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PDGFA in Cashmere Goat: A Motivation for the Hair
Follicle Stem Cells to Activate
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Simple Summary: Cashmere goats are the most important goat breed due to the high yield and
fineness of the fibers that they produce. Cashmere fiber is a luxury product since it is soft, light and
warm. The development of this fiber depends on the hair follicle (HF) cyclical activity, which is
characterized by the succession of growth and regressive phases. In the transition between telogen
and anagen phases, many growth factors work to activate the HF stem cells and to allow the growth
of a new cashmere fiber. As several factors involved in the stem cell activation, Platelet-Derived
Growth Factor A (PDGFA), Bone Morphogenetic Protein 2 (BMP2) and Lim-Homeobox gene 2 (LHX2)
were analyzed in this work to evaluate their activity during the cashmere HF cycle. These molecules
were studied using different approaches and finally, PDGFA and BMP2 appeared to have higher
levels of expression during the cycle activation phase with respect to the LHX2, which suggests that
they play a main role in the development of a new cashmere fiber. The obtained data will improve
the knowledge of the HF cycle in the cashmere goat and they could be a useful tool for improving
cashmere fiber production.

Abstract: The cashmere hair follicle (HF) perpetually goes through cycles of growth, involution and
rest. The photoperiod is the main factor in the control of seasonal coat change in cashmere goats
while stem cells play a crucial role in the HF growth. Several factors, including Platelet-Derived
Growth Factor A (PDGFA), Bone Morphogenetic Protein 2 (BMP2) and Lim-Homeobox gene 2
(LHX2) are implicated in HF morphogenesis and cycle. In this work, the mentioned molecules were
investigated to evaluate their role in follicular cycle activation. The study was performed on skin
samples collected at different periods of HF cycle and the molecular expression of PDGFA, BMP2
and LHX2 was evaluated by Real-Time PCR (qPCR) at each time point. Since PDGFA showed the
most variation, the goat PDGFA gene was sequenced and the protein localization was investigated
by immunohistochemistry together with PDGF receptor o (PDGFRe). PDGFA immunostaining was
observed in the basal layer of the HF outer root sheath and the immunoreaction appeared stronger
in the regressive HFs compared to those in the anagen phase according to qPCR analysis. PDGFR«
was observed in the HF epithelium, proving the effect of PDGFA on the follicular structure. The
data obtained suggest that PDGFA and BMP2 are both implicated in HF cycle in goat. In particular,
PDGFA secreted by the HF is involved in the anagen activation.

Animals 2019, 9, 38; d0i:10.3390/ani9020038 www.mdpi.com/journal/animals


http://www.mdpi.com/journal/animals
http://www.mdpi.com
https://orcid.org/0000-0002-7528-8382
https://orcid.org/0000-0002-8799-1200
https://orcid.org/0000-0002-2398-8993
https://orcid.org/0000-0002-3141-771X
https://orcid.org/0000-0002-1244-1503
https://orcid.org/0000-0001-9835-8446
https://orcid.org/0000-0003-1376-0538
http://www.mdpi.com/2076-2615/9/2/38?type=check_update&version=1
http://dx.doi.org/10.3390/ani9020038
http://www.mdpi.com/journal/animals

Animals 2019, 9, 38 20f 13

Keywords: photoperiod; fiber; BMP2; LHX2; PDGFR; follicular cycle; immunohistochemistry; gPCR

1. Introduction

Goats are one of the most adaptive livestock species in the world [1] and cashmere goats are the
most important goat breed due to the high yield and fineness of the fibers that they produce [2]. China
is by far the largest producer of cashmere [3]. The histologic skin structure of the cashmere goat shows
two different types of hair follicle (HF): a primary HF that produces guard hair and a secondary HF
that gives rise to cashmere hair [4]. Cashmere fiber is soft, light and warm. Its growth starts from the
fetal period and continues during the first months after birth. The HF cycle perpetually goes through
three stages: growth (anagen), involution (catagen) and rest (telogen) [5]. The photoperiod is the main
proximate factor in the control of seasonal coat change. The mitotic activity of secondary HF remains
high from the summer to winter solstice before decreasing [6]. The generation of the new hair shaft
depends on the activation of hair-specific epithelial stem cells, which are located in the bulge region
of the HF placed in the permanent portion of this structure that acts as a reservoir for follicular and
sebaceous gland cells [7,8]. In addition, adipocyte precursor cells located in the dermis secrete several
growth factors, such as those belonging to the Platelet-Derived Growth Factor (PDGF) family [9], that
may be involved in the control and activation of HF [10,11]. PDGF is a potent mitogen produced
in a variety of cell types and is important for cell growth, proliferation and differentiation [12,13].
Furthermore, it is active during embryonic development and is found in several adult tissues, including
gonads, lung, kidney, intestine, brain and skin [14]. Members of this family are dimeric glycoproteins
composed of four different polypeptide chains (A, B, C and D) that are encoded by four different
genes [15]. Five isoforms have been described for the PDGF so far: PDGF-AA, PDGF-AB, PDGF-BB,
PDGF-CC and PDGF-DD [16]. PDGF signaling was suggested to be instrumental in HF regeneration
during the hair cycle [14]. One study suggested that in mouse HF, PDGF induces and maintains the
anagen phase [17]. Festa et al. [11] reported that the adipocyte precursor cells secrete PDGF to promote
hair growth.

