to the short-read assembly runs, the LongStitch scaffolds have substantially
fewer QUAST extensive misassemblies compared to the LRScaf scaffolds, with Long-
Stitch only increasing extensive misassemblies 12.6–18.3% compared to the long-read
baselines for the human runs, whereas LRScaf increased extensive misassemblies 73.0–
85.7%. In addition to improving upon assemblies of nanopore data, LongStitch is also
effective in improving assemblies of PacBio long reads, as shown in the O. sativa long-
read test, where LongStitch improved the NGA50 length of the baseline Canu assem-
bly 1.43-fold, compared to 1.26-fold and 1.19-fold increases when using either LRScaf
or OPERA-LG, respectively. Furthermore, while LRScaf and OPERA-LG increased

Page 9 of 13Coombe et al. BMC Bioinformatics (2021) 22:534 	

the number of extensive misassemblies in the O. sativa PacBio assembly by 4.9% and
1.0%, LongStitch reduced the number of extensive misassemblies by 9.8%. This shows
that the LongStitch pipeline, with the combined correction and scaffolding steps, greatly
improves the contiguity of the long-read baseline assemblies, producing highly accurate
assemblies that are extremely valuable to downstream genomics analyses such as gene
annotation tasks.

We inspected the genome assembly consistency between the LongStitch assemblies
and the human reference genome (GRCh38) visually using Jupiter plots [38]. These cir-
cos-based [39] representations show sequence alignments between assemblies and the
reference genome as coloured bands, and any large-scale misassemblies are immedi-
ately evident as interrupting ribbons. Comparing the Jupiter plots generated using the
LongStitch and LRScaf assemblies for each of the human runs, there are fewer inter-
rupting ribbons in the LongStitch plots in each case, indicating that LongStitch produces
fewer large-scale misassemblies (Additional file 1: Fig. S3). This correctness is particu-
larly evident in the runs improving the NA19240 and NA24385 short-read ABySS draft
assemblies, where the Tigmint-long correction step was very important to both breaking
misassemblies and enabling correct scaffolding with ntLink.

Comparing the benchmarking performances of the tools on human data, Long-
Stitch, despite being a multi-tool pipeline (two tools by default), runs faster than
LRScaf for five of the six test runs, with all LongStitch tests running between 3.0 and
4.5 h (Fig. 3). While LRScaf was 40 min faster for the NA12878 short-read assembly

Fig. 3  Benchmarking results of improving assemblies with LongStitch or LRScaf. For three human individuals,
NA12878, NA19240 and NA24385, the wall-clock time and peak memory is shown for improving short-read
ABySS assemblies and long-read Shasta assemblies using the default steps of LongStitch (up to ntLink)
(orange) or LRScaf (blue). The peak memory (in gigabytes) is shown on a linear scale, and the wall-clock time
(in hours) is shown on a log scale. All OPERA-LG runs on human data required over 9 days and 100 GB of RAM
to complete, and are therefore not included in the plots

Page 10 of 13Coombe et al. BMC Bioinformatics (2021) 22:534

test, its runtimes varied quite widely from 2.7 to 44.6 h across all runs. Therefore,
whereas LRScaf can have unpredictably longer runtimes, the consistent runtimes of
LongStitch for a given genome size and read coverage, independent of assembly con-
tiguity, will be very useful when applying the tool to new and larger genomes. While
LongStitch used less memory than LRScaf in five of six tests runs, all runs for both
tools used 17.1–23.5 GB of RAM. All human OPERA-LG tests were quite compu-
tationally expensive, taking over 9 days to complete and using over 100 GB of RAM
(Additional file 1: Table S7, Fig. S4).

