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Abstract 

Background:  Generating high-quality de novo genome assemblies is foundational 
to the genomics study of model and non-model organisms. In recent years, long-read 
sequencing has greatly benefited genome assembly and scaffolding, a process by 
which assembled sequences are ordered and oriented through the use of long-range 
information. Long reads are better able to span repetitive genomic regions compared 
to short reads, and thus have tremendous utility for resolving problematic regions 
and helping generate more complete draft assemblies. Here, we present LongStitch, a 
scalable pipeline that corrects and scaffolds draft genome assemblies exclusively using 
long reads.

Results:  LongStitch incorporates multiple tools developed by our group and runs in 
up to three stages, which includes initial assembly correction (Tigmint-long), followed 
by two incremental scaffolding stages (ntLink and ARKS-long). Tigmint-long and 
ARKS-long are misassembly correction and scaffolding utilities, respectively, previously 
developed for linked reads, that we adapted for long reads. Here, we describe the 
LongStitch pipeline and introduce our new long-read scaffolder, ntLink, which utilizes 
lightweight minimizer mappings to join contigs. LongStitch was tested on short and 
long-read assemblies of Caenorhabditis elegans, Oryza sativa, and three different human 
individuals using corresponding nanopore long-read data, and improves the contigu-
ity of each assembly from 1.2-fold up to 304.6-fold (as measured by NGA50 length). 
Furthermore, LongStitch generates more contiguous and correct assemblies compared 
to state-of-the-art long-read scaffolder LRScaf in most tests, and consistently improves 
upon human assemblies in under five hours using less than 23 GB of RAM.

Conclusions:  Due to its effectiveness and efficiency in improving draft assemblies 
using long reads, we expect LongStitch to benefit a wide variety of de novo genome 
assembly projects. The LongStitch pipeline is freely available at https://​github.​com/​
bcgsc/​longs​titch.
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Background
With the growing availability and accessibility of many different DNA sequencing tech-
nologies, generating high-quality de novo genome assemblies remains a crucial step in 
gaining important biological insights from the raw sequencing data. Constructing these 
de novo assemblies can enable a multitude of research aims, such as cancer genomics 
studies, analysis of non-model organisms, and population studies, to name a few. How-
ever, the complex and repetitive nature of genomes has long been a challenge in rou-
tinely achieving chromosome-scale genome assemblies [1].

To address these challenges, numerous developments in sequencing technologies have 
emerged. Many of these platforms provide long-range information to help resolve the 
problematic repeats, including linked reads [2, 3], optical maps [4], Hi-C data [5] and 
long reads [6]. These sequencing advances in turn inspire the development of new bio-
informatics tools tailored to the specific characteristics of each data type, particularly in 
the genome assembly domain [1].

Long-read sequencing from Oxford Nanopore Technologies plc. (ONT, Oxford UK) 
and Pacific Biosciences of California, Inc. (PacBio) can generate reads in the kilobases 
up to the megabase range, a stark contrast to short-read sequencing, which generally 
produces 150-300 bp reads. The long reads thus provide a rich resource of long-range 
genomic information, a feature that has proven extremely useful for genome assem-
bly work [7]. While the error rates of long reads remain higher than typical short-read 
technologies such as those generated on the Illumina sequencing instrument, the read 
accuracy is improving with each new pore chemistry and advances in base-calling algo-
rithms, and read accuracies now average between 87 and 98% [6, 8]. Furthermore, the 
throughput and cost of long-read sequencing is also improving, making it an increas-
ingly competitive and accessible technology for many research groups and applications.

While recently developed long-read de novo genome assembly tools are generating 
assemblies that are highly contiguous, the sequences often harbour errors and underuti-
lize long-range information. Therefore, these assemblies stand to gain from misassembly 
correction and further scaffolding, to maximize the rich genomic information provided 
by long reads and produce a more optimal solution [9, 10]. These assembly improve-
ments can be vital to many downstream applications such as the analyses of regulatory 
elements, structural variations and gene clusters.