In addition to PDGF, other genes, including Bone Morphogenetic Protein 2 (BMP2) and
LIM-Homeobox gene 2 (LHX2), have been assessed for their role in the cashmere cycle since they are
involved in HF activation [18,19]. BMP2 is implicated in the regulation of morphogenesis and hair
growth. Lee et al. [20] described that BMP2 starts to accumulate from the late anagen phase with a
peak at the telogen phase. Others argued that BMP2 is the major molecular driver of bulge quiescence
since its expression was absent in the early anagen phase and gradually intensified to reach a peak
level in anagen V-VI [21,22].

LHX2 is an important regulator of HF cycle, which controls the switch between stem cell
maintenance and activation in the HF [23]. Many authors connected this gene with the beginning
of the new hair cycle [24]. Geng et al. [18] found that this gene was active during the HF growth
phase and subsided during the resting phase. They compared the LHX2 expression level during the
anagen, catagen and telogen phases of the HF cycle and showed that LHX2 is high during the anagen
phase and decreases in the other phases [25]. Wang et al. (2016) confirmed that LHX2 regulates the
generation and regeneration of the hair in goats.

The aim of the present work was to analyze the expression of PDGFA, BMP2 and LHX2 gene in
cashmere goats and determine their variation throughout HF cycle. Since PDGFA showed the greatest
difference, the goat PDGFA gene was sequenced and the protein localization was investigated by
immunohistochemistry together with the localization of PDGF receptor o« (PDGFRo).
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2. Materials and Methods

2.1. Subjects Recruiting and Tissue Collection

The trial was carried out in seven unrelated one-year-old female cashmere goats from the Chianti
Cashmere Farm in Radda in Chianti, Italy. Skin samples were collected by a punch biopsy (diameter of
0.8 cm) from the lateral thoracic region after a visual examination to ensure that cutaneous lesions were
absent. Biopsies were carried out after trichotomy was performed by using disposable stainless-steel
blades, the affected area was carefully washed with povidone-iodine solution and local anesthesia was
performed with a subcutaneous injection of 2% lidocaine around the area to be sampled. After the
biopsy, the skin lesion was medicated with OneVET® spray (Endospin, La Massimina-Casal Lumbroso,
RM, Italy). Samples were collected during four time points at the same time of the day. Collection time
and follicular phases were: June (early anagen), September (anagen), December (early catagen) and
February (catagen). Each biopsy was divided into two parts: one-half was intended for molecular
biology investigations and the other half for morphological evaluations. Biopsies for molecular biology
investigations were stored in Allprotect Tissue Reagent (Qiagen GmBH, Hilden, Germany), which
preserves the in vivo profile of DNA, RNA and proteins. After this, samples were removed from this
solution and put into cryovials (Thermo-Fisher Scientific, Waltham, MA, USA) for storage at —196 °C
(liquid nitrogen). Specimens for morphological evaluation were quickly fixed in a 10% formaldehyde
solution in phosphate buffered saline (PBS) (0.1 M, pH 7.4) and processed until they were embedded
in paraffin wax.

2.2. RNA and DNA Isolation

Total RNA was extracted from skin biopsies using the RNeasy Fibrous Tissue Mini Kit (Qiagen
GmBH, Hilden, Germany). The quality and quantity of RNA extract was measured using NanoDrop
spectrophotometer (Thermo-Fisher Scientific, Waltham, MA, USA) by calculating the optical density
ratio at 260/280. The first strand cDNA was synthetized from RNA using SuperScript IV VILO Master
Mix (Thermo-Fisher Scientific) according to the manufacturer’s recommendations.