While the default mode of the LongStitch pipeline runs two steps: Tigmint-long for
misassembly correction, then ntLink for assembly scaffolding with long reads, users
can optionally run an extra scaffolding step with ARKS-long to maximize the conti-
guity improvements. In all human runs, this extra step of scaffolding improves the
NGA50 metric, showing that this step makes additional correct joins. The improve-
ments in contiguity with ARKS-long are most substantial for the short-read assem-
bly runs (Additional file 1: Fig. S5, Table S11). However, and as expected, running
the extra scaffolding step increases the runtime of the whole pipeline and also intro-
duces additional misassemblies (Additional file 1: Figs. S5–S7). Therefore, running
the default two-step LongStitch pipeline or additionally running the ARKS-long step
is a decision open to the user, and will likely depend on the user’s particular use case,
application and input data. For example, if the correctness of the output assembly
and faster runtimes are paramount, running the more conservative default pipeline
is recommended. However, if it is most important to the user to maximize the con-
tiguity of the output scaffolds, running the additional ARKS-long scaffolding step is
often valuable.

We previously demonstrated the effectiveness of using minimizers for genome
scaffolding with our reference-guided scaffolder, ntJoin [25], and we find that
minimizers also exhibit great utility in fast and accurate mapping of long reads to
assemblies using ntLink. The k and w parameters of ntLink do impact the resulting
scaffolding, but we find that ntLink works well over a range of these values (Addi-
tional file 1: Figs. S8 and S9). Furthermore, the NG50 metrics of the resulting assem-
blies, which are calculated without using a reference, show a similar pattern to the
NGA50 reference-based contiguity metric, demonstrating that a user can optimize
these k and w parameters without the requirement of a reference. This minimizer-
based mapping approach is tolerant to errors in the raw long reads, as evidenced
by detecting a median of 6–20 matching minimizers per long read for joined con-
tig pairs in our runs, despite the algorithm filtering out repetitive minimizers in the
target assemblies (Additional file 1: Table S12). We see that these matching mini-
mizer statistics are fairly consistent across the runs despite setting different k and w
parameter values, with slightly more matching minimizers for the higher base-qual-
ity short-read assembly runs. As well as ordering and orienting contigs, ntLink uses
the minimizer mappings of the long reads to the draft assembly to estimate the gap
sizes in the output scaffolds. In the current implementation, the ntLink code creates
the scaffold graph, which is traversed by abyss-scaffold [30], a scaffold layout algo-
rithm from our ABySS suite of tools, but the tool is flexible to using other scaffold
layout algorithms if desired, similar to our ARKS scaffolding tool.

Page 11 of 13Coombe et al. BMC Bioinformatics (2021) 22:534 	

Conclusions
We have demonstrated the use of our scalable long-read correction and scaffolding pipe-
line, LongStitch, on a variety of human, nematode and rice datasets and assemblies, and
show that it runs efficiently and generates high-quality final assemblies. When embarking
on assembly projects, different groups will have varying combinations of sequencing data,
and it is important to have tools available that are useful for a range of use cases. With the
LongStitch pipeline, long reads are used to improve upon an input draft assembly from
any data type. Therefore, if a project solely uses long reads, the LongStitch pipeline is able
to further improve upon de novo long-read assemblies. However, if the baseline assembly
is a short-read assembly, a linked-read assembly or even an assembly incorporating mul-
tiple data types, LongStitch is also valuable for facilitating additional improvements. Due
to its efficiency and flexibility to many different de novo genome assembly projects, we
expect LongStitch to be widely beneficial to the research community.

Availability and requirements

Project name: LongStitch
Project home page: https://​github.​com/​bcgsc/​longs​titch
Operating system(s): Platform independent
Programming language: Python, C ++ , GNU Make
Other requirements: Tigmint, ntLink, ARCS/ARKS, ABySS
License: GPL v3
Any restrictions to use by non-academics: No

Abbreviations
ONT: Oxford Nanopore Technologies; PacBio: Pacific Biosciences of California.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04451-7.