A number of genome scaffolders have been developed to contiguate draft genome 
assemblies using the information provided by long reads. These tools include LINKS 
[11], npScarf [12], OPERA-LG [13], SSPACE-LongRead [14], and, more recently, LRScaf 
[15]. Most of these tools utilize alignments of long reads to the draft assembly to infer 
joins between sequences, with the exception of LINKS, which uses a paired word of 
length k (k-mer) matching approach. LRScaf is the most recently developed long-read 
scaffolding tool, and generates a scaffold graph using long-read alignments from mini-
map2 [16] or BLASR [17]. The graph is then manipulated in various ways, including edge 
filtering, transitive edge reduction and tip removal followed by a bi-directional traversal 
of the graph based on unique and divergent nodes to produce the final scaffolds.

In addition to the scaffolding stage being crucial for maximizing assembly contiguity, 
a preceding misassembly correction step is also important to achieve the highest qual-
ity final assembly, without which scaffolding-only utilities risk propagating structural 
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errors. Effectively, when these errors are identified and rectified before scaffolding, the 
sequences then have the potential to be joined with the correct adjacent sequences. 
This step can therefore lead to both more correct and contiguous assemblies, as dem-
onstrated by our linked-read assembly correction utility, Tigmint [18]. While there are 
multiple tools for correcting raw long reads directly [19], there are none that perform 
assembly correction using only long reads de novo. Tools such as Pilon [20] and REAPR 
[21] perform misassembly correction using short reads, and others such as misFinder 
[22] additionally use a closely-related reference genome. While ReMILO [23] can use 
long reads in its assembly correction pipeline, it does not use this evidence exclusively, 
but in addition to short-read data and a reference genome.

A wide range of bioinformatics tools in various domains are based on the use of 
k-mers, but storing and operating on all k-mers in the input sequences can be very com-
putationally expensive, especially for larger genomes. LINKS addresses this limitation by 
thinning the k-mer input set, an early form of sequence “minimizers”. The use of mini-
mizer sketches has gained popularity in recent years, where only a particular subset of 
k-mers from the input sequences are considered, resulting in significant savings in runt-
ime and memory usage [24]. Recently, we used this concept of minimizer sketches in our 
minimizer graph-based reference-guided scaffolder ntJoin [25].

Here, we present LongStitch, an efficient pipeline that corrects and scaffolds draft 
genome assemblies using long reads. LongStitch incorporates multiple tools devel-
oped by our group: Tigmint-long, ntLink, and optionally, ARKS-long. Tigmint-long and 
ARKS-long are misassembly correction and scaffolding utilities, respectively, previously 
developed for linked reads [18, 26, 27], and are now adapted to use long reads. Within 
LongStitch, we introduce our new long-read scaffolder, ntLink, which utilizes light-
weight minimizer mappings to join contigs. We show that these tools, used together in 
the LongStitch pipeline, produce high-quality and contiguous assemblies that harbour 
fewer misassemblies compared to the current state-of-the-art.

Implementation
The LongStitch pipeline

LongStitch is implemented as a pipeline using a Makefile, and consists of assembly 
correction and scaffolding stages using long reads (Fig. 1a). The inputs to the pipeline 
are any draft sequence assembly and a set of matching long-read sequences. Genome 
assembly utilities in the LongStitch pipeline use the long-read data to improve upon the 
draft assembly to output a final, scaffolded genome assembly. The input assembly can 
be generated using any method and any data type, including the same long reads that 
are supplied to LongStitch. The first step of LongStitch is Tigmint-long, which identi-
fies and breaks the input assembly at putative misassemblies. Then, our newly developed 
long-read scaffolder ntLink joins the assembly-corrected contigs together based on the 
long-range information. Optionally, an additional round of scaffolding can be performed 
using ARKS-long.

Tigmint‑long and ARKS‑long

Tigmint [18] and ARKS [26, 27] are both previously published tools from our group. 
The tools were originally developed to correct and scaffold assemblies, respectively, 
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both using linked reads. For LongStitch, we adapted these tools to use long reads as 
input by first generating pseudo-linked reads from the long reads. Briefly, tiled frag-
ments are extracted from the long reads, and paired-end reads (each of length frag-
ment_size/2, default fragment_size = 500 bp) are generated from the fragments. Each 
read pair extracted from the same long-read is assigned the same barcode, thus cre-
ating a reads file (in fastq or fasta) formatted like a linked reads file. These pseudo-
linked reads are then input to the previously developed algorithms, which use the 
long-range information to perform correction and scaffolding.