2.3. Primer Design

Sequences of PDGFA gene from mammals were chosen from NCBI GenBank (https://www.ncbi.
nlm.nih.gov/) and aligned with MAFFT (http://mafft.cbrcjp/alignment/server/) to determine the
conserved regions that were useful for designing primers to amplify this gene. The primers were
designed with Primer3 (http://primer3.ut.ee/) (Table 1).

Table 1. PDGFA gene primers.

Primer Sequence ™ (°O)

FWDA CTCGGGACGCGATGAGGAC 60.3

FWDB GATGAGGACCTGGGCTTG 58.2
OLIGODT GAGAGAGAGAGAGACAGAGAACTAGTCTCGAGTTTTTTTTTTTITITTITIT 74.9

2.4. PCR Amplification of Full-Length PDGFA Gene

PCR amplification of the coding region from cDNA was done using the primers FWDA
and OligoDT in a reaction volume of 25 uL containing 5X Phusion CG Buffer (Thermo-Fisher
Scientific, Waltham, MA, USA), 2 mM dNTP, template, water and 2 U/pL Phusion DNA Polymerase
(Thermo-Fisher Scientific) using MJ Mini™ Thermal Cycler (Bio-Rad, Hercules, CA, USA). The PCR
cycle was conducted under the following conditions: initial denaturation at 98 °C for 3 min, followed
by 35 cycles of 98 °C for 10 s, 63 °C for 20 s and the final extension at 72 °C for 1 min. To obtain the
complete sequence of the coding region and the 3'UTR, another PCR was performed using FWDB
and OligoDT under these conditions: 98 °C for 3 min, followed by 35 cycles of 98 °C for 10°s, 61 °C
for 20 s and the final extension at 72 °C for 50 s. To obtain the 5 UTR the GeneRacer™ Kit with
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SuperScript III RT and TOPO TA Cloning (Invitrogen Corp., Carlsbad, CA, USA) was used according
to the manufacturer’s recommendations. The PCR reactions were loaded on agarose gel and the
fragments of interest were cut and purified using PCR clean-up gel extraction (Macherey-Nagel Inc.,
Bethlehem, PA, USA). The amplicons were cloned using Clone]ET PCR Cloning Kit (Thermo-Fisher
Scientific). The sequencing of the transcripts was carried out by StarSEQ (https:/ /www.starseq.com/)
before the sequences were determined using NCBI BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi).

2.5. Homology Modelling of PDGFA Three-Dimensional Structure

The three-dimensional structure of goat PDGFA has not yet been experimentally determined.
For this reason, we tried to model its structure by homology in order to determine any significant
structural differences. The human PDGFA crystallographic structure [26] was selected as the best
template (with a sequence identity of 88.8% and a coverage of 91%) and the Modeller algorithm was
used for the modeling [27].

2.6. Basic Histology

Sections with a thickness of 5 pm were cut from samples embedded in paraffin wax, mounted
onto poly-L-lysine coated glass slides and processed for staining with Hematoxylin & Eosin, Sacpic [28]
and Floxin B/Orange G/ Alcian blue [29]. Sacpic staining and Floxin B/Orange G/ Alcian blue were
used to highlight the keratin of the hair and to determine the stage of the HF cycle.

2.7. Immunohistochemistry

Immunohistochemistry has been conducted as follows [30]. The skin sections were rehydrated,
dipped for 10 min in 3% H;O; to reduce endogenous peroxidase activity and incubated for 30 min
in 1:10 normal serum (Vector Laboratories, Burlingame, CA, USA). Incubation with 1:400 mouse
monoclonal anti-PDGFA and 1:100 rabbit polyclonal anti-PDGFR« antibodies (both from Santa Cruz
Biotechnology, Santa Cruz, CA, USA) was performed overnight at room temperature. On the second
day, the sections were incubated for 30 min with 1:200 biotin-conjugated secondary antibodies
(Santa Cruz Biotechnology), which were namely chicken anti-mouse and chicken anti-rabbit antibodies.
The bound primary antibodies were visualized using an avidin-biotin system (Vectastain ABC kit;
Vector Laboratories, Burlingame, CA, USA) and diaminobenzidine (DAB) as chromogen (Vector
Laboratories). Nuclei were counterstained with Mayer’s Hematoxylin. All steps were performed at
room temperature and the slides were incubated in a humid chamber. Sections were washed with PBS
between all incubation steps, except after normal serum. Smooth muscle cells were used as an internal
positive control [31]. Negative controls were made by omitting the primary antibodies. All sections
were observed under a photomicroscope (Nikon Eclipse E800, Nikon Corp., Tokyo, Japan) connected
to a digital camera (Nikon Dxm 1200 digital camera, Nikon Corp.).