Additional file 1. Table S1. Sequencing data used for the correction and scaffolding runs. Table S2. Baseline
assemblies used for correction and scaffolding runs. Table S3. Availability of baseline assemblies used for correction
and scaffolding runs. Table S4. Reference genome builds used for QUAST assembly analysis. Table S5. Contigu-
ity, correctness and benchmarking statistics for running the default steps of LongStitch (up to ntLink) on human
assemblies. Table S6. Contiguity, correctness and benchmarking statistics for running LRScaf on human assem-
blies. Table S7. Contiguity, correctness and benchmarking statistics for running OPERA-LG on human assemblies.
Table S8. Contiguity, correctness and benchmarking statistics for running LongStitch, LRScaf and OPERA-LG on C.
elegans assemblies. Table S9. Contiguity, correctness and benchmarking statistics for running LongStitch, LRScaf and
OPERA-LG on O. sativa assemblies. Table S10. Positive predictive value (PPV) and true positive rate (TPR) of Tigmint-
long. Table S11. Contiguity, correctness and benchmarking statistics for running LongStitch including the optional
the ARKS-long step on human assemblies. Table S12. Summarizing the number of matching minimizers per
ntLink-joined contig pair. Figure S1. Schematic describing gap size estimation algorithm in ntLink. Figure S2. Con-
tiguity and correctness statistics of assemblies improved using LRScaf with different parameter combinations and
LongStitch. Figure S3. Jupiter consistency plots showing the contiguity and correctness of LongStitch and LRScaf
assemblies. Figure S4. Benchmarking results of improving assemblies with LongStitch, LRScaf or OPERA-LG. Figure
S5. Contiguity and correctness results for each step the LongStitch pipeline, including the optional ARKS-long step,
LRScaf and OPERA-LG on human assemblies. Figure S6. Benchmarking results for LRScaf and the LongStitch pipeline
including the optional ARKS-long step on human assemblies. Figure S7. Time breakdown for each of the steps in
LongStitch, including the optional ARKS-long step, and LRScaf. Figure S8. Contiguity and correctness results from
sweeping on the ntLink k and w parameters for the default steps of LongStitch. Figure S9. Benchmarking results
from sweeping on the ntLink k and w parameters for the default steps of LongStitch.

https://github.com/bcgsc/longstitch
https://doi.org/10.1186/s12859-021-04451-7

Page 12 of 13Coombe et al. BMC Bioinformatics (2021) 22:534

Acknowledgements
We thank Justin Chu for his valuable contributions to brainstorming discussions early in the project, which helped drive
the development of the algorithms.

Authors’ contributions
LC, RLW and IB were major contributors to the ideas for the LongStitch pipeline and its steps. LC designed and coded
ntLink, ran the benchmarking tests, analyzed the results and wrote the manuscript. JXL designed and implemented
Tigmint-long, and analyzed the Tigmint-long results. TL designed and implemented ARKS-long. JW contributed and
optimized the code for pseudo-linked read generation for Tigmint-long and ARKS-long. VN contributed and optimized
the code for minimizer generation. All authors contributed to editing the manuscript, and all authors read and approved
the final manuscript.

Funding
This work was supported by Genome BC and Genome Canada [243FOR, 281ANV]; and the National Institutes of Health
[2R01HG007182-04A1]. The content of this article is solely the responsibility of the authors, and does not necessarily
represent the official views of the National Institutes of Health or other funding organizations. The funding organizations
did not have a role in the design of the study, the collection, analysis and interpretation of the data, or in writing the
manuscript.

Availability of data and materials
The sources of all data used and/or analyzed in this study are listed in Additional file 1: Tables S1 and S3.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 17 June 2021 Accepted: 19 October 2021

References
	1.	 Sedlazeck FJ, Lee H, Darby CA, Schatz MC. Piercing the dark matter: bioinformatics of long-range sequencing and

mapping. Nat Rev Genet. 2018;19:329–46. https://​doi.​org/​10.​1038/​s41576-​018-​0003-4.
	2.	 Wang O, Chin R, Cheng X, Wu MKY, Mao Q, Tang J, et al. Efficient and unique cobarcoding of second-generation

sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de
novo assembly. Genome Res. 2019;29:798–808.