In addition to generating the pseudo-linked reads, Tigmint and ARKS required 
other minor adjustments to work optimally with the long-read data. When using tra-
ditional linked reads, Tigmint uses bwa mem [28] to align the reads to the contigs, 
and then uses the alignments to infer molecule extents. The inferred molecule extents 
are examined to find and subsequently cut areas of the assembly that are not sup-
ported by these long molecules. In adapting Tigmint to work with long reads, we use 
minimap2 [16] instead of bwa mem, which is better suited to long-read mappings. To 
reduce the number of parameters required for users to specify, we also added func-
tionality to automatically calculate appropriate values for two parameters: span and 
dist. Span is the number of molecule extents spanning a region of the contig required 
for that region to be considered correct, and is set as: span = 0.25 × long_read_cover-
age. Dist is the maximum distance (in bp) allowed between read alignments of the 
same barcode for these reads to be merged to the same molecule extent, and is set as 
the median read length of the first one million long reads. The optimal values for both 
parameters are different for long reads compared to linked reads.

We also found that the optimal parameter settings for running ARKS-long varied 
from the recommended settings when using traditional linked reads. Particularly, 

(a) (b)

Fig. 1  The LongStitch pipeline. a Overview of the main steps of the LongStitch pipeline. The dashed border 
indicates the optional scaffolding step of ARKS-long. b Detailed schematic of the ntLink algorithm. (i) The 
input files to the ntLink long-read scaffolder are a draft assembly and long reads. (ii, iii) Minimizer sketches 
are computed for each of the input sequences (indicated by filled circles), then these minimizers are used 
to map the long reads to the draft assembly. Identical minimizers are vertically aligned, and also indicated 
by the vertical dotted line for one long-read. Each of the long-read mappings to the assembly can provide 
evidence about which contigs should be joined together, and in which orientation. (iv) After tallying all of 
the pairing information from the long reads, a directed scaffold graph is constructed, where the nodes are 
oriented contigs and the directed edges indicate long-read evidence between contigs. (v) Finally, the graph 
is traversed using abyss-scaffold to produce the final ordered and oriented scaffolds



Page 5 of 13Coombe et al. BMC Bioinformatics          (2021) 22:534 	

using a smaller k-value (k = 20), and a low Jaccard index threshold (j = 0.05) was 
important to produce optimal scaffolding.

ntLink

While the Tigmint-long and ARKS-long components of the pipeline are adaptations of 
previously published algorithms [18, 26, 27], within LongStitch we also introduce a new 
scaffolding tool, ntLink, which performs efficient long-read scaffolding using minimizer 
mappings (Fig. 1b).

First, minimizers are generated from both the input draft assembly and long reads as 
described in Roberts et al. [24], using a sliding window (w), and k-mer size (k) (Fig. 1b-
i). Briefly, starting at the beginning of each sequence, the canonical hash values of w 
adjacent k-mers are generated using ntHash [29], and the smallest value is chosen as the 
minimizer for that window. For each minimizer, we also keep track of the corresponding 
sequence ID, the position (in bp) where the minimizer was found, and the strand of the 
canonical k-mer (“+” if the canonical k-mer is from the forward strand, else “−”). When 
applied over all of the input data, this process generates an ordered minimizer sketch for 
all input sequences.

Then, these minimizer sketches are used to map the long reads to the input draft 
assembly (Fig. 1b-ii). Any minimizers that are not unique in the draft assembly are dis-
carded to avoid ambiguous mappings due to repeats. For each minimizer in a long read’s 
ordered sketch, the minimizer sketch of the draft contigs is queried. For every minimizer 
match in the draft contigs sketch, the information about which contig the minimizer hits 
to, as well as the position and strand of that minimizer in the contig is readily available. 
By performing this matching for each minimizer in the ordered sketch for a long read, 
we convert the minimizer sketch to an ordered list of contig hits (Ex. A {2}, B {2}, C {1} 
for the indicated read in Fig. 1b-iii), where adjacent identical contig hits are collapsed, 
and the numbers of collapsed hits are retained. The contig hits are filtered to remove 
any contigs less than the minimum contig size (z, default 1000 bp), and any subsumed 
contigs. Removing the small, often repetitive sequences using this minimum contig size 
heuristic reduces the complexity of the downstream scaffold graph.