2.8. qPCR on Target Genes

To evaluate the expression of PDGFA, BMP2 and LHX2, a Real-Time PCR (qPCR) approach was
applied. For each gene, specific primers spanning exons/introns were designed with Primer-Blast
(https:/ /www.ncbi.nlm.nih.gov/tools/primer-blast/) (Table 2).

Three reference genes were chosen according to reference [32], which selected and validated eight
reference genes in the skin of Liaoning cashmere goats. The Real-Time PCR was performed using
SsoAdvanced Universal SYBR Green Supermix (Bio-Rad, Hercules, CA, USA). The protocol followed
was: 1X SsoAdvanced Universal SYBRGreen Supermix, 0.4 pM of FWD, 0.4 uM of REV, 50 ng of
the template and a certain volume of water to obtain a final volume of 20 uL. The amplification was
carried out by the instrument CFX96 Touch Real-Time PCR (Bio-Rad) using the same thermal cycle
for all primer pairs, steadily changing the annealing temperature specifically for individual genes:
initial denaturation at 95 °C for 1 min, followed by 44 cycles of denaturation at 95 °C for 30 s and
annealing temperature for each specific gene for 30 s. The fluorescence was recorded at the end of
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each phase of polymerization. Each reaction was carried out in triplicate. The Melt Curve analysis
was set up in a range from 60 °C to 95 °C, with temperature increments of 0.01 °C/s. The Ct values
(threshold cycle) obtained from CFX Manager™ Software (Bio-Rad) showed a standard deviation lower
than 0.2 the reactions performed in triplicate. The results were analyzed by GenEx-Pro, which is a
software package designed for gPCR data processing and analysis (http://www.multid.se/index.html).
The statistical significance was identified by analysis of variance (ANOVA) with R software (https:
/ /www.r-project.org/).

Table 2. Primer designed for Real-Time PCR with Efficiency.

Primer Sequence (Forward and Reverse) TM (°C) Efficiency (100%)
POGEA crrrcascrrcaecrert % 956
BMPZ Grrriricccacrearric % 53
LHX:  GAGGTGATAAACCAAGTCCCG &
UBC  TrgeaTTTIGAcCTataAG 1162
YWHAZ  prCrercraraTiciccaccener Y 105
DA Gdaatceaiercarioan 1262

3. Results

3.1. PDGFA Full-Length Transcript

The characterization of the full-length cDNA of goat PDGFA revealed an open reading frame
with a length of 591 bp, a 3’ UTR of 239 bp and a 5" UTR of 182 bp, respectively. The 3’ UTR has a
typical polyadenylation signal (AATAAA), followed by an additional 20-bp poly (A) tail (Figure 1).

GCCTCTTCTCGCCTCGCTGCTCGCGCCGGGCGCGCTCCGTCGGCTGCCTG CTCTCCGCGCCACCCTCCTTCGGGCCGCG
TTCCCTGAGGGATGGTACTGAATTTCGCCGTCACAGGAGCCCGGCTGEAGCGLCCGCCCCGOGGCCTOGCCTCCCOGT
CGAGCCACCGGTGCCTCGGGACGCGATGAGGACCTGGGCTTGTCTGCTGCTCCTCGGCTGCGGGTACCTCGCCAATG
CCCTGGCCGAGGAAGCCGAGATCCCCCGCGAGGTCATIGAGAG GCTGGCGCACAGTCAGATCCACAGCATCOGGGA
CCTCCAGCGACTCCTGGAGATAGACTCCGTAGGAGCTGAGGAGCCTTTGGAAACCAGTCTGAGAGCCCACGGGGGCT
ACGGCGCTAGGCATGGCCOGGAGAGG CGGCCGGTGCCCATCCGGAG GAAGAGGAGCATCGAGGAGGCCATCCCAG
CGGTCTGCAAGACCAGGACTGTCATTTACGAGATACCTCGGAGCCAGGTGGACCCCACGTCCGCTAACTTCCTGATCT
GGCCGCCGTGCGTGEAGGTGAAGCGCTGCACCGGCTGCTGCAACACCAGCAGCGTTAAGTGCCAGCCGTCACGCGTC
CACCACCGGAATGTCAAGGTGGCCAAGGTGGAGTACTTCAGGAAGAAGGCGAAGTTGAAAGAGGTGCAGGTGCGE
CTGGAGGAGCACCTGGAGTGTGCGTGCACCAG CG CCAGCCCGAGCCCCGAGCGLCGLGAGGAG GAGGCGGATGTG
AGGIGAAGGTCAGCCAGCAG CCCCCTCCCGGGACACGGATGTACATGGCGTGTTACATTCCTGAACCTACTATGCACG
GTGCTTACTGCCAGCGTGGTCTTTGTTCTCCTCCGTGAAAACTGTCTCCATG CACGCTTTG GAG AACAAAGAGACAGTA
TACGTTGTTCATGTGACATCAAAGCAAGTATTGTAGCACTCGGTGAAACAATAAGACGCTTCCTTGTCAAAAAAAAAA
AAAAAAPAPA