	3.	 Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. Direct determination of diploid genome sequences. Genome
Res. 2017;27:757–67.

	4.	 Mendelowitz L, Pop M. Computational methods for optical mapping. Gigascience. 2014. https://​doi.​org/​10.​1186/​
2047-​217X-3-​33.

	5.	 Putnam NH, O’Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, et al. Chromosome-scale shotgun assembly using
an in vitro method for long-range linkage. Genome Res. 2016;26:342–50.

	6.	 Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet.
2020;21:597–614.

	7.	 Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and challenges in long-read sequencing
data analysis. Genome Biol. 2020;21:1–16.

	8.	 New research algorithms yield accuracy gains for nanopore sequencing. 2020. https://​nanop​orete​ch.​com/​about-​
us/​news/​new-​resea​rch-​algor​ithms-​yield-​accur​acy-​gains-​nanop​ore-​seque​ncing. Accessed 22 Apr 2021.

	9.	 Shafin K, Pesout T, Lorig-Roach R, Haukness M, Olsen HE, Bosworth C, et al. Nanopore sequencing and the Shasta
toolkit enable efficient de novo assembly of eleven human genomes. Nat Biotechnol. 2020. https://​doi.​org/​10.​1038/​
s41587-​020-​0503-6.

	10.	 Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020;17:155–8.
	11.	 Warren RL, Yang C, Vandervalk BP, Behsaz B, Lagman A, Jones SJM, et al. LINKS: scalable, alignment-free scaffolding of

draft genomes with long reads. Gigascience. 2015;4:s13742–4015.
	12.	 Cao MD, Nguyen SH, Ganesamoorthy D, Elliott AG, Cooper MA, Coin LJM. Scaffolding and completing genome

assemblies in real-time with nanopore sequencing. Nat Commun. 2017;8:1–10.
	13.	 Gao S, Bertrand D, Chia BKH, Nagarajan N. OPERA-LG: efficient and exact scaffolding of large, repeat-rich eukaryotic

genomes with performance guarantees. Genome Biol. 2016;17:1–16.
	14.	 Boetzer M, Pirovano W. SSPACE-LongRead: scaffolding bacterial draft genomes using long read sequence informa-

tion. BMC Bioinform. 2014;15:1–9.
	15.	 Qin M, Wu S, Li A, Zhao F, Feng H, Ding L, et al. LRScaf: improving draft genomes using long noisy reads. BMC

Genomics. 2019;20:1–12.
	16.	 Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–100.

https://doi.org/10.1038/s41576-018-0003-4
https://doi.org/10.1186/2047-217X-3-33
https://doi.org/10.1186/2047-217X-3-33
https://nanoporetech.com/about-us/news/new-research-algorithms-yield-accuracy-gains-nanopore-sequencing
https://nanoporetech.com/about-us/news/new-research-algorithms-yield-accuracy-gains-nanopore-sequencing
https://doi.org/10.1038/s41587-020-0503-6
https://doi.org/10.1038/s41587-020-0503-6

Page 13 of 13Coombe et al. BMC Bioinformatics (2021) 22:534 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	17.	 Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive
refinement (BLASR): application and theory. BMC Bioinformatics. 2012;13:1–18.

	18.	 Jackman SD, Coombe L, Chu J, Warren RL, Vandervalk BP, Yeo S, et al. Tigmint: correcting assembly errors using
linked reads from large molecules. BMC Bioinform. 2018;19:1–10.

	19.	 Zhang H, Jain C, Aluru S. A comprehensive evaluation of long read error correction methods. BMC Genomics.
2020;21:1–15.

	20.	 Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive
microbial variant detection and genome assembly improvement. PLOS ONE. 2014;9:e112963.