From this list of contig hits, we can infer oriented pairings between the draft contigs. 
As well as the obvious adjacent pairings (Ex. A → B, B → C in Fig. 1b-iii), we also add 
pairs based on transitive pairings in the run of contig hits (Ex. A → C). All transitive 
pairings are added for lists of contig hits up to f (default 10). To avoid the computational 
overhead becoming too large with many contig hits, when there are more than f contigs 
in a list, transitive pairings are only generated over weakly supported contigs, which are 
defined as contigs with only a single minimizer hit from the long read (Ex. “C” in the 
indicated long read in Fig. 1b-iii).

Each of these inferred contig pairs are also oriented relative to each other, and the gap 
size between them estimated. Each join suggested by a long read lr is due to minimizer 
mappings to the contigs in the pair. Therefore, for each of these joins, there are terminal 
minimizer hits (mA, mB) for each contig (cA, cB) in a pair, where mA is the last mini-
mizer in contig cA that the long read lr hits to, and mB is the first minimizer in contig 
cB that the long read lr matches (Additional file 1: Fig. S1). We compare the strands of 
canonical minimizers mA and mB in the long read lr sketch and the contigs (cA, cB) to 
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orient the assembly sequences. If, for example, mA has the same strand in contig cA 
and long read lr, contig cA is assigned the positive orientation, otherwise, it is reverse-
complemented. To estimate the gap size, a similar approach to that employed in ntJoin 
[25] is used, where the distance between the minimizers mA and mB on the long read lr 
is determined and then corrected for the distance of the minimizers to the contig ends 
(Additional file  1: Fig. S1). For each contig pair, we also track the number of ‘anchor-
ing reads’, or reads mapping to at least two minimizers on each contig in the pair. After 
tallying all the long reads, any contig pairs without sufficient ‘anchoring reads’ support 
(parameter a, default 1) are flagged as noisy edges, and filtered out.

Finally, after the contig pairs are fully tallied using all of the minimizer sketches from 
the long reads, a scaffold graph is created, where the nodes are oriented contigs, and 
directed edges are created between the tallied contig pairs (Fig. 1b-iv). The edge prop-
erties are the number of long reads that support the contig pair, and the median esti-
mated gap size. Each contig node is represented in its forward and reverse orientations 
in the graph, so each tallied pair will be represented twice (ex. A+ → B+ , B- → A- for 
Fig. 1b-iv).

The scaffold graph is then input to abyss-scaffold [30], a scaffolding layout tool from 
our ABySS [31] suite of tools, which manipulates and traverses the graph to generate the 
final scaffold sequences (Fig. 1b-v).

Test runs

To test the correction and scaffolding utilities of LongStitch on real sequencing data, 
we obtained ONT long-read data and Illumina short-read data for three human indi-
viduals (NA12878, NA19240, and NA24385) [32, 33], C. elegans N2 Strain, and O. sativa 
Japonica (Additional file  1: Table  S1). We assembled the short-read data using ABySS 
[31], and the long-read data with Shasta [9] to generate the baseline assemblies to 
improve using LongStitch. The Shasta assemblies were polished using the correspond-
ing long reads with Racon (v1.4.13) [34]. For the O. sativa long-read assembly scaffold-
ing tests, we downloaded a previously published Canu [35] assembly of PacBio data [36] 
(GCA_002573525.1). Assembly tool versions and statistics for the baseline assemblies 
are summarized in Additional file 1: Tables S2 and S3.

We improved each of the baseline assemblies using LongStitch (v1.0.0), setting G to 
the appropriate genome size for each species and optimizing the k and w parameters 
for ntLink (v1.0.0), with all other parameters kept at the default values (Tigmint v1.2.3, 
ARCS/ARKS v1.2.2). The k and w parameters were optimized using a grid search with 
k values {24, 32, 40} and w values {100, 250, 500}, and selecting the run with the highest 
NG50 length. We note that these ranges of k and w settings work well for a variety of 
scaffolding runs with different sources (e.g. different laboratory origin) and sequencing 
data types (e.g. short vs. long reads).