Figure 1. PDGFA full-length transcript. The sequence was taken from accession number MK026736.
The start codon is highlighted in yellow. The stop codon is highlighted in green.

The coding region obtained from the PDGFA cDNA sequence encodes a putative protein
containing 196 amino acids (aa). The aa sequence was aligned with other PDGFA proteins and
showed high similarity to Ovis aries (99%), Sus scrofa (98%), Canis lupus familiaris (98%), Homo
Sapiens (98%), Rattus norvegicus (97%) (NCBI).

The predicted protein structure is composed of different components: a signal peptide of 20 aa,
a transient extension of the amino terminus of the protein, a propeptide with a length of 65 aa, which
is removed when the protein becomes mature, and a mature protein with a length of 109. Through
the Pymol program, which is used for 3D visualization of the proteins, we observed the very high
structural identity of our protein with human PDGF subunit A based on the RMSD value (0.12 A)
(Figure 2).
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Figure 2. Goat PDGF subunit A3D protein structure. (A) The yellow structure is the signal peptide,
red alpha-helix constitutes the propetide that is removed when the protein becomes mature; the
green structures show the functional part, which are the beta sheets; (B) The human PDGF subunit
Acrystallographic structure is reported for comparison.

3.2. Morphological Evaluation

Goat skin samples were accurately analyzed to determine which stage of the follicular cycle they
were in. HFs observed in the samples collected during the early anagen and anagen periods showed
morphological characteristics that were typical of the growing phase, including deep and large bulbs
(Figure 3a). In early catagen samples, most HFs still exhibited anagen characteristics although some
follicles in the regressive phase, showing the epithelial strand and trichilemmal keratinization, were
observed. In the late catagen phase, most secondary HFs confirmed this phase. They appeared short,
without the bulb region and with their proximal part near to the attachment point of the arrector pili
muscle. The inner root sheath was replaced by the trichilemmal keratinization (Figure 3b).

Figure 3. Hair follicles (HF) during different periods of the hair cycle. (a) The deepest part of an
anagen HF is showed, which contains a large and onion-shaped bulb that extends into the dermis. The
dermal papilla (*) consists of fibroblasts embedded in abundant extracellular matrix and small blood
vessels. The dermal papilla is completely enclosed by matrix cells (m). The inner root sheath (arrow) is
developed and clearly visible. Hematoxylin & Eosin staining; (b) A HF at the end of the regressive
phase. The typical morphological features of this period are shown, which include a little and rounded
dermal papilla (*); a shrunk matrix; a short epithelial strand (arrowhead); and a trichilemmal sac
surrounding the hair shaft (arrow). Floxin B/Orange G/ Alcian blue staining.
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3.3. Immunohistochemical Evaluation

Anti-PDGFA and anti-PDGFR«x antibodies reacted consistently with all tested skin samples and
showed the expression of the molecules in some structures of goat skin, including the epidermis
and HFs.