	21.	 Hunt M, Kikuchi T, Sanders M, Newbold C, Berriman M, Otto TD. REAPR: a universal tool for genome assembly evalu-
ation. Genome Biol. 2013;14:R47. https://​doi.​org/​10.​1186/​gb-​2013-​14-5-​r47.

	22.	 Zhu X, Leung HCM, Wang R, Chin FYL, Yiu SM, Quan G, et al. misFinder: identify mis-assemblies in an unbiased man-
ner using reference and paired-end reads. BMC Bioinform. 2015;16:1–16.

	23.	 Bao E, Song C, Lan L. ReMILO: reference assisted misassembly detection algorithm using short and long reads.
Bioinformatics. 2018;34:24–32.

	24.	 Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage requirements for biological sequence compari-
son. Bioinformatics. 2004;20:3363–9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bth408.

	25.	 Coombe L, Nikolić V, Chu J, Birol I, Warren RL. ntJoin: Fast and lightweight assembly-guided scaffolding using mini-
mizer graphs. Bioinformatics. 2020;36:3885–7.

	26.	 Coombe L, Zhang J, Vandervalk BP, Chu J, Jackman SD, Birol I, et al. ARKS: chromosome-scale scaffolding of human
genome drafts with linked read kmers. BMC Bioinform. 2018;19:1–10.

	27.	 Yeo S, Coombe L, Warren RL, Chu J, Birol I. ARCS: scaffolding genome drafts with linked reads. Bioinformatics.
2018;34:725–31.

	28.	 Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013. http://​arxiv.​org/​abs/​
1303.​3997.

	29.	 Mohamadi H, Chu J, Vandervalk BP, Birol I. ntHash: recursive nucleotide hashing. Bioinformatics. 2016;32:3492–4.
	30.	 Jackman SD, Raymond AG, Birol I. Scaffolding a genome sequence assembly using ABySS. http://​sjack​man.​ca/​abyss-​

scaff​old-​paper/. Accessed 23 Apr 2021.
	31.	 Jackman SD, Vandervalk BP, Mohamadi H, Chu J, Yeo S, Hammond SA, et al. ABySS 2.0: resource-efficient assembly of

large genomes using a Bloom filter. Genome Res. 2017;27:768–77.
	32.	 Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, Bentley DR, et al. A global reference for human

genetic variation. Nature. 2015;526:68–74. https://​doi.​org/​10.​1038/​natur​e15393.
	33.	 Church GM. The personal genome project. Mol Syst Biol. 2005;1:2005.0030. https://​doi.​org/​10.​1038/​msb41​00040.
	34.	 Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads.

Genome Res. 2017;27:737–46.
	35.	 Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly

via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.
	36.	 Nie S-J, Liu Y-Q, Wang C-C, Gao S-W, Xu T-T, Liu Q, et al. Assembly of an early-matured japonica (Geng) rice genome,

Suijing18, based on PacBio and Illumina sequencing. Sci Data. 2017;4:1–7.
	37.	 Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with QUAST-LG.

Bioinformatics. 2018;34:i142–50.
	38.	 Chu J. Jupiter plot: a circos-based tool to visualize genome assembly consistency. 2018. https://​doi.​org/​10.​5281/​

ZENODO.​12412​35.
	39.	 Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for compara-

tive genomics. Genome Res. 2009;19:1639–45.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1186/gb-2013-14-5-r47
https://doi.org/10.1093/bioinformatics/bth408
http://arxiv.org/abs/1303.3997
http://arxiv.org/abs/1303.3997
http://sjackman.ca/abyss-scaffold-paper/
http://sjackman.ca/abyss-scaffold-paper/
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/msb4100040
https://doi.org/10.5281/ZENODO.1241235
https://doi.org/10.5281/ZENODO.1241235

	LongStitch: high-quality genome assembly correction and scaffolding using long reads
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	The LongStitch pipeline
	Tigmint-long and ARKS-long
	ntLink
	Test runs

	Results and discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	References