Each of the baseline assemblies was also scaffolded with LRScaf (v1.10.0), using 
parameters -mioll 400 -i0.15 -mxel 500 -mxohl 500 -micl 1000 [15]. The long reads were 
mapped to the draft contigs using minimap2 [16] prior to LRScaf, as this is a required 
pre-processing step for the tool. In addition, all baseline assemblies were scaffolded with 
OPERA-LG (v2.0.6) using default parameters, supplying the corresponding short reads 
in addition to the long reads, as required by the tool [13].
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All assemblies were analyzed using QUAST v5.0.2 (--fast --scaffold-gap-max-size 
100,000  --large) [37], and the corresponding reference genome (Additional file  1: 
Table S4). To assess the contiguity of the assemblies, we used both the NG50 and NGA50 
lengths. While the NG50 statistic describes that at least half of the genome is in pieces 
at least the NG50 length, the NGA50 metric is similar, but uses alignment blocks instead 
of sequence lengths for the calculation. Jupiter plots were also generated to visualize the 
consistency of each human assembly with the human reference genome (ng = 75, min-
BundleSize = 50,000) [38]. All benchmarking tests were run on a DELL server with 128 
Intel(R) Xeon(R) CPU E7–8867 v3, 2.50 GHz with 2.6 TB RAM.

Results and discussion
To demonstrate the performance of LongStitch in improving upon draft assemblies 
using long reads, we ran the default steps of the correction and scaffolding pipeline (up 
to the ntLink stage) on six different human assemblies, as well as C. elegans and O. sativa 
assemblies. We also ran OPERA-LG [13] and the current state-of-the-art long-read scaf-
folder, LRScaf [15], on these data (Fig. 2, Additional file 1: Tables S5 and S9, Fig. S2).

For each short-read ABySS assembly, LongStitch substantially improved the contiguity 
of the baseline assemblies, from a 10.8-fold increase in NGA50 length (1.1–12.2 Mbp) 

Fig. 2  Contiguity and correctness of assemblies improved with LongStitch compared to LRScaf and 
OPERA-LG. For three human individuals, NA12878, NA19240 and NA24385, short-read ABySS assemblies and 
long-read Shasta assemblies (white) were improved using long-read data from the respective individual. The 
resulting assemblies from LongStitch (orange), LRScaf (blue) and OPERA-LG (purple) were assessed using 
QUAST for their contiguity and correctness. Extensive misassemblies (as defined by QUAST) are shown on 
the x-axis. For the correction and scaffolding runs shown, the default steps of LongStitch were run (up to the 
ntLink stage). Ideal assemblies are located in the top-left corner
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for NA12878 up to a very considerable 304.6-fold increase (14.5  kb to 4.4  Mbp) in 
NGA50 length for the NA19240 individual. Despite the baseline short-read assembly 
for the NA19240 individual having the lowest contiguity of the short-read assemblies 
(NGA50 length = 14.5 kb), the LongStitch pipeline was still able to leverage the long-read 
information to increase the contiguity of this very fragmented assembly to the megabase 
scale (NGA50 length = 4.4 Mbp). This demonstrates a very promising option for a hybrid 
assembly approach, as scaffolding a fragmented short-read assembly with long reads can 
generate a very contiguous assembly with an extremely high base accuracy. LongStitch 
also generates assemblies that are more contiguous than those produced by the LRScaf 
scaffolder, with final NGA50 lengths up to 5.1-fold higher (1.4-fold, 2.3-fold, 5.1-fold, 
1.8-fold and 1.6-fold for human individuals NA12878, NA19240, NA24385, C. elegans 
and O. sativa, respectively). Furthermore, the LongStitch assemblies are more correct, 
as assessed using QUAST, with LRScaf generating 72.2%, 274.2% and 271.7% more 
extensive misassemblies (as defined by QUAST) than LongStitch for human individu-
als NA12878, NA19240 and NA24385, respectively. This trend was also evident in the 
smaller genomes tested, with LRScaf producing 183.5% and 121.0% more extensive mis-
assemblies than LongStitch for the C. elegans and O. sativa tests. In fact, for two of the 
human individuals (NA19240 and NA24385), C. elegans and O. sativa, the assemblies 
produced by LongStitch have fewer (469, 1,279, 272 and 517 respectively) extensive mis-
assemblies than the baseline, demonstrating the effectiveness of the Tigmint-long mis-
assembly correction step. When also considering local misassemblies, the Tigmint-long 
step achieves a positive predictive value (PPV) of 0.18–0.96 and true positive rate (TPR) 
of 0.02–0.45 (Additional file 1: Table S10). For all short-read assembly tests, OPERA-LG 
generated lower NGA50 values and more total misassemblies than both LongStitch and 
LRScaf, despite utilizing additional short-read evidence for scaffolding.