PDGFA was localized in the cells of the basal layer of the epithelium: the signal was clearly
observed in the cell membrane and mainly involved the basal compartment (Figure 4). With regards to
HF, immunostaining extended from the infundibulum to the proximal end of the isthmus while no
staining was observed in the bulb. Staining involved the basal layer of the outer root sheath while
the inner root sheath appeared to be inconsistently positive. PDGFA positivity was sharp in all stages
of hair cycle although the regressive HFs showed a more intense signal that strongly demarcated the
isthmic region surrounding the club hair of catagen and telogen HFs. During these phases of the hair
cycle, the dermal papilla also showed positivity for PDGFA. Both primary and secondary HFs showed
the same immunostaining pattern for PDGFA (Figure 4).

~— - — “
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Figure 4. PDGFA expression in goat skin. (a) In the epidermis, the cells of the basal layer show a clear
staining of the cell membrane (arrows), while suprabasal layers are negative. Negative control in the
inset. (b) Isthmic region of an anagen hair follicle (HF): immunostaining is localized in the basal cells of
the outer root sheath (arrows). * = arrector pili muscle. (c) A group of secondary regressive phase HFs,
which are characterized by irregular edges of the outer root sheath and trichilemmal keratinization (TK).
Basal cells surrounding the club hair show a strong immunostaining. Arrows point out two dermal
papillae. (d) PDGFA expression in the sweat gland (arrow). ABC immunohistochemical staining.
Nuclei are counterstained with Hematoxylin.

PDGFA was inconsistently observed in some basal cells of the sebaceous glands while sweat
glands appeared to be negative. In all samples, smooth muscle cells showed an intense immunoreaction
to PDGFA. Accordingly, the arrector pili muscle, myoepithelial cells of the sweat glands and tunica
media of blood vessels were used as internal positive controls (Figure 4).

The receptor of PDGFA was observed in the epidermis and HFs (Figure 5). However, it was
mainly expressed by the suprabasal cells and staining was clearly localized in the cell cytoplasm. The
staining extended along the follicular wall from the infundibulum to the isthmus and involved the
outer root sheath while the inner root sheath appeared to be negative. The receptor was observed in
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both primary and secondary HFs throughout the follicular cycle. PDGFR« was also observed in the
secretory cells of the sebaceous glands.

Figure 5. PDGFRx expression in the goat skin. (a) In the epidermis (Ep), immunostaining mainly
extended in the suprabasal cell layers. Arrow points to basal cells. (b) Isthmic region of an anagen hair
follicle (HF): immunostaining clearly involved all the cells of the outer root sheath (Ors) while inner
root sheath was negative (*). A hair (H) is in the follicular canal. (c) A sebaceous gland (Sg): staining is
mainly localized in the secretory cells while the gland basal cells are negative. On the right, a primary
HF in a transverse section shows an intense staining to PDGFR« in the outer root sheath (Ors) cells.
H = hair. ABC immunohistochemical staining. Nuclei are counterstained with Hematoxylin.

3.4. gPCR Evaluation

The expression levels of PDGFA, BMP2 and LHX2 were analyzed in four different times (June,
September, December and January) on all cashmere goat skin samples collected (Figure 6). The gPCR
was performed using three reference genes, which were namely SDHA, YWHAZ and UBC. Follicular
cycle-related expression differences were observed for PDGFA and BMP2. PDGFA showed a peak
during the early anagen phase, a decrease in the anagen and early catagen phases and finally a slight
increase in the late catagen phase. The BMP2 expression levels showed a trend, which was similar to
that of PDGFA. They were high during the early anagen and late catagen phases while they decreased
during the anagen and early catagen phases. LHX2 expression levels were quite similar in all four
phases although a slight and progressive decreasing trend from the early anagen to late catagen phase
was observed. The ANOVA test (p < 0.005) was performed to analyze the results (Table 3).

Table 3. Analysis of variance (ANOVA).

Gene p Value
PDGFA 8 x 1078
BMP2 0.00024102

LHX2 0.04075542
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Figure 6. Expression levels of PDGFA, BMP2 and LHX2 during different phases of hair follicle

(HF) cycle.
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This showed that LHX2 had no significant variations in expression levels during the different HF
cycle phases while significant variations in levels of expression were observed for PDGFA and BMP2
(Figure 6).

4. Discussion

Similar to other mammals, such as sheep and mink, many breeds of goat have a double coat
composed of the guard hairs produced by primary HFs and the fine down (cashmere) underwool
hairs produced by the secondary HFs [33]. The coat experiences photoperiodic-dictated alterations,
which prepares the animal for changes in ambient temperature. This is driven by HFs, which undergo
regular cycles of involution and regeneration. It is unquestionable that the generation of a new hair
depends on the activation of hair-specific epithelial stem cells, which are located in the bulge region of
the HF that serves as a reservoir for epithelial and sebaceous gland cells [7]. The activation of HF stem
cells is driven by members of several families of signaling molecules.