As well as showing great potential in a hybrid assembly use-case, the LongStitch pipe-
line can also utilize long reads to improve Shasta assemblies of the same data. Long-
Stitch improves upon the baseline long-read assembly NGA50 lengths 2.0, 5.8, 3.4 and 
1.2-fold for the NA12878, NA19240 and NA24385 human individuals, and C. elegans, 
respectively. This demonstrates that there is still underutilized long-range information 
in the long-read sequencing data that can be leveraged to improve the assemblies, even 
after the initial de novo Shasta assembly. LongStitch generates assemblies with higher 
NGA50 lengths and fewer extensive misassemblies than OPERA-LG for all runs. Com-
pared to LRScaf, LongStitch achieves higher or equivalent NGA50 lengths for NA19240 
and NA24385 (1.4-fold higher and equivalent NGA50 lengths, respectively), but does 
produce slightly lower NGA50 lengths for the NA12878 individual and C. elegans. How-
ever, similar to the short-read assembly runs, the LongStitch scaffolds have substantially 
fewer QUAST extensive misassemblies compared to the LRScaf scaffolds, with Long-
Stitch only increasing extensive misassemblies 12.6–18.3% compared to the long-read 
baselines for the human runs, whereas LRScaf increased extensive misassemblies 73.0–
85.7%. In addition to improving upon assemblies of nanopore data, LongStitch is also 
effective in improving assemblies of PacBio long reads, as shown in the O. sativa long-
read test, where LongStitch improved the NGA50 length of the baseline Canu assem-
bly 1.43-fold, compared to 1.26-fold and 1.19-fold increases when using either LRScaf 
or OPERA-LG, respectively. Furthermore, while LRScaf and OPERA-LG increased 
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the number of extensive misassemblies in the O. sativa PacBio assembly by 4.9% and 
1.0%, LongStitch reduced the number of extensive misassemblies by 9.8%. This shows 
that the LongStitch pipeline, with the combined correction and scaffolding steps, greatly 
improves the contiguity of the long-read baseline assemblies, producing highly accurate 
assemblies that are extremely valuable to downstream genomics analyses such as gene 
annotation tasks.

We inspected the genome assembly consistency between the LongStitch assemblies 
and the human reference genome (GRCh38) visually using Jupiter plots [38]. These cir-
cos-based [39] representations show sequence alignments between assemblies and the 
reference genome as coloured bands, and any large-scale misassemblies are immedi-
ately evident as interrupting ribbons. Comparing the Jupiter plots generated using the 
LongStitch and LRScaf assemblies for each of the human runs, there are fewer inter-
rupting ribbons in the LongStitch plots in each case, indicating that LongStitch produces 
fewer large-scale misassemblies (Additional file 1: Fig. S3). This correctness is particu-
larly evident in the runs improving the NA19240 and NA24385 short-read ABySS draft 
assemblies, where the Tigmint-long correction step was very important to both breaking 
misassemblies and enabling correct scaffolding with ntLink.

Comparing the benchmarking performances of the tools on human data, Long-
Stitch, despite being a multi-tool pipeline (two tools by default), runs faster than 
LRScaf for five of the six test runs, with all LongStitch tests running between 3.0 and 
4.5 h (Fig. 3). While LRScaf was 40 min faster for the NA12878 short-read assembly 

Fig. 3  Benchmarking results of improving assemblies with LongStitch or LRScaf. For three human individuals, 
NA12878, NA19240 and NA24385, the wall-clock time and peak memory is shown for improving short-read 
ABySS assemblies and long-read Shasta assemblies using the default steps of LongStitch (up to ntLink) 
(orange) or LRScaf (blue). The peak memory (in gigabytes) is shown on a linear scale, and the wall-clock time 
(in hours) is shown on a log scale. All OPERA-LG runs on human data required over 9 days and 100 GB of RAM 
to complete, and are therefore not included in the plots
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test, its runtimes varied quite widely from 2.7 to 44.6 h across all runs. Therefore, 
whereas LRScaf can have unpredictably longer runtimes, the consistent runtimes of 
LongStitch for a given genome size and read coverage, independent of assembly con-
tiguity, will be very useful when applying the tool to new and larger genomes. While 
LongStitch used less memory than LRScaf in five of six tests runs, all runs for both 
tools used 17.1–23.5  GB of RAM. All human OPERA-LG tests were quite compu-
tationally expensive, taking over 9 days to complete and using over 100 GB of RAM 
(Additional file 1: Table S7, Fig. S4).

While the default mode of the LongStitch pipeline runs two steps: Tigmint-long for 
misassembly correction, then ntLink for assembly scaffolding with long reads, users 
can optionally run an extra scaffolding step with ARKS-long to maximize the conti-
guity improvements. In all human runs, this extra step of scaffolding improves the 
NGA50 metric, showing that this step makes additional correct joins. The improve-
ments in contiguity with ARKS-long are most substantial for the short-read assem-
bly runs (Additional file  1: Fig. S5, Table  S11). However, and as expected, running 
the extra scaffolding step increases the runtime of the whole pipeline and also intro-
duces additional misassemblies (Additional file  1: Figs. S5–S7). Therefore, running 
the default two-step LongStitch pipeline or additionally running the ARKS-long step 
is a decision open to the user, and will likely depend on the user’s particular use case, 
application and input data. For example, if the correctness of the output assembly 
and faster runtimes are paramount, running the more conservative default pipeline 
is recommended. However, if it is most important to the user to maximize the con-
tiguity of the output scaffolds, running the additional ARKS-long scaffolding step is 
often valuable.

We previously demonstrated the effectiveness of using minimizers for genome 
scaffolding with our reference-guided scaffolder, ntJoin [25], and we find that 
minimizers also exhibit great utility in fast and accurate mapping of long reads to 
assemblies using ntLink. The k and w parameters of ntLink do impact the resulting 
scaffolding, but we find that ntLink works well over a range of these values (Addi-
tional file 1: Figs. S8 and S9). Furthermore, the NG50 metrics of the resulting assem-
blies, which are calculated without using a reference, show a similar pattern to the 
NGA50 reference-based contiguity metric, demonstrating that a user can optimize 
these k and w parameters without the requirement of a reference. This minimizer-
based mapping approach is tolerant to errors in the raw long reads, as evidenced 
by detecting a median of 6–20 matching minimizers per long read for joined con-
tig pairs in our runs, despite the algorithm filtering out repetitive minimizers in the 
target assemblies (Additional file  1: Table  S12). We see that these matching mini-
mizer statistics are fairly consistent across the runs despite setting different k and w 
parameter values, with slightly more matching minimizers for the higher base-qual-
ity short-read assembly runs. As well as ordering and orienting contigs, ntLink uses 
the minimizer mappings of the long reads to the draft assembly to estimate the gap 
sizes in the output scaffolds. In the current implementation, the ntLink code creates 
the scaffold graph, which is traversed by abyss-scaffold [30], a scaffold layout algo-
rithm from our ABySS suite of tools, but the tool is flexible to using other scaffold 
layout algorithms if desired, similar to our ARKS scaffolding tool.
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Conclusions
We have demonstrated the use of our scalable long-read correction and scaffolding pipe-
line, LongStitch, on a variety of human, nematode and rice datasets and assemblies, and 
show that it runs efficiently and generates high-quality final assemblies. When embarking 
on  assembly projects, different groups will have varying combinations of sequencing data, 
and it is important to have tools available that are useful for a range of use cases. With the 
LongStitch pipeline, long reads are used to improve upon an input draft assembly from 
any data type. Therefore, if a project solely uses long reads, the LongStitch pipeline is able 
to further improve upon de novo long-read assemblies. However, if the baseline assembly 
is a short-read assembly, a linked-read assembly or even an assembly incorporating mul-
tiple data types, LongStitch is also valuable for facilitating additional improvements. Due 
to its efficiency and flexibility to many different de novo genome assembly projects, we 
expect LongStitch to be widely beneficial to the research community.
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