PDGFA, which is secreted by the adipocyte precursor cells, was suggested to be instrumental in HF
regeneration during the hair cycle [11,14]. In this work, PDGFA was studied to evaluate its role in goat
HF by analyzing its expression in the skin of selected young female cashmere goats throughout the HF
cycle. Using skin biopsies, PDGFA mRNA was sequenced for the first time in goats. The comparison
of the genes, which was performed using GenBank sequences, revealed that goat PDGFA gene is
similar to Ovis aries (99%), Sus scrofa (98%), Canis lupus familiaris (98%), Homo Sapiens (98%) and
Rattus norvegicus (97%) (NCBI). This high homology suggests a common function or mechanism of
this molecule across species. Cells expressing PDGFA and its receptor in cashmere skin were identified
by immunohistochemistry to identify the skin structures that produce and are reactive to PDGFA. In
all samples, HFs showed the expression of both molecules. In particular, PDGFA immunostaining was
observed in the outer root sheath cells from the infundibulum to the proximal end of the isthmus. The
expression of PDGFA was already described in the follicular epithelium of the upper part and the bulge
region in mouse and human fetuses [34,35]. Accordingly, it was hypothesized that PDGFA plays a role
in HF morphogenesis [36]. The PDGFA receptor was observed in the follicular epithelium, suggesting
that HF is a responsive structure to the actions of PDGFA according to Kamp et al. [37] who described
the expression of the receptor in human follicular keratinocytes. The localization of both PDGFA and
PDGFRa in the outer root sheath cells suggests that PDGFA acts on HF by an autocrine and paracrine
mechanism [37]. Furthermore, this supports HF having a primary role in PDGFA secretion and in the
regulation of its own cycle. PDGFA persisted throughout follicular cycle although there was stronger
immunostaining in the cells of the isthmic region surrounding the club hair. PDGFA qPCR evaluation
confirmed immunohistochemical data. The molecular expression was high in the late catagen and
early anagen phase, which occurs during the passage between two follicular cycles when the HF starts
to prepare the new cycle. The stronger expression of PDGFA observed in this period confirms that this
molecule is involved in HF growth and likely activates the anagen phase as previously hypothesized
in other species [12,17].

Together with PDGFA, the expression of BMP2 and LHX2 was analyzed by qPCR throughout the
cashmere HF cycle since literature has suggested that they are anagen activators [13,18,19].

In this study, BMP2 behaved in a similar way to PDGFA with high levels in the early anagen phase,
which were lower during the anagen and early catagen phase before increasing in the late catagen phase.
This corroborates the findings of the study conducted by Su et al. [19], which suggested that BMP2 may
play a role in the regeneration of HFs and is involved in the regulation of follicular morphogenesis.

LHX2 is described as an important regulator of HF cycle as it controls the switch between stem
cell maintenance and activation in the HFs [23]. In the cashmere goat analyzed in this study, LHX2
showed a slight but progressive decrease in its expression levels from the early anagen to late catagen
phase. Many authors connected this gene with the anagen phase when the new hair cycle begins [24].
Geng et al. [18] showed that LHX2 decreased from the anagen phase to other phases in cashmere goats
and Wang et al. [25] confirmed that in goat LHX2 regulates the generation and regeneration of the



Animals 2019, 9, 38 11 of 13

hair. However, the differences observed in the present study were very faint and not significant, which
suggests that LHX2 mainly maintains a continuous basal level throughout follicular cycle and cannot
be primarily considered as an anagen activator in cashmere goats.

5. Conclusions

PDGEF is a potent mitogen produced in a variety of cell types. It is important for cell growth,
proliferation and differentiation as it induces and maintains the anagen phase in mouse HF. In this
research, the expression of some molecular signals implicated in hair growth, including PDGFA, BMP2
and LHX2, was identified and the full-length transcript of goat PDGFA gene was sequenced. The
goat hair cycle is influenced by the photoperiod, which shows rhythmic activity of the growth. Stem
cells are involved in the cycle activation and start to differentiate in the early phase of the growth.
In this study, PDGFA and BMP2 genes were confirmed as activators of HF stem cells while LHX2 was
suggested to play a basic role during the hair growth with a continuous and non-fluctuating presence.
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